
Characterizing and VerifyingQueries Via CinsGen

Hanze Meng
Duke University

hm222@cs.duke.edu

Zhengjie Miao∗
Megagon Labs

zhengjie@megagon.ai

Amir Gilad
Duke University

agilad@cs.duke.edu

Sudeepa Roy
Duke University

sudeepa@cs.duke.edu

Jun Yang
Duke University

junyang@cs.duke.edu

ABSTRACT

Example database instances can be very helpful in understanding
complex queries. Different examples may illustrate alternative sit-
uations in which answers emerge in the query results and can be
useful for testing. Examples can also help reveal semantic differ-
ences between queries that are supposed to be equivalent, e.g., when
students try to understand how their queries behave differently
from a reference solution, or when programmers try to pinpoint
mistakes inadvertently introduced by rewrites meant to improve
readability or performance. In this paper, we propose to demon-
strate CinsGen, a system that can characterize queries and help
distinguish between two queries. Given a query, CinsGen generates
minimal conditional instances (c-instances) that satisfy it. In turn,
each c-instance is a generalization of multiple database instances,
yielding a compact representation. Thus, using CinsGen enables
users to obtain a comprehensive and compact view of all scenarios
that satisfy a specified query, allowing for query characterization
or distinction between two queries.

CCS CONCEPTS

• Theory of computation→ Incomplete, inconsistent, and un-

certain databases; • Information systems→ Relational database
query languages; Database utilities and tools.

KEYWORDS

database usability, incomplete databases

ACM Reference Format:

Hanze Meng, Zhengjie Miao, Amir Gilad, Sudeepa Roy, and Jun Yang. 2023.
Characterizing and Verifying Queries Via CinsGen. In Companion of the
2023 International Conference on Management of Data (SIGMOD-Companion
’23), June 18–23, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3555041.3589721

1 INTRODUCTION

Data analytics is indispensable in today’s technological environ-
ment, making the ability to query database management systems
(DBMS) one of the core skills in various fields. The need for tools to
support DBMS users in understanding database queries by examin-
ing how the query executes on certain database instances has been

∗Part of the work was done when the author was a Ph.D. student at Duke University.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9507-6/23/06. . . $15.00
https://doi.org/10.1145/3555041.3589721

name addr
Eve Edwards 32767 Magic Way

(a) Drinker relation

name brewer
American Pale Ale Sierra Nevada

(b) Beer relation

name addr
Land & Leute 1276 Evans Estate

Tadim 082 Julia Underpass
Algarve 7357 Dalton Walks

(c) Bar relation

drinker beer
Eve Edwards American Pale Ale

(d) Likes relation

bar beer price
Land & Leute American Pale Ale 2.25

Algarve American Pale Ale 2.75
Tadim American Pale Ale 3.5

(e) Serves relation

bar beer
Algarve American Pale Ale
Tadim American Pale Ale

(f) Result of𝑄𝐵

bar beer
Tadim American Pale Ale

(g) Result of𝑄𝐴

Figure 1: Database instance 𝐾0 of the Beers dataset. We as-

sume natural foreign key constraints from Serves and Likes to

Drinker, Bar, Beer.

𝑄𝐴 ={ (𝑥1, 𝑏1) | ∃𝑑1, 𝑝1
(
Serves(𝑥1, 𝑏1, 𝑝1) ∧ Likes(𝑑1, 𝑏1)∧

𝑑1 LIKE ’Eve␣%’ ∧ ∀𝑥2, 𝑝2 (¬Serves(𝑥2, 𝑏1, 𝑝2) ∨ 𝑝1 ≥ 𝑝2
)
}

(a) Query𝑄𝐴 : for each beer liked by any drinker whose first name is Eve, find
the bars that serve this beer at the highest price

𝑄𝐵 = { (𝑥1, 𝑏1) | ∃𝑑1, 𝑝1
(
∃𝑥2, 𝑝2 (Serves(𝑥1, 𝑏1, 𝑝1) ∧ Likes(𝑑1, 𝑏1)

∧ 𝑑1 LIKE
′𝐸𝑣𝑒%′ ∧ Serves(𝑥2, 𝑏1, 𝑝2) ∧ 𝑝1 > 𝑝2

)
}

(b) Query𝑄𝐵 which is similar to𝑄𝐴 but does not use the difference operator
and instead, find beers served at a non-lowest price

Figure 2: Correct query𝑄𝐴 and incorrect query𝑄𝐵 . Note that

the formula in 𝑄𝐴 has a space after ‘Eve’ whereas 𝑄𝐵 does

not. Here and later, denotes the space symbol.

extensively explored by the database community [3, 5, 8]. A sub-
stantial part of these focuses on the provenance of the query results,
based on which the tools provide users with different combinations
of input tuples in the database and illustrate how the input tuples
satisfy the query.

Although existing provenance-based tools are shown to be effec-
tive in explaining how the given query generates certain outputs
(often used in query debugging), these tools are highly dependent
on the given database instances. Hence, such tools may lead users
to focus on specific details in the given database instance but fail to
yield a general picture of the query features, i.e., what, in general,
leads to the satisfaction of the query. In particular, instances that
are not given may reveal other ways to satisfy the query.

Even if one can have an ideal test instance and can use existing
tools to find multiple different database instances, there can be
infinitely many database instances that satisfy the given query or
pinpoint issues in the query. In this case, the DBMS user would

143

https://doi.org/10.1145/3555041.3589721
https://doi.org/10.1145/3555041.3589721
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3555041.3589721&domain=pdf&date_stamp=2023-06-05

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Hanze Meng, Zhengjie Miao, Amir Gilad, Sudeepa Roy, and Jun Yang

𝑄𝐵 − 𝑄𝐴 = { (𝑥1, 𝑏1) | ∃𝑑1, 𝑝1
(
∃𝑥2, 𝑝2 (Serves(𝑥1, 𝑏1, 𝑝1) ∧ Likes(𝑑1, 𝑏1)

∧𝑑1 LIKE
′𝐸𝑣𝑒%′ ∧ Serves(𝑥2, 𝑏1, 𝑝2) ∧ 𝑝1 > 𝑝2

)
∧

∀𝑑2, 𝑝3
(
¬Likes(𝑑2, 𝑏1) ∨ ¬(𝑑2 LIKE ‘Eve␣%’) ∨ ¬Serves(𝑥1, 𝑏1, 𝑝3)∨

(∃𝑥3, 𝑝4 (Serves(𝑥3, 𝑏1, 𝑝4) ∧ 𝑝3 < 𝑝4))
)
}

Figure 3: The difference query 𝑄𝐵 −𝑄𝐴 from Figure 2.

name addr
𝑑1 ∗

(a) Drinker relation

name addr
𝑥1 ∗
𝑥2 ∗
𝑥3 ∗

(b) Bar relation

bar beer price
𝑥1 𝑏1 𝑝1
𝑥2 𝑏1 𝑝2
𝑥3 𝑏1 𝑝3

(c) Serves relation

name brewer
𝑏1 ∗

(d) Beer relation

drinker beer
𝑑1 𝑏1

(e) Likes relation

𝑑1 LIKE ‘Eve%’ ∧𝑝1 > 𝑝2 ∧ 𝑝2 > 𝑝3

(f) Global condition

Figure 4: C-instance I0 that satisfies𝑄𝐵 −𝑄𝐴 and generalizes

the counterexample 𝐾0 in Figure 1.

expect to see “clusters” of these instances instead of seeing all of
the instances.

To this end, we propose CinsGen1, a system that generates a set
of conditional instances or c-instances that satisfy a given query.
We adapt the notion of c-tables [10] from incomplete databases.
Such instances can contain variables instead of only constants
and assert logical conditions involving those variables. Thus, each
c-instance can be considered as a representative of all grounded
instances that replace its variables with constants satisfying the
conditions they are involved in. We also use the idea of coverage
from software validation [2] to capture different ways that database
instances satisfy the query. When a DBMS user examines how
their query executes, they will find that a specific ground instance
satisfying a certain subset of the query parts is sufficient to satisfy
the query. Therefore, we refer to the subset of the query atoms
as the coverage of the ground instance. CinsGen can provide a
compact representation of all satisfying instances without relying
on a specific database instance.

Example 1. Consider the database𝐾0 shown in Figure 1 containing
information about drinkers (Drinker), beers (Beer), bars (Bar), which beer
does a drinker like (Likes), and which bar serves which beer (Serves).
Suppose that a student is asked to write a query to find the bars that
serve the most expensive beer liked by any drinker whose first name
is Eve. A correct solution 𝑄𝐴 written in Domain Relational Calculus
(DRC) is shown in Figure 2a, while the studentmaywrite a very similar
but different query𝑄𝐵 (in Figure 2b), which chooses bars serving beers
not at the lowest price and only requires first names to have a prefix
of ‘Eve’. Figure 3 shows the formula for 𝑄𝐵 − 𝑄𝐴 but is not easily
understandable and does not clearly show the difference between the
queries. In this case, using provenance-based tools and a reasonable
test database instance, we can find the minimum counterexample
𝐾0 (shown in Figure 1) for the difference between 𝑄𝐴 and 𝑄𝐵 [11].
In particular, 𝑄𝐵 returns the tuples with non-lowest prices, (Algarve,
American Pale Ale) and (Tadim, American Pale Ale), while 𝑄𝐴 only
returns the latter tuple – the bar with the highest price. Notice that
the actual price and other values in 𝐾0 are unimportant – as long as
there exist three different prices in the database, the 𝑄𝐵 would return

1The research paper that developed the approach used by CinsGen appeared in
SIGMOD 2022 [7].

the bar with non-lowest and non-highest prices. Now consider the
more general counterexample as a c-instance showing the differences
between the queries 𝑄𝐵 and 𝑄𝐴in Figure 4. This c-instance, I0, shows
abstract tuples with variables instead of constants (∗ are ‘don’t care’
variables) and a condition that the variables must satisfy (there should
be a drinker whose name is ‘Eve’ with a space after and the order
of the prices in Serves table should be 𝑝1 > 𝑝2 > 𝑝3). Thus, I0 not
only generalizes the counterexample in Figure 1 (i.e., there exists an
assignment to the variables that results in the instance in Figure 1
and satisfies the global condition), but, also specifies the ‘minimal’
condition for which 𝑄𝐵 differs from 𝑄𝐴 (the global condition). 𝐾0 in
Figure 1 contains specific values that may confuse the user and divert
attention from the core differences.

Extensions of [7] for usability. While our algorithms are de-
signed to work with DRC queries and our output is in the form
of c-instance, in our implementation, we make CinsGen more ac-
cessible and its results more easily understandable. In particular,
we recognize that writing queries in DRC may be out of reach for
most users. We have, therefore, added a novel translation compo-
nent that allows CinsGen to get SQL queries and automatically
convert them into DRC, which is the input to our algorithms. The
translation component takes as input the query plan generated by
I-Rex [9], creates a distinct variable for each column reference in
the query plan, and constructs DRC tree nodes according to specific
rules by recursively tracing down the query plan. Another feature
added to CinsGen is the instantiation of c-instances. Now, users
are able to choose a c-instance that was generated by our algorithm,
instantiate it with values from the appropriate domains, and get a
concrete database instance that satisfies the query. CinsGen fur-
ther evaluates the query over this instance and presents the results,
making the c-instances easier to understand and interpret.

We will demonstrateCinsGenwith real-world datasets and allow
conference participants to explore different queries, the c-instances
generated from them, and the resulting concrete instances that
satisfy their queries. Thus, participants will experience an additional
tool for characterizing complex queries and distinguishing between
similar queries.

2 TECHNICAL BACKGROUND

We consider queries in Domain Relational Calculus (DRC), which
is equivalent to Relational Algebra [4].

Given a schema R, a DRC query𝑄 is expressed as𝑄 = {(𝑥1, 𝑥2, ...,
𝑥𝑝) | P𝑄 (𝑥1, ...𝑥𝑝)} where each 𝑥𝑖 represents a query variablethat
can only be assigned of variables or constants in its domain, P𝑄
is a standard first order logic (FOL) formula [1] involving rela-
tion names, constants, and domain variables. The formula P𝑄 is
built from DRC atoms of the following forms: (1) 𝑅(𝑦1 ..., 𝑦𝑘) or
¬𝑅(𝑦1 ..., 𝑦𝑘), where 𝑅 ∈ R is a relation, and each 𝑦𝑖 is a query vari-
able or a constant, and (2) conditions 𝑥1 𝑜𝑝 𝑥2 or 𝑥1 𝑜𝑝 𝑐 , where
𝑥1, 𝑥2 are variables in the query, 𝑐 is a constant in the domain, and
𝑜𝑝 is a binary operator such as =, >, ≥, <, ≤,≠, 𝐿𝐼𝐾𝐸.
C-instance. We give the definition of a c-instance adapting the
concepts of c-tables from the literature [10]. A conditional table
(c-table) with a relational schema 𝑅𝑖 ∈ R is a table T𝑖 in which for
each tuple 𝑡 ∈ 𝑇𝑖 and each attribute A ∈ Attr(𝑅𝑖), 𝑡 [A] is either
a constant from its active domain Dom(A) or is a labeled null. A

144

Characterizing and VerifyingQueries Via CinsGen SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA

Figure 5: The input screen of CinsGen showing our running example.

Figure 6: Instantiation screen.

c-instance I of R is a tuple of the form ({T1, . . . , T𝑟 }, 𝜙), where
for each 𝑖 ∈ [1, 𝑟], T𝑖 is a c-table with schema 𝑅𝑖 , and the global
condition 𝜙 is a conjunction of atomic conditions associated with
the c-instance. The atomic conditions in the c-instance are either
(1) an atom of the form [𝑥 𝑜𝑝 𝑐] (¬[𝑥 𝑜𝑝 𝑐]) or [𝑥 𝑜𝑝 𝑦](¬[𝑥 𝑜𝑝 𝑦])
where 𝑥 and 𝑦 are labeled nulls, 𝑐 is a constant in the active do-
main, and 𝑜𝑝 is a binary operator, or (2) a condition of the form
¬𝑅(𝑥1, . . . , 𝑥𝑘) where 𝑅 is a relation on 𝑘 attributes.

Query syntax tree. A syntax tree of a query 𝑄 is tree for the FOL
formula P𝑄 satisfying the following rules: (1) each leaf node is a
DRC atom, and (2) each internal node is either a quantifier with a
single variable (e.g., ∀𝑥 and ∃𝑥) with a single child, or a connective
(∧ and ∨) with two children. Further, all negations in the syntax
tree appear in the leaves; we do not use separate nodes for negation.
Figure 5 shows the syntax tree of the difference query in Figure 3.

Coverage. Given a query 𝑄 , In this work, we want to find c-
instances instead of ground instances that satisfy 𝑄 . To measure
how a database instance satisfies a query or how it distinguishes
two queries, we propose to use the subset of query atoms satisfied
when evaluating the queries on the instance, which we call the
“coverage” of an instance. Intuitively, the coverage cov(𝑄,I) is the
set of atoms and conditions of𝑄 that can be covered by any ground
instance of the c-instance I, eventually leading to the satisfaction
of𝑄 . In the syntax tree of𝑄 , the coverage can be seen as the subset

of leaves that are satisfied by I. The coverage of I0 (Figure 4) is
shown by the red leaves in Figure 5.
Query characterization. With the notion of coverage, for a query
𝑄 and a given set of leaves 𝐿, the query characterization problem is
to find a set of c-instances SI = {I1, . . . ,I𝑘 }, such that for all I𝑖 , I𝑖
satisfies𝑄 , I𝑖 is minimal (no other satisfying c-instances with fewer
tuples/conditions have the same coverage), and each I𝑖 covers a
subset of 𝐿 in the syntax tree. Ideally, the solution SI should be
complete, i.e., for any satisfying grounded instance 𝐾 with coverage
C such that C ∩ 𝐿 is a maximum subset of 𝐿 that can be covered,
there is a I𝑖 ∈ SI with C = cov(𝑄,I𝑖). Also, the ideal solution
should have no redundancy, i.e., for any two I𝑖 ,I𝑗 where 𝑖 ≠ 𝑗 ,
cov(𝑄,I𝑖) ≠ cov(𝑄,I𝑗). Intuitively, these c-instances comprise a
minimal set to characterize all possible ways that 𝑄 is satisfied.

3 SYSTEM IMPLEMENTATION

The interface of CinsGen is implemented in Flask where the op-
tional database is stored in PostgreSQL. The algorithms used to
translate SQL to DRC and generate the c-instances are implemented
in Python 3.7 and use an SMT solver [6].
Translating SQL to DRC. To translate the queries written by the
user from SQL to DRC, we first employ the I-Rex system [9] to
obtain a JSON file containing the query plan in a specific format.
This representation is an internal intermediate step in I-Rex. Then,
the query plan is parsed, and the DRC syntax tree and query are
built in a bottom-up fashion, starting from the atoms and conditions
and moving to quantifiers (∀, ∃) and connectors (∧,∨). Meanwhile,
it creates a distinct variable for each column reference in the query
plan and keeps track of the variables bounded by existential and
universal quantifiers respectively.
Building C-instances. Next, we compute the set of satisfying c-
instances for the query for a given coverage. In [7], we show that
this problem is undecidable. So, inspired by the chase procedure
in data exchange, we provide search-based heuristics to build such
c-instances. At a high level, our algorithm tries to “map” the leaf
atoms and conditions in the DRC tree to tuples and conditions being
added to the c-instances. It keeps adding tuples and conditions by re-
peatedly traversing the tree and enumerating possible assignments
of quantified variables until the resulting c-instance is consistent

145

SIGMOD-Companion ’23, June 18–23, 2023, Seattle, WA, USA Hanze Meng, Zhengjie Miao, Amir Gilad, Sudeepa Roy, and Jun Yang

and satisfies the query (checked using an SMT solver). In particular,
handling ∨ and ∀ nodes in the tree increases the complexity. For
a tree rooted at a ∨ node (𝑄 = 𝑄1 ∨𝑄2), the algorithm reduces it
into three conjunctive trees by considering𝑄1 ∧𝑄2,𝑄1 ∧¬𝑄2, and
¬𝑄1 ∧𝑄2. For each reduced case, the algorithm may obtain a set
of c-instances and will return all of them as the result. For a tree
rooted at a ∀ node, the algorithm maps the quantified variable 𝑥
to different labeled nulls and constants and merges all resulting
c-instances into one single c-instance.
Instantiating c-instances. The resulting c-instances given by
our algorithm may contain labeled nulls that are denoted with
identifiers that are combinations of letters and numbers. To provide
the users with a more tangible result, CinsGen also has the option
to instantiate c-instances with concrete values. To achieve this,
CinsGen loads the domain of each attribute in the dataset (it can
also discovers the active domain from a loaded database instance).
Using this data, CinsGen employs an SMT solver to find a valid
assignment to the labeled nulls in the c-instance. If there is no
source of user-provided active domain or there are no available
values in the database that lead to a valid assignment, CinsGen can
use the solver to generate values satisfying the conditions.

4 DEMONSTRATION SCENARIO

Our demonstration will employ the Beers dataset, a sample of which
is shown in Figure 1, and the DBLP dataset. We will begin with
an initial explanation of the input screen, the different options for
dataset selection, and the use of the query input boxes. We will then
give a detailed example of running the various steps in CinsGen
using Example 1.
Step 1: Dataset selection. Users start by choosing one of the pre-
loaded databases in CinsGen (Beers and DBLP) and familiarizing
themselves with the schema of the selected database (displayed
on the left side of the screen in Figure 5, with keys in each table
underscored).
Step 2: Query formulation.Next, users will utilize the query fields
in Figure 5 to formulate their query in SQL. Our algorithms in Cins-
Gen will automatically translate the query to DRC (see Section 3).
Additionally, users can provide a second query as a reference query
that they wish to distinguish from the first one. CinsGen will then
find c-instances to differentiate them. As mentioned in Example 1,
this scenario is particularly useful when users want to examine two
similar queries that may be equivalent, or in a classroom setting
when TAs wish to check a student query and give the students
instances for which the queries differ.
Step 3: Choice of covered nodes in the syntax tree. Upon
clicking the “Generate Your Syntax Tree!” button (located at the
bottom of the screen shown in Figure 5), users will see the syntax
tree of their query (if a single query was given), or the syntax tree
of the difference query (if two queries were given). The user can
then examine the structure of the query, which can be crucial for
novice users like students to understand their queries. Moreover,
for more experienced users such as instructors and TAs, CinsGen
provides an advanced mode: in the view of the DRC syntax tree,
the users can annotate the leaves that they want to be covered
by the c-instances simply by clicking on them. Besides offering
users a flexible interface to explore how their query evaluates,

this feature narrows down the search space of CinsGen in the c-
instance generation process. As a result,CinsGenwill only generate
c-instances that satisfy a maximum size subset of the annotated
atoms in the leaves.
Step 4: C-instance generation. When clicking the “Show C In-
stances” button in Figure 5, CinsGen will generate the requested
c-instances if leaf nodes were selected in the previous step, or run
an exhaustive search to find all satisfying c-instance if no leaf node
was selected. The resulting c-instances will be displayed below the
query field on the user interface of CinsGen, as depicted in Figure 6.
In this view, users can review the generated c-instances one by one
by navigating through the pagination row using the arrows in the
top left corner of Figure 6.
Step 5: Instance instantiation and evaluation. To provide a
more concrete view of the c-instances for standard users such as
students, CinsGen will generate concrete values for each labeled
null in the c-instance. Specifically, CinsGen uses the domains of the
different attributes in the database to complement the identifiers in
the c-instance (e.g., name0 and beer0 in Figure 6) with values from
the domain (e.g., Eve and Corona in Figure 6) in a way that ensures
the assignment is consistent and satisfy the global condition, as
explained in Section 3. However, more experienced users can choose
not to instantiate the c-instance in the advanced mode if they prefer
to examine c-instances without concrete values. Furthermore, the
results of evaluating the query (or both user-input queries in case
two queries were given) over this instance will also be shown to the
user, explicitly indicating whether the instance satisfies the given
query or can distinguish between the two given queries.

Users can then further interact with CinsGen by modifying their
initial query, adding a second query if one was not provided, anno-
tating different leaves in the syntax tree, and choosing a different
c-instance to instantiate.

ACKNOWLEDGMENTS

This work was partially supported by the NSF grants IIS-2008107
and IIS-2147061.

REFERENCES

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.
Addison-Wesley.

[2] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing.
[3] Peter Buneman, Sanjeev Khanna, and Tan Wang-Chiew. 2001. Why and where:

A characterization of data provenance. In International conference on database
theory. Springer, 316–330.

[4] Edgar F Codd et al. 1972. Relational completeness of data base sublanguages.
[5] Yingwei Cui and Jennifer Widom. 2003. Lineage tracing for general data ware-

house transformations. The VLDB Journal—The International Journal on Very
Large Data Bases 12, 1 (2003), 41–58.

[6] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. 337–340.

[7] Amir Gilad, Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2022. Understanding
Queries by Conditional Instances. In SIGMOD. 355–368.

[8] Todd J Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance semir-
ings. In PODS. 31–40.

[9] Yihao Hu, Zhengjie Miao, Zhiming Leong, Haechan Lim, Zachary Zheng, Sudeepa
Roy, Kristin Stephens-Martinez, and Jun Yang. 2022. I-Rex: An Interactive Rela-
tional Query Debugger for SQL. In SIGCSE. 1180.

[10] Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information in Rela-
tional Databases. J. ACM 31, 4 (1984), 761–791.

[11] Zhengjie Miao, Sudeepa Roy, and Jun Yang. 2019. Explaining Wrong Queries
Using Small Examples. In SIGMOD. 503–520.

146

	Abstract
	1 Introduction
	2 Technical Background
	3 System Implementation
	4 Demonstration Scenario
	Acknowledgments
	References

