
Explanations for Data Repair Through Shapley Values
Daniel Deutch

Tel Aviv University

danielde@tauex.tau.ac.il

Nave Frost

Tel Aviv University

navefrost@mail.tau.ac.il

Amir Gilad

Duke University

agilad@cs.duke.edu

Oren Sheffer

Tel Aviv University

orensheffer@mail.tau.ac.il

ABSTRACT
Data repair, i.e., the identification and fix of errors in the data, is a

central component of the Data Science cycle. As such, significant

research effort has been devoted to automate the repair process.

Yet it still requires significant manual labor by the Data Scientists,

tweaking and optimizing repair modules (up to 80% of their time,

according to surveys).

To this end, we propose in this paper a novel framework for

explaining the results of any data repair module. Explanations in-

volve identifying the table cells and database constraints having the

strongest influence on the process. Influence, in turn, is quantified

through the game-theoretic notion of Shapley values, commonly

used for explaining Machine Learning classifier results. The main

technical challenge is that exact computation of Shapley values in-

curs exponential time. We consequently devise and optimize novel

approximation algorithms, and analyze them both theoretically and

empirically. Our results show the efficiency of our approach when

compared to the alternative of adapting existing Shapley value

computation techniques to the data repair settings.

CCS CONCEPTS
• Information systems→ Integrity checking; Relational database
model; Inconsistent data; Data provenance; Incomplete data.

KEYWORDS
Data repair, Explainability, Shapley value, Denial constraints

ACM Reference Format:
Daniel Deutch, Nave Frost, Amir Gilad, and Oren Sheffer. 2021. Explanations

for Data Repair Through Shapley Values. In Proceedings of the 30th ACM
International Conference on Information and Knowledge Management (CIKM
’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3459637.3482341

1 INTRODUCTION
There is a wide variety of data repair algorithms [3, 8, 13, 17, 20,

21, 29, 36]. For example, Holoclean [36] uses a graphical Machine

Learning (ML) model to infer repairs, NADEEF [13] focuses on

repairs based on a conflict hypergraph, Llunetic [20] performs a

repair process that is based on the chase algorithm, and Livshits

et. al. [29] computes the repair by repeatedly splitting the database

table and eliminating attributes in the constraints.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482341

Users can, therefore, set the constraints and choose a repair

algorithm based on their domain knowledge. These choices are

highly non-trivial and even after executing the algorithm, the users

may wonder whether they have chosen correctly and whether the

data was repaired correctly. To this end, in this paper we focus on
generating explanations for black box repair algorithms, using both
the constraints and the cells that have the highest influence on the
repair. Such explanations give a holistic view that allows users

to understand the repair process. Our solution focuses on Denial

Constraints (DCs), a formalism that was shown to be expressive

enough in many realistic cases [12, 36].

Repair algorithms often use combinations of DCs and cells in

intricate ways, and a single DC/cell may interact with different

subsets to affect the repair process. To nevertheless obtain an in-

terpretable view of this complex process, we follow an approach

originating in cooperative game theory and gaining recent atten-

tion in the context of Machine Learning [23, 28, 30, 41]: we quantify

the contribution of each individual cell/DC to the repair process

using the notion of Shapley values [38], and return their ranked

list. As we shall demonstrate, this leads to explanations that are

both simple and informative.

𝐶1 . ∀𝑡1, 𝑡2 . ¬(𝑡1(︀𝑇𝑒𝑎𝑚⌋︀ = 𝑡2(︀𝑇𝑒𝑎𝑚⌋︀ ∧ 𝑡1(︀𝐶𝑖𝑡𝑦⌋︀ ≠ 𝑡2(︀𝐶𝑖𝑡𝑦⌋︀)

𝐶2 . ∀𝑡1, 𝑡2 . ¬(𝑡1(︀𝐶𝑖𝑡𝑦⌋︀ = 𝑡2(︀𝐶𝑖𝑡𝑦⌋︀∧

𝑡1(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀ ≠ 𝑡2(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀)

𝐶3 . ∀𝑡1, 𝑡2 . ¬(𝑡1(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀ = 𝑡2(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀∧

𝑡1(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀ ≠ 𝑡2(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀)

𝐶4 . ∀𝑡1, 𝑡2 . ¬(𝑡1(︀𝑃𝑙𝑎𝑐𝑒⌋︀ = 𝑡2(︀𝑃𝑙𝑎𝑐𝑒⌋︀ ∧ 𝑡1(︀𝑌𝑒𝑎𝑟⌋︀ ≠ 𝑡2(︀𝑌𝑒𝑎𝑟⌋︀)

Figure 1: Denial constraints
Dirty table

Team City Country Year League Place

𝑡1 F.C. Barcelona Barcelona Spain 2019 Spanish League 1

𝑡2 Atletico Madrid Madrid Spain 2019 La Liga 2

𝑡3 Real Madrid Madrid Spain 2019 La Liga 3

𝑡4 F.C. Barcelona Barcelona Catalonia 2018 La Liga 1

𝑡5 Real Madrid Capital España 2018 La Liga 2

𝑡6 Atletico Madrid Madrid Spain 2018 Spanish League 3

Repaired table
Team City Country Year League Place

𝑡1 F.C. Barcelona Barcelona Spain 2019 La Liga 1

𝑡2 Atletico Madrid Madrid Spain 2019 La Liga 2

𝑡3 Real Madrid Madrid Spain 2019 La Liga 3

𝑡4 F.C. Barcelona Barcelona Spain 2019 La Liga 1

𝑡5 Real Madrid Madrid Spain 2019 La Liga 2

𝑡6 Atletico Madrid Madrid Spain 2019 La Liga 3

Figure 2: Pre-repair and post-repair database tables for La
Liga standings

Example 1. Consider the DCs depicted in Figure 1 (for brevity,
only a subset of the DCs is shown). Also consider the input database
table and the table after it was repaired by the algorithm in Figure 3,
shown in Figure 2 (dirty cells are colored red and clean cells are colored
green). The value in the cell 𝑡4(︀𝑌𝑒𝑎𝑟⌋︀, colored red in the repaired table
in Figure 2, was changed from 2018 to 2019. When viewing this result,
it is clear that it is an incorrect repair since, the same team may

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

362

https://doi.org/10.1145/3459637.3482341
https://doi.org/10.1145/3459637.3482341

1: Input: Set of constraints 𝒞, a dirty database table𝑇𝑑

2: Output: A repaired table𝑇𝑐

3: for tuple 𝑡𝑖 ∈ 𝑇𝑑
: do

4: for constraint𝐶 𝑗 ∈ 𝒞 s.t.𝐶 𝑗 ∶= ∀𝑡1, 𝑡2 . ¬(𝑡1(︀𝐴⌋︀ ≠ 𝑡2(︀𝐴⌋︀ ∧ 𝑡1(︀𝐵1⌋︀ =

𝑡2(︀𝐵1⌋︀ ∧ 𝑡1(︀𝐵2⌋︀ = 𝑡2(︀𝐵2⌋︀ . . . do
5: if tuple 𝑡𝑖 has a contradiction with any other tuple according to

𝐶 𝑗 then
6: The𝐴 attribute will be modified to the most common one given

𝑡𝑖(︀𝐵1⌋︀, 𝑡𝑖(︀𝐵2⌋︀..., i.e., argmax𝑐 P(︀𝑡(︀𝐴⌋︀ = 𝑐 ⋃︀ 𝑡𝑖(︀𝐵1⌋︀, 𝑡𝑖(︀𝐵2⌋︀...⌋︀

7: end if
8: end for
9: end for

Figure 3: Majority repair algorithm for the example

finish in a different place in different years. The DC with maximum
contribution to this repair is𝐶4, stating that there cannot be two teams
who finish in the same place in different years. Indeed, our system
presents this faulty DC as an explanation for the incorrect repair (that
also affects 𝑡5(︀𝑌𝑒𝑎𝑟⌋︀ and 𝑡6(︀𝑌𝑒𝑎𝑟⌋︀), and the user may choose to omit
it from the set of DCs.

Further consider the cell 𝑡5(︀𝐶𝑖𝑡𝑦⌋︀ whose value was changed from
“Capital” to “Madrid”. The cells with the maximum contribution to
this change are 𝑡3(︀𝐶𝑖𝑡𝑦⌋︀, 𝑡3(︀𝑇𝑒𝑎𝑚⌋︀, 𝑡5(︀𝑇𝑒𝑎𝑚⌋︀, 𝑡2(︀𝐶𝑖𝑡𝑦⌋︀, and 𝑡6(︀𝐶𝑖𝑡𝑦⌋︀.
The first three cells form a violation of 𝐶1 along with 𝑡5(︀𝐶𝑖𝑡𝑦⌋︀, and
the two other cells are from the same column and contain the value
“Madrid”. We can conclude that they are used for choosing value of
𝑡5(︀𝐶𝑖𝑡𝑦⌋︀ (since the value “Madrid” is more common than “Capital”).
Thus, we can understand that the algorithm in Figure 3 uses a majority
vote to repair the value. Such explanations are useful for gaining
insight into the repair processes.

In addition to the model, our main contributions are as follows.

Algorithms and Optimizations. Direct computation of Shapley

values in our settings is intractable for large-scale data: it requires

iterating over all subsets of constraints and data cells, and for each

subset executing the black-box repair algorithm (whose execution

may be costly). Therefore, we present a two-phase algorithm, tai-

lored to the specific setting of data repair:

(1) Constraints and Table Pruning: We develop a pruning

algorithm based on an analysis of the connections between

the attributes through the DCs, thereby removing irrelevant

DCs, attributes and tuples from the computation.

(2) Optimized Monte Carlo Sampling: We devise an algo-

rithm that is based on the Monte Carlo sampling approach

for approximating Shapley values [40], and combines two op-

timizations: (1) sample re-use, i.e., the ability to use a single

sample for various “players” (cells). This significantly re-

duces runtime by running the repair algorithm fewer times,

and (2) an informed choice of the sample size – we experi-

mentally show that some sample sizes are more informative

than others. These sizes are unknown a-priori; we find them

using a multi-armed bandit technique [24, 39], showing that

our algorithm converges to the true Shapley value.

ExperimentsWe have performed a comprehensive experimental

evaluation of our approach. We have compared our approach to the

Shapley value formula [38] (used as the ground truthwhen possible),

Monte Carlo sampling [40], and SHAP [30] in terms of accuracy

and scalability. We use multiple datasets including Hospital [13],

Adult [15], andMicrosoft Academic Search Database (MAS) [1]. Our

solution converges to the accurate Shapley values faster than the

baselines (∼ 70 times faster on average), and scales to significantly

larger database sizes (millions of tuples as opposed to ∼ 104 cells
for the baselines). We have conducted a user study that further

validates the quality and usefulness of our computed explanations.

RelatedWork. Several works have proposed explanations for data-
base errors (instead of repairs) in specific scenarios. Specifically,

Wisteria [22] supports the design of development and optimization

of data repair workflows by allowing users to interact with the

workflow iteratively. Chalamalla et. al. [10] focuses on explaining

errors in the initial database. ExplainER [16] provides an approach

for explaining ML based entity-resolution algorithms by adapting

existing ML explanation approaches such as LIME [37]. Data X-Ray

[43] focuses on explaining data errors rather than the repair pro-

cess using Bayesian analysis. QFix [44] focuses on tracing when

errors were inserted to the data by update queries. As for non black
box explanations for repairs, CLeanEX [6] provides explanations

for a pipeline generated by an automated data repair system, as-

suming this system can provide its pipeline search space. XPlode

[35] allows users to first manually clean small subsets of the data

and then automatically generates Conditional Functional Depen-

dencies (CFDs) that are consistent with the repairs provided by

the user. These CFDs are then considered the explanations for the

subsequent overall repair that is performed by an automatic system.

In contrast to these works, in our setting, we do not assume any

knowledge of the repair algorithm and do not require any user

input except the cell whose repair needs to be explained.

2 PRELIMINARIES
We start by reviewing the relevant notions regarding databases,

data repair, and Shapley values.

Database Tables. 𝑇 is a database table with schema 𝒮(𝑇) = (𝐴1,

. . . ,𝐴𝑚) where 𝐴𝑖 is the 𝑖-th attribute of 𝑇 . For a tuple 𝑡 ∈ 𝑇 , we
denote by 𝑡(︀𝐴⌋︀ the cell in attribute 𝐴 of the tuple 𝑡 . Note that 𝑡(︀𝐴⌋︀
denotes the cell rather than its current value (values may change

due to the repair process). We denote by 𝑇
𝑑
and 𝑇

𝑐
the database

table before and after the repair, respectively. Similarly, 𝑡
𝑑 (︀𝐴⌋︀ and

𝑡
𝑐(︀𝐴⌋︀ are used to denote the original and repaired values in the cell

𝑡(︀𝐴⌋︀, respectively. We assume each tuple and cell in𝑇 has a unique

identifier. We further abuse the syntax of set operations to describe

value changes in 𝑇
𝑑
to 𝑛𝑢𝑙𝑙 . For instance, if 𝑆 is a subset of cells in

𝑇
𝑑
, then the meaning of 𝑇

𝑑 ∖ 𝑆 is that ∀𝑡(︀𝐴⌋︀ ∈ 𝑆. 𝑡(︀𝐴⌋︀ = 𝑛𝑢𝑙𝑙 .
Example 2. Consider the dirty and clean tables shown in Fig-

ure 2 (𝑇𝑑 and 𝑇𝑐 , respectively). Observe that the content of the cell
𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀ in 𝑇𝑑 has changed in 𝑇𝑐 from “España” to “Spain”.

Denial Constraints. DCs [11–13] are a general form of integrity

constraint that contain functional dependencies, metric functional

dependencies [25] and conditional functional dependencies [9].

They can be expressed as a negation of a conjunctive statement.

Definition 1. Given a table with schema 𝑇 (𝐴1, . . . ,𝐴𝑚), a De-
nial Constraint (DC) is logical statement of the form

∀𝑡1, . . . , 𝑡𝑘 . ¬(𝜙1 ∧ . . . ∧ 𝜙𝑙)
where 𝜙𝑖 is either 𝑡𝑖(︀𝐴𝑘⌋︀ ○ 𝑡 𝑗 (︀𝐴𝑙 ⌋︀ or 𝑡𝑖(︀𝐴𝑘⌋︀ ○ 𝑐 , 𝑐 is a constant, 1 ≤
𝑘, 𝑙 ≤𝑚, and ○ ∈ {<,>,≤,≥,=,≠}.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

363

Example 3. The DC𝐶1 shown in Figure 1 states that no two tuples
can have the same value in the Team attribute value (𝑡𝑖(︀𝑇𝑒𝑎𝑚⌋︀ =
𝑡 𝑗 (︀𝑇𝑒𝑎𝑚⌋︀) and a different City attribute value (𝑡𝑖(︀𝐶𝑖𝑡𝑦⌋︀ ≠ 𝑡 𝑗 (︀𝐶𝑖𝑡𝑦⌋︀).
Shapley Values. In Cooperative Game Theory, Shapley value [38]

is a way to distribute the contribution of each player, assuming they

cooperate. Let 𝑁 be a finite set of players and 𝑣 ∶ 2𝑁 → R, 𝑣(∅) = 0
be a characteristic function. 𝑣 maps sets of players to the joint worth

they generate according to the game. The contribution of player 𝑎
to a coalition 𝑆 (such that 𝑎 ∉ 𝑆) is defined by the change in 𝑣 due

to 𝑎’s addition, i.e., 𝑣(𝑆 ∪ {𝑎}) − 𝑣(𝑆). The Shapley value of player

𝑎 is the average of this contribution over the possible different

permutations in which the coalition can be formed. Intuitively, for

any player 𝑎, this value is the sum of 𝑎’s contribution to a change

in 𝑣 over any possible coalition, factored by the size of the coalition

such that mid-sized coalitions (of such there exists more of) are

factored with a lower contribution.

𝑆ℎ𝑎𝑝𝑙𝑒𝑦(𝑁, 𝑣, 𝑎) = ∑
𝑆⊆𝑁∖{𝑎}

⋃︀𝑆 ⋃︀!(⋃︀𝑁 ⋃︀ − ⋃︀𝑆 ⋃︀ − 1)!
⋃︀𝑁 ⋃︀!

⋅ (𝑣(𝑆 ∪ {𝑎}) − 𝑣(𝑆))

Shapley value is the only distribution function that satisfies several

natural properties. Some of the properties are (1) Efficiency, i.e., that
the sum of Shapley values of all players is equal to the gain of the

grand coalition, (2) Symmetry, i.e., the worth of two players should

be the same if they contribute equally to all possible coalitions, and

(3) Linearity, i.e., if two separate games are combined together, then

the worth distribution of the combined game should be equal to

the sum of distributions of both games separately.

3 FRAMEWORK FOR DATA REPAIR
EXPLANATIONS

We next define our framework, including a very general notion of

data repair, DC and cell contributions through Shapley values.

3.1 Black Box Data Repair
The repair algorithm is considered a black box, and thus we define it

simply as a function. Its input is a dirty table and a set of constraints

and its output is a clean table.

Definition 2 (Repair Algorithm). Given a dirty table 𝑇𝑑 with
schema𝒮(𝑇) and a set of constraints 𝒞, a repair algorithm𝐴𝑙𝑔𝒞,𝒮(𝑇),𝑇𝑑

is a mapping from a dirty table 𝑇𝑑 to a clean table 𝑇𝑐 , denoted by
𝐴𝑙𝑔𝒞,𝒮(𝑇),𝑇𝑑 (𝑡(︀𝐴⌋︀) = 𝑡(︀𝐴⌋︀𝑐 , where 𝑡(︀𝐴⌋︀ is a cell in 𝑇𝑑 and 𝑡(︀𝐴⌋︀𝑐 is
the value of 𝑡(︀𝐴⌋︀ in 𝑇𝑐 after running 𝐴𝑙𝑔 with 𝒞, 𝒮(𝑇), and 𝑇𝑑 .

In the sequel of the paper, we do not mention the schema in the

notation and simply write 𝐴𝑙𝑔𝒞,𝑇𝑑 (𝑡(︀𝐴⌋︀) = 𝑡(︀𝐴⌋︀𝑐 for simplicity.

Example 4. Reconsider the algorithm in Figure 3, the denial con-
straints in Figure 1, and the dirty and clean tables in Figure 2. The
cells 𝑡1(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀ and 𝑡5(︀𝐶𝑖𝑡𝑦⌋︀ that have the values “Spanish League”
and “Capital” are mapped by the repair algorithm to 𝑡5(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀𝑐 =
“La Liga” and 𝑡5(︀𝐶𝑖𝑡𝑦⌋︀𝑐 = “Madrid”, respectively.

We next define an indicator function based on the repair algo-

rithm. Intuitively, we are interested in examining whether the repair

of a cell remains consistent for different subsets of DCs and cells.

Definition 3 (Fixed Function). Given a dirty table 𝑇𝑑 , a set
of constraints 𝒞, a repair algorithm 𝐴𝑙𝑔, and a cell 𝑡(︀𝐴⌋︀, 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔 ∶
𝑇
𝑑 × 2

𝒞 × 2
𝑇
𝑑

→ {0, 1} is a predicate that returns 1 iff the value of

𝑡(︀𝐴⌋︀, 𝑡𝑑 (︀𝐴⌋︀, was mapped to 𝑡(︀𝐴⌋︀𝑐 by the repair algorithm 𝐴𝑙𝑔 when
given a subset of DCs and a subset of the cells of 𝑇𝑑 . Formally:

𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝑡(︀𝐴⌋︀, 𝑆𝒞, 𝑆𝑇𝑑) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

1, 𝐴𝑙𝑔𝑆𝒞 ,𝑆
𝑇𝑑

(𝑡(︀𝐴⌋︀) = 𝑡(︀𝐴⌋︀𝑐

0, otherwise

where 𝑆𝒞 ⊆ 𝒞 and 𝑆𝑇𝑑 ⊆ 𝑇𝑑 (∀𝑡(︀𝐴′⌋︀ ∈ 𝑇𝑑 ∖ 𝑆𝑇𝑑 . 𝑡(︀𝐴′⌋︀ = 𝑛𝑢𝑙𝑙).

Observe that 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝑡(︀𝐴⌋︀,𝒞,𝑇𝑑) = 1 for all 𝑡(︀𝐴⌋︀.
The 𝐹𝑖𝑥𝑒𝑑 function will be used as the value function in the

Shapley formula in order to compute the contribution of cells/con-

straints to the repair of a specific cell. We denote the repaired cell

inputted to the 𝐹𝑖𝑥𝑒𝑑 function by 𝛿 .

Notice that the repair algorithm must support 𝑛𝑢𝑙𝑙 values, as

we replace cells in 𝑇
𝑑 ∖ 𝑆𝑇𝑑 with 𝑛𝑢𝑙𝑙 . We find this treatment of

missing players as the most natural, but one may consider different

strategies (e.g., replacing the value with a random value).

Example 5. Continuing Example 4, denote 𝛿 = 𝑡5(︀𝐶𝑖𝑡𝑦⌋︀, then
𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, {𝐶1,𝐶2,𝐶3},𝑇𝑑) = 1 using the algorithm in Figure 3,

the dirty table 𝑇𝑑 in Figure 2, and the DCs {𝐶1,𝐶2,𝐶3} in Figure 1.
However, 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, {𝐶3},𝑇𝑑) = 0 since this cell will not change
when the algorithm is only given 𝐶3.

3.2 Black Box Data Repair Explanations
We now detail the definitions of Shapley values for DCs and data

cells as a measure for their contribution to the repair of a cell.

Shapley Values for Denial Constraints. We adapt the concept

of Shapley values for explaining data repair algorithms. Intuitively,

we think of each DC as a player whose removal changes the repair,

i.e., the result of the game.

Definition 4 (DC Contribution). Let 𝑇𝑑 be database table, let
𝒞 be a set of DCs, and let𝐴𝑙𝑔 be a repair algorithm. Given a DC𝐶 ∈ 𝒞
and a repaired cell 𝛿 ∈ 𝑇𝑑 , the contribution of 𝐶 to the repair of 𝛿 is
the Shapley value of the constraint 𝐶 :

𝑆ℎ𝑎𝑝𝑙𝑒𝑦(𝒞, 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔, 𝛿,𝐶) = ∑
𝑆⊆𝒞∖{𝐶}

⋃︀𝑆 ⋃︀!(⋃︀𝒞⋃︀ − ⋃︀𝑆 ⋃︀ − 1)!
⋃︀𝒞⋃︀!

⋅

(𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆 ∪ {𝐶},𝑇
𝑑) − 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆,𝑇

𝑑))

Recall that Shapley values measure the contribution of each

player on the outcome. Here, 𝒞 is the set of players, the function
𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔 is the value function and𝑇

𝑑
remains constant. This paper

focuses on DCs. However, Definition 4 is not specific to DCs and

can be easily extended to other forms of constraints such as ex-

ternal mappings [19], equality generating dependencies, and tuple

generating dependencies [5, 18].

Example 6. Reconsider the tables in Figure 2. Let us compute the
contribution of each DC 𝐶1,𝐶2,𝐶3 (shown in Figure 1) to the change
of 𝛿 = 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀ when using the repair algorithm in Figure 3. Note
that the algorithm will change “España” to “Spain” if we have the
DCs {𝐶1,𝐶2}, or {𝐶3}. According to the definition, we can compute
the contribution of 𝐶1 as follows: there are 4 subsets of {𝐶2,𝐶3},
and only for 𝑆 = {𝐶2} we have 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆 ∪ {𝐶1},𝑇𝑑) = 1 and
𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆,𝑇𝑑) = 0, so 𝑆ℎ𝑎𝑝𝑙𝑒𝑦(𝒞,𝑇𝑑

,𝐶1) = 1

6
, that is due to the

coefficient in Definition 4. A similar computation applies to𝐶2. For𝐶3

we have 3 out of 4 subsets 𝑆 of {𝐶1,𝐶2} that result in 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆 ∪
{𝐶3},𝑇𝑑) = 1 and 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆,𝑇𝑑) = 0, including 𝑆 = ∅. Thus,

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

364

𝑆ℎ𝑎𝑝𝑙𝑒𝑦(𝒞,𝑇𝑑
,𝐶3) = 1

6
+ 1

6
+ 2

6
= 2

3
. The intuition for the value of𝐶3

being double that of the sum of the pair {𝐶1,𝐶2} is that there are 5
subsets of the DCs {𝐶1,𝐶2,𝐶3} for which we repair 𝛿 . These are {𝐶3},
{𝐶1,𝐶2}, {𝐶1,𝐶3}, {𝐶2,𝐶3}, and {𝐶1,𝐶2,𝐶3}. Four of these contain
𝐶3 while only two contain the pair {𝐶1,𝐶2} (for subsets where one of
these is present without its partner, the repair is due to 𝐶3), thus, the
contribution of 𝐶1,𝐶2, as a pair, is half that of 𝐶3.

Shapley Values for Data Cells. We define the contribution of

each data cell to the repair process through Shapley values. Given

a repaired cell 𝛿 ∈ 𝑇𝑑
, we define the Shapley value for a cell 𝑡(︀𝐴⌋︀.

Definition 5 (Cell Contribution). Let 𝑇𝑑 be a table, let 𝒞 be
a set of DCs, and let𝐴𝑙𝑔 be a repair algorithm. Given a cell 𝑡(︀𝐴⌋︀ ∈ 𝑇𝑑

and a repaired cell 𝛿 ∈ 𝑇𝑑 , the contribution of 𝑡(︀𝐴⌋︀ to the repair of 𝛿
is the Shapley value of the cell 𝑡(︀𝐴⌋︀:

𝑆ℎ𝑎𝑝𝑙𝑒𝑦(𝑇𝑑
, 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔, 𝑡(︀𝐴⌋︀) = ∑

𝑆⊆𝑇𝑑∖{𝑡(︀𝐴⌋︀}

⋃︀𝑆 ⋃︀!(⋃︀𝑇𝑑 ⋃︀ − ⋃︀𝑆 ⋃︀ − 1)!
⋃︀𝑇𝑑 ⋃︀!

⋅

(𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆 ∪ {𝑡(︀𝐴⌋︀}) − 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆))

where 𝑆 ⊆ 𝑇𝑑 is the table 𝑇𝑑 and ∀𝑡(︀𝐴′⌋︀ ∈ 𝑇𝑑 ∖ 𝑆. 𝑡(︀𝐴′⌋︀ = 𝑛𝑢𝑙𝑙 .
In this definition, the set of cells in 𝑇

𝑑
are the players, while 𝒞

remains constant (as opposed to Definition 4).

Example 7. Reconsider the DCs in Figure 1, the algorithm in Figure
3, and the tables in Figure 2. Consider the cell 𝛿 = 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀. The
value of this cell is changed from “España” to “Spain”. The Shapley
value of the cell 𝑡5(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀ will be significant as it is required for
the repair through 𝐶3 (established earlier as the most influential
constraint). If 𝑡5(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀ is not present in 𝑆 , 𝑡5(︀𝑇𝑒𝑎𝑚⌋︀ and 𝑡5(︀𝐶𝑖𝑡𝑦⌋︀
are both needed for the repair of 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀ through 𝐶1 and 𝐶2,
respectively, so their Shapley value will also be high. These cells are
necessary, but they are not sufficient, according to the algorithm in
Figure 3. To analyze when the repair happens, observe that any set
of cells 𝑆 ⊆ 𝑇

𝑑 containing 𝑡5(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀ and a majority of cells of
the form 𝑡𝑖(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀, 𝑡𝑖(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀ with the values “Spain”, “La Liga”
will be enough to repair the cell 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀. Conversely, without
𝑡5(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀, we will need a set 𝑆 ⊆ 𝑇

𝑑 containing both 𝑡5(︀𝑇𝑒𝑎𝑚⌋︀
and 𝑡5(︀𝐶𝑖𝑡𝑦⌋︀ and enough cells of the form 𝑡𝑖(︀𝑇𝑒𝑎𝑚⌋︀ with the value
“Real Madrid” and enough cells of the form 𝑡𝑖(︀𝐶𝑖𝑡𝑦⌋︀ with the value
“Madrid”, and enough cells of the form 𝑡𝑖(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀ with the value
“Spain” to repair 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀. This intuitively shows why the Shapley
value of 𝑡5(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀ is higher than of that of 𝑡5(︀𝑇𝑒𝑎𝑚⌋︀ and 𝑡5(︀𝐶𝑖𝑡𝑦⌋︀
as it affects the repair of more coalitions. For simplicity we overlooked
the coalitions sizes, though they play an important role.

Problem Definition. We now define the data repair explanation
problem. Intuitively, given a cell 𝛿 whose repair we want to explain,

we are interested in returning a ranked list of all cells that support

this repair, as these are the cells that can explain the repair of 𝛿 in

the best manner. Cells that contributed negatively to the repair will

be ignored.

Definition 6 (Data Repair Explanation Problem). Given a
dirty table 𝑇𝑑 , a set of DCs 𝒞, a data repair algorithm 𝐴𝑙𝑔, and a
cell 𝛿 that has been repaired by 𝐴𝑙𝑔, the solution to the data repair
explanation problem is a ranked list of the DCs that positively con-
tributed to the repair of 𝛿 and a ranked list of the cells that positively
contributed to the repair of 𝛿 .

Example 8. Given the dirty table in Figure 2, the DCs in Figure 1,
the algorithm in Figure 3, the cell 𝛿 = 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀, the solution to the
data repair explanation problem is a ranked list of DCs contributing
to the repair of 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀ from “España” to “Spain”: (1) 𝐶3, (2) 𝐶1,
(3)𝐶2, and a list of cells contributing to the same repair. The first three
cells in this list are (1) 𝑡5(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀, (2) 𝑡3(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀, (3) 𝑡3(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀
(equivalently, 𝑡2(︀𝐿𝑒𝑎𝑔𝑢𝑒⌋︀).

Although the model and the problem are defined for a specific

repaired cell, 𝛿 , we wish to explain, it could be easily extended to

a collection of cells (or even all the cells that were modified by

the repair algorithm). Thanks to Shapley linearity property, the

influence of a cell (or a constraint) on the repair of 𝛿1, . . . , 𝛿𝑚 is the

sum of its influences on each of the 𝛿𝑖 separately.

4 OPTIMIZED COMPUTATION OF
CONTRIBUTIONS

Direct computation of Shapley values would require exponentially

many invocations of the cleaning algorithm, one for each subset

of cells and constraints. While the number of constraints is typi-

cally small (See Section 5.2, paragraph “Number of relevant DCs”),

exponential data complexity is prohibitively costly [7, 34]. A com-

monly used approximation is via a standard Monte Carlo sampling

algorithm [31] that repeatedly samples subsets of players (table

cells and constraints in our case) and computes the difference in

the game outcome (𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆𝑇𝑑) in our case) with and with-

out the player in question. In our settings,𝑚 samples would entail

2𝑚 ⋅ (⋃︀𝑇𝑑 ⋃︀ − 1) invocations of the repair algorithm 𝐴𝑙𝑔; each such

invocation is typically costly. Therefore, we present an optimized

sampling algorithm based on three optimizations that we describe

later in this section: pruning, sample reuse and an intelligent sam-

pling strategy. We first describe our optimized sampling algorithm

and then detail the optimizations embedded in it.

4.1 Optimized Sampling Algorithm
The input to Algorithm 1 is a black-box repair algorithm 𝐴𝑙𝑔, a

dirty table 𝑇
𝑑
, a repaired cell to explain 𝛿 , and a bound𝑚 over the

number of iterations. We start by initializing the returned value

𝜑 which is a vector that holds the contribution of each cell to the

repair of 𝛿 by 𝐴𝑙𝑔 (Line 1). Next, in Line 3 we nullify all table

cells and DCs that do not contribute to the repair; this is done

through an analysis of the constraints and database schema (see

details in Section 4.2, paragraph “Constraints and table pruning”).

Then, in each iteration of the algorithm, we first choose a value

for 𝑝 according to a pre-decided parameter search strategy (Line 7,

see Section 4.2 paragraph “Implementing the Search Strategy” for

details).We then sample cells from the table (importantly, during the

execution of Algorithm 1 the𝑚 samples are drawn i.i.d.). Based on

the sample we generate a table, 𝑆 , such that every cell 𝑡𝑖(︀𝐵⌋︀ = 𝑡𝑑𝑖 (︀𝐵⌋︀
with probability 𝑝 and 𝑡𝑖(︀𝐵⌋︀ = 𝑛𝑢𝑙𝑙 with probability 1 − 𝑝 (Line 8).

Next, we utilize the sampled table 𝑆 to assess the contribution of

table cells (see paragraph “Sample Reuse Optimization” for more

details). We check, using 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆), whether the sampled sub-

table 𝑆 is sufficient for repairing 𝛿 (Line 10). If so, we check whether

removing any of the cells (i.e. setting them to null) would prevent

the repair (Lines 12–13). After completing the test, we restore the

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

365

Algorithm 1:Approximate the Contribution of All Cells

input :Repair algorithm 𝐴𝑙𝑔, dirty table𝑇𝑑
, repaired cell to

explain 𝛿 , number of repeats𝑚

output :Approximation of the contribution for every cell 𝜑

1 𝜑 ← {0}
⋃︀𝑇𝑑 ⋃︀

;

2 /* pruning optimization (Algorithm 2) */

3 𝑇𝑑 ,𝒞 ← table_pruning(𝐴𝑙𝑔,𝑇𝑑 , 𝛿,𝒞);

4 𝑟𝑒𝑤𝑎𝑟𝑑 ← dict() initialized with zeros;

5 for 1 to𝑚 do
6 /* search strategy optimization */

7 𝑝 ← search_prob_strategy(𝑟𝑒𝑤𝑎𝑟𝑑, hyper-parameters);

8 𝑆 ← sample_subset(𝑇𝑑 ∖ {𝛿}, 𝑝);

9 /* sample reuse optimization */

10 if 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆) then
11 foreach 𝑐 ∈ 𝑆 do
12 𝑆(︀𝑐⌋︀← 𝑛𝑢𝑙𝑙 ;

13 if not 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆) then
14 𝜑𝑐 = 𝜑𝑐 +

1

𝑝 ⋃︀𝑆 ⋃︀−1(1−𝑝)⋃︀𝑇𝑑 ⋃︀−⋃︀𝑆 ⋃︀+1(⋃︀𝑇𝑑 ⋃︀−1
⋃︀𝑆 ⋃︀−1)⋅⋃︀𝑇𝑑 ⋃︀

;

15 𝑟𝑒𝑤𝑎𝑟𝑑(︀𝑝⌋︀← 𝑟𝑒𝑤𝑎𝑟𝑑(︀𝑝⌋︀ + 1;

16 𝑆(︀𝑐⌋︀← 𝑇𝑑 (︀𝑐⌋︀;

17 else
18 foreach 𝑐 ∈ 𝑇𝑑 s.t. 𝑆(︀𝑐⌋︀ = 𝑛𝑢𝑙𝑙 do
19 𝑆(︀𝑐⌋︀← 𝑇𝑑 (︀𝑐⌋︀;

20 if 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆) then
21 𝜑𝑐 = 𝜑𝑐 +

1

𝑝 ⋃︀𝑆 ⋃︀+1(1−𝑝)⋃︀𝑇𝑑 ⋃︀−⋃︀𝑆 ⋃︀−1(⋃︀𝑇𝑑 ⋃︀−1
⋃︀𝑆 ⋃︀+1)⋅⋃︀𝑇𝑑 ⋃︀

;

22 𝑟𝑒𝑤𝑎𝑟𝑑(︀𝑝⌋︀← 𝑟𝑒𝑤𝑎𝑟𝑑(︀𝑝⌋︀ + 1;

23 𝑆(︀𝑐⌋︀← 𝑛𝑢𝑙𝑙 ;

24 return 𝜑

𝑚
;

25 sample_subset(𝑇, 𝑝):
26 𝑆 is a copy of𝑇 where each cell in 𝑆 is null with prob 1 − 𝑝 ;

27 return 𝑆 ;

cell to its original value (Lines 16). If the cell positively affects the re-

pair, we add the weighted coefficient to our Shapley approximation

(Line 14). For intuition on the used coefficient, let 𝑆 be a random sub-

set, and recall that according to Shapley value definition, the weight

of 𝑆 is equal to (⋃︀𝑆 ⋃︀!(⋃︀𝑇𝑑 ⋃︀ − ⋃︀𝑆 ⋃︀ − 1)!) ⇑⋃︀𝑇𝑑 ⋃︀! = 1⇑ ((⋃︀𝑇
𝑑 ⋃︀−1
⋃︀𝑆 ⋃︀)⋃︀𝑇

𝑑 ⋃︀),
whereas in every iteration of Algorithm 1 the probability of sam-

pling 𝑆 is equal to 𝑝
⋃︀𝑆 ⋃︀(1−𝑝)⋃︀𝑇

𝑑 ⋃︀−⋃︀𝑆 ⋃︀−1
(selecting 𝑆 items with prob-

ability 𝑝 , and not selecting any other item).

When the sub-table 𝑆 is insufficient for fixing𝛿 , we checkwhether

adding a single cell (i.e. restoring its original value) to 𝑆 would cause

𝐴𝑙𝑔 to repair 𝛿 (Lines 18-20). After completing the test, we restore

the cell value to 𝑛𝑢𝑙𝑙 (Line 23). Finally, we return the average con-

tribution of each cell across iterations (Line 24).

4.2 Optimizations based on repair properties
We next provide details on the optimizations embedded in Algo-

rithm 1. In particular, we draw connections to certain properties

that the black-box cleaning algorithm is expected to satisfy (indeed,

our experiments show that popular algorithms satisfy them).

Constraints and Table Pruning (Line 3). The first optimization

discards DCs, attributes, and tuples irrelevant to the repair of 𝛿 .

For this optimization, we assume that there is a way to detect the

subset of cells and the subset of constraints that are relevant to

the repair of a cell. Formally, we look at the attribute hypergraph
of the constraints. This graph contains the set of attributes in the

schema 𝒮(𝑇), where there is an undirected edge that includes a set

of attributes 𝐴1, . . . ,𝐴𝑘 if 𝐴1, . . . ,𝐴𝑘 are all involved in the same

DC. We then assume:

(1) The only DCs that can influence the repair of the cell 𝛿 are

the DCs that have a path from the edge they define to an

attribute of 𝛿

(2) The only attributes that can influence the repair of 𝛿 are the

ones involved in the constraints mentioned in the first bullet

(3) The only tuples that can influence the repair of 𝛿 are the

ones violating the constraints mentioned in the first bullet

Intuitively, all DCs that can influence the repair should be con-

nected in some manner to the attribute of 𝛿 . Similarly, the attributes

(tuples) that can influence the repair are likely to be connected to

the attribute (tuple) of 𝛿 through some path of DCs.

The pruning is then detailed in Algorithm 2. The algorithm starts

by generating the attribute (hyper)graph. Next, it performs a BFS

on the graph from the attribute 𝐴 of the cell 𝛿 , and gets a list of

edges, where each edge in the list is a part of a path to 𝐴 (Line

2). The set 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 is then defined to be the labels of the edges in

the list (Line 3). In Lines 4–5 the algorithm initializes an empty

set for the collection of relevant attributes and an empty list for

the relevant tuples. The algorithm iterates over all relevant DCs

in 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 , updates the attributes that they include (Line 7), and

collects the tuples that violate them (Lines 8–9). Finally, the pruned

table𝑇
𝑑
𝑝𝑟𝑢𝑛𝑒𝑑 is defined as the list of tuples that violate some DC in

𝒞𝑝𝑟𝑢𝑛𝑒𝑑 with only the attributes that participate in a relevant DC

violation included in the table (Line 10). Both 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 and 𝑇
𝑑
𝑝𝑟𝑢𝑛𝑒𝑑

are returned in Line 11.

Algorithm 2: DCs and Table Pruning

input :Dirty table𝑇𝑑
, a set of constraints 𝒞, and a repaired

cell 𝛿 = 𝑡(︀𝐴⌋︀

output :pruned DC set 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 and pruned table𝑇𝑑
𝑝𝑟𝑢𝑛𝑒𝑑

1 𝐺 ← 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐴𝑡𝑡𝑟𝐺𝑟𝑎𝑝ℎ(𝒞);

2 𝐿𝑒𝑑𝑔𝑒𝑠 ← 𝐵𝐹𝑆(𝐺,𝑠𝑜𝑢𝑟𝑐𝑒 = 𝐴);

3 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 ← {𝐿(𝑒) ⋃︀ 𝑒 ∈ 𝐿𝑒𝑑𝑔𝑒𝑠};

4 𝑎𝑡𝑡𝑟𝑠 ← ∅;

5 𝑡𝑢𝑝𝑙𝑒𝑠 ← (︀⌋︀;

6 foreach𝐶 ∈ 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 do
7 𝑎𝑡𝑡𝑟𝑠 ← 𝑎𝑡𝑡𝑟𝑠 ∪𝐴𝑡𝑡𝑟(𝐶);

8 𝐿𝑡 ← 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠(𝐶,𝑇𝑑);

9 𝑡𝑢𝑝𝑙𝑒𝑠.𝑎𝑑𝑑(𝐿𝑡);

10 𝑇𝑑
𝑝𝑟𝑢𝑛𝑒𝑑

← 𝑡𝑢𝑝𝑙𝑒𝑠(︀𝑎𝑡𝑡𝑟𝑠⌋︀;

11 return 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 ,𝑇𝑑
𝑝𝑟𝑢𝑛𝑒𝑑

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

366

CountryCityTeam League YearPlace

𝐶2𝐶1 𝐶3 𝐶4

Figure 4: Attribute graph for the tables in Figure 2 with the
DCs in Figure 1. Two attributes are connected if there is a
constraint that includes both (denoted by the edge label)

Team City Country League

𝑡1 F.C. Barcelona Barcelona Spain Spanish League

𝑡2 Atletico Madrid Madrid Spain La Liga

𝑡3 Real Madrid Madrid Spain La Liga

𝑡4 F.C. Barcelona Barcelona Catalonia La Liga

𝑡5 Real Madrid Capital España La Liga

Figure 5: Pruned table for explaining 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀. 𝑡6 and the
attributes Year and Place were pruned

Example 9. Consider the (dirty) table in Figure 2, DCs {𝐶1,𝐶2,

𝐶3,𝐶4} in Figure 1, and the repaired cell 𝛿 = 𝑡5(︀𝐶𝑜𝑢𝑛𝑡𝑟𝑦⌋︀. Algorithm
2 first generates the attribute graph in Figure 4, and performs BFS
from the node Country; the set of connected constraints are 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 =
{𝐶1,𝐶2,𝐶3}. Then, the algorithm continues to collect the attributes
included in each of the chosen DCs, i.e., Team, City, Country, and
League. It also collects the tuples that participate in a violation of the
three DCs. These are 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5. Thus, the pruned table returned
in Line 11 is depicted in Figure 5.

Under the context assumption, all cells in 𝑇 ∖𝑇𝑝𝑟𝑢𝑛𝑒𝑑 and DCs

in 𝒞 ∖ 𝒞𝑝𝑟𝑢𝑛𝑒𝑑 do not influence the outcome of 𝐴𝑙𝑔. As a result, for

every cell 𝑐 ∈ 𝑇 ∖𝑇𝑝𝑟𝑢𝑛𝑒𝑑 it holds that 𝑆ℎ𝑎𝑝𝑙𝑒𝑦(𝑇𝑑
, 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔, 𝑐) = 0.

Since deleting a cell with Shapley value 0 does not impact the value

of the other cells, cells in 𝑇 ∖ 𝑇𝑝𝑟𝑢𝑛𝑒𝑑 can be removed without

modifying the Shapley values of the remaining cells. Thus, under

the context assumption, the Shapley values of cells remain intact

after the pruning process. The same argument applies to DCs.

Sample Reuse Optimization (Lines 10–16 and 17–23). As op-
posed to standard theMonte Carlo sampling algorithm, our solution

computes the Shapley values of all remaining table cells simulta-

neously. The theoretical justification is based on a monotonicity
assumption over the data repair algorithm, that we next formal-

ize. The assumption is that for any cell 𝑡(︀𝐴⌋︀, if there exists some

𝑆 ⊆ 𝑇𝑑
, such that 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆 ∪{𝑡(︀𝐴⌋︀})−𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆) = 1,

then for every 𝑆
′ ⊆ 𝑇𝑑

, it holds that 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆′ ∪ {𝑡(︀𝐴⌋︀}) −
𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆′) ≥ 0. Conversely, if there exists some 𝑆 ⊆ 𝑇𝑑

, such

that 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆 ∪ {𝑡(︀𝐴⌋︀}) − 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆) = −1, then for

every 𝑆
′ ⊆ 𝑇𝑑

, the following holds 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆′ ∪ {𝑡(︀𝐴⌋︀}) −
𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿,𝒞, 𝑆′) ≤ 0. Intuitively, we expect that adding a cell that

is consistent with the change of 𝛿 would not hinder the repair;

conversely, adding a cell that “contradicts" the repair should not

cause the algorithm to perform the repair.

Given a sample 𝑆 , Algorithm 1 then tests if 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆), i.e.,
whether 𝐴𝑙𝑔 fixed the value of 𝛿 given the set 𝑆 , if the condition is

true (Lines 10–16) then due to the monotonicity requirement, the

only ‘single cell’ change to 𝑆 that might affect the outcome of 𝐹𝑖𝑥𝑒𝑑

is a removal of cells from 𝑆 . If 𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆) is false (Lines 17–23),
then adding a cell from𝑇

𝑑 ∖𝑆 to 𝑆 might change the outcome of the

repair process. Thus, given the outcome of the repair process over

𝑆 we may test multiple cells, and limit the reuse only to potentially

relevant cells.

Recall that the Monte Carlo sampling algorithm calls the repair

algorithm, 𝐴𝑙𝑔, 2𝑚 ⋅ ⋃︀𝑇𝑑 ⋃︀ times. The sample reuse optimization re-

duces the number of calls to 𝐴𝑙𝑔. Algorithm 1 calls 𝐴𝑙𝑔 at most

𝑚 +𝑚 ⋅ ⋃︀𝑇𝑑
𝑝𝑟𝑢𝑛𝑒𝑑 ⋃︀ times, which implies ∼ 2 factor reduction, though

usually the number of calls will be even smaller (see Section 5),

since each sample will be tested only for a subset of the table cells;

based on the condition in Line 10.

Implementing the Search Strategy (Line 7). Since samples are

reused to evaluate the Shapley value of multiple cells simultane-

ously, we aim for samples that will be informative for many cells,

i.e., sample a set 𝑆 such that ∑𝑐∈𝑇𝑑∖{𝛿}⋃︀𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆 ∪ {𝑐}) −
𝐹𝑖𝑥𝑒𝑑𝐴𝑙𝑔(𝛿, 𝑆)⋃︀ is large. Thus, we employ a new sampling strategy.

Recall that in the Monte Carlo sampling algorithm, for every

size 𝑘 ∈ {0, . . . , ⋃︀𝑇𝑑 ⋃︀ − 2}, it holds that P(︀⋃︀𝑆 ⋃︀ = 𝑘⌋︀ = 1

⋃︀𝑇𝑑 ⋃︀−1 , i.e., all

set sizes are equally likely. We identified that some sample sizes are

more likely to yield information for multiple cells. Consequently,

sampling all subset sizes with the same probability would not be

the ideal strategy. Intuitively, every repair algorithm has a different

level of confidence required for the repair, and every dataset has a

ratio of violating/non-violating tuples (in the context of a specific

examined repaired cell 𝛿). These parameters will affect the sample

sizes that are more likely to result in a repair.

The benefit of the sampling strategy optimization is a better

utilization of the samples, which enables convergence with smaller

number of iterations. This is shown empirically in Section 5.2 (see

paragraph “Effect of optimizations on the Runtime”).

Since the impact of the sample size is unknown a priori, we

propose a Multi-Armed Bandits (MAB) 𝜀-decreasing strategy to

best utilize the samples. The MAB setting is a commonly used

online learning method with multiple variants [26]. In a nutshell,

given a set of discrete points and a reward function, MAB finds

which points yield the most reward. To sample sets that are likely

to provide information about many cells in 𝑇
𝑑 ∖ {𝛿}, we propose a

variant of the 𝜀-Greedy-Decreasing strategy; we transform (︀0, 1⌋︀
to a discrete space with 𝑑 and refer to each point as ‘arm’. In each

iteration, we either sample a random arm with probability 𝜀 or

(with probability 1 − 𝜀) pick a random arm out of the 𝑘 < 𝑑 top

performing arms so far, based on the reward function. We use

a decreasing 𝜀 value, i.e., as the number of iterations grows, we

increase the exploitation and decrease the exploration by a factor of

𝜂 (the step size). We also define a minimum value of 𝜀. The reward

of each arm is the sum of cells that were identified as impactful in

previous samples; it is updated by Algorithm 1 in Lines 15 and 22.

5 EXPERIMENTS
We next present our experimental study. Our main findings are:

(1) Our approach converges at a significantly higher rate than

the other baselines and existing methods examined (see Sec-

tion 5.1), even for small database sizes (up to ∼ 200 times

faster, and ∼ 70 times faster on average).

(2) Our approach is the only scalable one compared to the ex-

amined baselines. In particular, for 100K–500K cells, our

approach is the only feasible one among those tested.

(3) The MAB strategy outperforms the commonly used uniform

random strategy.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

367

(4) Algorithm 2 (pruning) plays the most significant role in

reducing the runtime of our solution.

(5) Our solution assists users in understanding the workings of

a repair algorithm and in detecting errors in the DCs.

(6) Our solution proved to be helpful for explaining errors in

the repair of a commonly used dataset using the state-of-the-

art Holoclean algorithm. It was found useful in identifying

errors in the DC set as well as relevant errors in the dataset

and properties of the repair algorithm.

Our system, named T-Rex [14], is implemented in Python 3.6 with

an underlying database engine in PostgreSQL 10.6. The experiments

were performed on Windows 10 Pro, 64-bit, with 16GB of RAM

and Intel Core Duo i7-8665U @ 2.11 GHz processor. The code was

parallelized and run on 10 workers.

5.1 Experimental Setup
We next detail the datasets and baselines used in our experimental

evaluation. All experiments were performed using the algorithm in

Figure 3 as the repair algorithm and focused on explaining repairs

through table cells, as computing the Shapley values of constraints

using Definition 4 is usually negligible in terms of runtime, as their

number is typically small. We have used the algorithm depicted in

Figure 3 and the Holoclean system [36] to examine our approach.

Datasets. We next describe the datasets used in our evaluation.

(1) Spanish Soccer This is the dataset in the running example

shown in Figure 2 with the DCs described in Figure 1. It

was created by scraped data off several sources and includes

details about Spanish soccer teams.

(2) Hospital This dataset has been used in the data repair litera-

ture [13, 36]. It contains information about different hospitals

and is characterized by a large number of repetitions.

(3) Adult This dataset [15, 36] was extracted from the Census

Bureau database. It contains information about individuals,

e.g., income and education.

(4) MAS The MAS dataset [1, 27] is an academic database with

data about academic institutions, conferences, papers, etc.

Baselines for Shapley Values Approximation.Our approach is
the first, to our knowledge, that uses Shapley values in the context of

repair algorithms. Therefore, the baselines we have used are based

on prominent approaches devised in previous work for computing

Shapley values in other domains.

(1) Shapley Formula [38]: As it is only feasible for very small

datasets, we compare results to the direct Shapley formula

calculation results for small tables (up to 30 cells).

(2) Monte-Carlo Sampling [31]: Outlined at the start of Sec-

tion 4. It is usually used for explaining ML models [33, 42].

(3) SHAP [30]: This Python library is widely used as an ML

model feature importance approximation system, based on

Shapley values. To adapt SHAP to our setting, we have re-

placed the ML model with the repair algorithm and the data

features are replaced by a vector of binary features that de-

scribe whether a table cell exists in a sample. Essentially, a

permutation of the table cells is simulated by ‘model sam-

ples’. We input this vector into the SHAP’s KernelExplainer

and extract the given explanations.

Table 1: Summary of experimental settings
Table/Figure Algorithm Repair Algo Dataset

Search Strategy Experiments
Fig. 6a MAB vs random Algorithm in Fig. 3 Hospital

Fig. 6b MAB vs random Algorithm in Fig. 3 Soccer

Accuracy Experiments
Table 2 Baselines vs ours Algorithm in Fig. 3 Soccer

Table 2 Baselines vs ours Algorithm in Fig. 3 Hospital

Scalability Experiments
Fig. 7a Baselines vs ours Algorithm in Fig. 3 Adult

Fig. 7b Baselines vs ours Algorithm in Fig. 3 Hospital

Fig. 7c Ours Holoclean MAS

Fig. 8 (Optimizations) Baselines vs ours Algorithm in Fig. 3 Hospital

Fig. 9 (User Study) Ours Holoclean MAS

Accuracy Metrics. We use two metrics for measuring accuracy:

𝐿1 to measure convergence to the ground truth, and Top-𝑘 accuracy

to measure the stability of the top-𝑘 result.

(1) 𝐿1 Distance: Given a vector of the true Shapley scores cal-

culated for every cell in the table by Shapley formula in

Definition 5 and a vector of approximated values, we com-

pute the 𝐿1 distance between them.

(2) Top-𝑘 Accuracy at Convergence: We say that a top-𝑘

ranked list of cell contributions is converged at the point in

which the top-𝑘 set of cells has not changed for the last ≥ 5
samples of each cell in that set. Although this metric is not

referring to the correct order within the top-𝑘 , our method

did accurately estimate the rankings of the contributing cells

within the examined top-𝑘 in the experiments we conducted.

This metric hails from the precision at 𝑘 metric which is

widely used in information retrieval [4, 32] and is sensible

for our case, as a user or analyst would most probably be

interested in the most influential cells.

Recall that we defined two desired properties of black box repair

algorithms in Section 4.2. In all the examined settings (Table 1), we

have manually checked the validity of both the monotonicity and

the context assumptions and found that they hold.

5.2 Accuracy and Scalability Results
In this set of experiments, we examine the performance of T-Rex for

computing the contributions of cells to the repair, since we assume

that the number of relevant DCs is small, and the cells outnumber

the DCs many times over (this was also the case in practice. See

paragraph “Number of Relevant DCs”). The settings and associated

tables and figures are summarized in Table 1.

Sampling Parameter Search StrategyComparison. In Line 7 of
Algorithm 1 we have employed a search strategy to find the optimal

set sizes to be used in the sampling. We compare two strategies:

(1) Baseline: a random strategy where the value of 𝑝 is chosen

randomly and uniformly out of (︀0, 1⌋︀
(2) The MAB strategy, described in the paragraph titled ‘Imple-

menting the Search Strategy’ in Section 4.2.

In Figure 6 we compare the performance of the two and measure

the 𝐿1 distance from the true Shapley values using the Soccer and

Hospital datasets. We run MAB for multiple values of the input

parameters 𝑑 , 𝑘 and 𝜂. We found that the parameters 𝑑 = 11, 𝑘 = 4,
and 𝜂 = 0.01 yielded the best performance in terms of accuracy-

runtime balance. The random policy starts close to ours during

the exploration phase which is essentially random. In subsequent

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

368

(a) Hospital dataset (b) Soccer dataset
Figure 6: 𝐿1 convergence rates of the epsilon-greedy (MAB)
and random search strategies to the ground truth, as a func-
tion of the number of iterations

Table 2: Convergence to ground truth on small datasets
Dataset Algorithm Top3 (%) Top10 (%) L1

H
o
s
p
i
t
a
l

(
1
0
0
x
2
1
) By formula 100 100 0

Monte Carlo 100 100 0.344

SHAP 100 100 0.337

T-Rex 100 100 0.298

S
o
c
c
e
r

(
6
x
6
)

By formula 100 100 0

Monte Carlo 100 100 0.88

SHAP 100 100 0.051
T-Rex 100 100 0.398

iterations, the MAB policy converges faster than the random policy.

In Figure 6b there is a peak in the first few iterations due to the

Shapley values non-uniform distribution in the soccer database. In

the initial iterations, the algorithm finds a large number of cells

that contribute together and spreads the Shapley values uniformly

between them. This creates a large L1 gap between the computed

Shapley values and the true ones, unlike the Hospital dataset where

the true values are more uniformly distributed, and no peak appears.

Over time this is corrected and converges to the true values.

Convergence to Ground Truth. Table 2 show a comparison of

the accuracy of Algorithm 1 with the baselines w.r.t. our soccer

dataset from Figure 2 and the Hospital dataset, respectively. The

benchmarks (SHAP, Monte Carlo) and our algorithm all converge to

the true top-𝑘 Shapley valued cells, both for 𝑘 = 3 and 𝑘 = 10. All the
positive valued Shapley cells were ranked correctly. These results

imply that our algorithm indeed converges to the true Shapley

values. Although SHAP was able to outperform our algorithm in

the 𝐿1 accuracy metric on the soccer dataset, as opposed to T-

Rex, SHAP suffers from false positives, i.e., cells with non-positive

Shapley value were wrongly approximated as positively affecting

the repair. This does not dramatically affect the L1 or top-𝑘 metrics,

it mostly causes cells that have true Shapley value of 0, get an 𝜖

value from SHAP. Furthermore, in the next paragraph, we show

that SHAP is much slower than T-Rex and does not scale.

Runtime as a Function of Database Size. Figures 7a and 7b de-

pict the runtime on the Adult and Hospital datasets, respectively.

Both show the runtimes of T-Rex, the Monte-Carlo algorithm and

our adaption of SHAP, for various data sizes. This experiment was

run until convergence (as defined in Section 5.1) with the algo-

rithm in Figure 3 and the set of constraints that was given with

the datasets (2 and 15 DCs respectively). The cell 𝛿 was chosen

at random from the repaired cells in the full table. In Figure 7a,

for Monte-Carlo and SHAP, sizes larger than 15K cells were al-

ready infeasible, while our solution was able to scale to 537K cells

in reasonable time. For the Hospital dataset (Figure 7b), for the

Monte-Carlo and SHAP algorithms, sizes larger than 11K cells were

infeasible, while T-Rex scaled up to 150K in reasonable runtime. In

Figure 7c we examined the runtime of T-Rex with the MAS dataset,

using Holoclean repair algorithm [36]. T-Rex is the only feasible

approach for Shapley value based explanations of data repair that

can run with Holoclean and such data scales. We have increased the

size of the database from ∼ 2𝑀 up to ∼14.5M cells and the runtime

was 45 and 130 minutes, respectively.

Effect of Optimizations on the Runtime. Figure 8 shows the

contribution the three optimizations embedded in Algorithm 1,

presented Section 4: (1) constraints and table pruning (2) sample

re-use (3) sampling strategy (MAB). These are presented w.r.t. the

Hospital dataset with three different sizes. It ran with 15 DCs with

the algorithm in Figure 3. We run five different combinations of (1),

(2), and (3). The pruning pre-processing offered the most dramatic

contribution to scalability. Optimizations (2) and (3) both contribute

approximately equally when used individually, but the combination

of all three (as used in Algorithms 2 and 1) is the fastest to converge

in a rate of up to ×3 faster than using the pre-processing method

alone, and up to ×200 faster than the Monte Carlo baseline. The

factors written on the bars represent the multiplicative improve-

ment in runtime in comparison to the Monte Carlo sampling with

our pruning method (orange bar).

Number of Relevant DCs. In Section 4 we assumed that the num-

ber of constraints is typically small and thus we can run the original

Shapley formula when computing their contribution. For all the

datasets in our experiments, after pruning the DCs according to Al-

gorithm 2, the number of constraints was always ≤ 7, This supports
our assumption that computing the contributions of the constraints

using the Shapley formula is feasible.

5.3 T-Rex Usability
We next describe our user study and examine a specific use case to

showcase the utility of the T-Rex system.

User Study. In order to show that T-Rex explanations are useful

for understanding of the repair process, we devised a user study

composed of five questions. Each question presents a problem;

some synthetic and some from a realistic scenario (see the use case

paragraph in this section). For the study, we used two different

datasets: Hospital of size 21K cells and 19 DCs, and the MAS dataset

of size 2M cells and 11 DCs (the databases and DCs can be found

in [2]). The study included twenty users. All users were given files

with the databases and the constraints used in the repair process

for every question. They were also briefed about the study, relevant

notations for it, and the datasets used in it. The users were divided

into 2 groups: one group had access to T-Rex output and the second

did not. All the users that have participated in our study are from a

background of data analysis and have either official education or

practical experience in the field of data analysis or data science.

Table 3 shows the questions and Figure 9 depicts a summary of

the results. The results depict the advantage of having the T-Rex

explanations. For example, in question Q3, all 10 users with access

to T-Rex have answered correctly while only 2 users without access

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

369

(a) Adult dataset (b) Hospital dataset (c) MAS dataset for T-Rex using Holoclean
Figure 7: Runtime comparison as a function of database size. The MAS dataset is organically much larger and thus diverse.
Hence, Algorithm 2 (pruning) has a much higher impact for this dataset. Therefore, for this dataset (Figure 7c), our solution
scales much better for larger table sizes. Running the baselines for this dataset with Holoclean is infeasible

Figure 8: Comparison of different settings (subsets) of the
optimizations described in Section 4.2

Table 3: User study questions as shown to the users.
Databases and accompanying DCs can be found in [2]
Num. Dataset Question

1 Hospital

After running a commercial black-box repair algorithm, an analyst no-

ticed that the cell in row 1, in the attribute “EmergencyService” was

changed from ‘Yes’ to ‘No’. She knows that the hospital in this line,

“callahan eye foundation hospital” does support Emergency Services,

yet the cleaning algorithm has decided to repair this cell. She noticed

one constraint was logically flawed and caused this wrong ‘fix’. Which

constraint was that?

2 Hospital

Review the cell in row 42 in the attribute CountyName, after we run the

repair algorithm on the hospital table it is changed from“jxffxrson” to

“jefferson”. The system architect would like to minimize the number of

constraints used as they are computationally expensive. In your opin-

ion, and assuming there are no other relevant data, what minimal set

of constraints (plural) would you keep in order to ensure the repair still

happens?

3 Hospital

Repeat question 2 with the cell in row 20 in the CountyName attribute,

after we run the repair algorithm on the hospital table it is changed

from “xe kalb” to “de kalb”.

4 MAS

After adding a 2021 VLDB publication and running a state-of-the-art

cleaning algorithm, Holoclean, with the constraints attached to the data,

the new 2021 VLDB record is ‘repaired’ - the conference homepage sub-

mitted was “https://vldb.org/2021” yet all the values were changed to

“http://www.vldb.org/2011”. Can you find the problem?

5 MAS

Give a suggestion as to how to fix the problem (remove a constraint?

edit? suggest a new setting/constraint?)

were correct. Furthermore, no user without access to T-Rex was

able to answer Q1, Q2, Q4, Q5 while at least 7 users with access to

the T-Rex results were able to answer these questions. Furthermore,

all of the participating users with access to the T-Rex system were

able to correctly answer the Q4 while all the users without access to

T-Rex were unsuccessful. Furthermore, 6 out of 10 T-Rex users were

able to suggest the correct fix, and 2 had offered a partial fix (Q5).

This study shows how users can harness T-Rex to easily identify

errors in the repair process and achieving better repairs.

UseCase.We focus on questions 4,5 in the user study to showcase a

use case for T-Rex in which it helps to quickly pinpoint issues in the

MAS dataset. We have considered an instance of the MAS database

with ∼2M cells, and a set of 11 functional dependencies. We have

Figure 9: T-Rex user study results

artificially augmented the database with a tuple of a 2021 VLDB

publication and run the Holoclean system with the constraints on

a large subset, sampled of the DB. The added tuple of 2021 VLDB

paper was ‘repaired’ so that its “conference homepage” attribute

changed from “vldb.org/2021” to “vldb.org/2011”.We then examined

the repair of this cell by running T-Rex. The system identifies that

the top influencing constraint “conference name → conference

homepage” and top influencing cells, all from tuples with a VLDB

publication, but from different years. This reveals 2 issues:

(1) The above constraint should be changed to, e.g., “conference

name and publication year→ conference homepage”.

(2) The database instance contains an inherent mistake in the

“conference homepage” attribute, where all VLDB publica-

tions are linked to a single wrong url. This, in turn, throws

off the repair algorithm and causes it to change a correct

value into a wrong one.

6 CONCLUSIONS AND FUTUREWORK
We have defined and studied, for the first time to our knowledge,

the problem of explaining data repair using Shapley values for

black box repair algorithms and DCs. We have devised an opti-

mized algorithm for computing Shapley values of constraints and

cells to explain the repair of a specific cell. We showed that our

approach converges to the Shapley values faster and scales better

than previous work, and that our solution is effective in allowing

users to detect errors and get explanations for the repair. Future

work includes the development of further optimizations for both

black-box and white-box repair algorithms, as well as interactive

User Interfaces allowing further exploration of the repair process.

Acknowledgements. This research was funded by the European

Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (Grant agreement No. 804302),

the Israeli Science Foundation (ISF) Grant No. 978/17, and the NSF

awards IIS-2008107 and IIS-1703431.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

370

REFERENCES
[1] Microsoft academic search. http://academic.research.microsoft.com.

[2] T-rex code repository and datasets. https://bitbucket.org/JanedoeforCIKM/

systemxcikm.

[3] F. N. Afrati and P. G. Kolaitis. Repair checking in inconsistent databases: Algo-

rithms and complexity. In ICDT, pages 31–41, 2009.
[4] E. Agichtein, E. Brill, and S. T. Dumais. Improving web search ranking by

incorporating user behavior information. SIGIR, 52(2):11–18, 2018.
[5] M. Arenas, J. Pérez, and C. Riveros. The recovery of a schema mapping: Bringing

exchanged data back. ACM Trans. Database Syst., 34(4):22:1–22:48, 2009.
[6] L. Berti-Équille and U. Comignani. Explaining automated data cleaning with

cleanex. In IJCAI-PRICAI 2020 Workshop on Explainable Artificial Intelligence
(XAI), 2021.

[7] L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. The complexity and approx-

imation of fixing numerical attributes in databases under integrity constraints.

Information Systems, 33(4-5):407–434, 2008.
[8] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data cleaning and query

answering with matching dependencies and matching functions. Theory Comput.
Syst., 52(3):441–482, 2013.

[9] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional

functional dependencies for data cleaning. In ICDE, 2007.
[10] A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti. Descriptive and prescriptive

data cleaning. In SIGMOD, pages 445–456. ACM, 2014.

[11] J. Chomicki and J. Marcinkowski. Minimal-change integrity maintenance using

tuple deletions. Inf. Comput., 197(1-2):90–121, 2005.
[12] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. PVLDB,

6(13):1498–1509, 2013.

[13] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into

context. In ICDE, pages 458–469, 2013.
[14] D. Deutch, N. Frost, A. Gilad, and O. Sheffer. T-rex: Table repair explanations. In

SIGMOD, pages 2765–2768, 2020.
[15] D. Dua and C. Graff. UCI machine learning repository, 2017.

[16] A. Ebaid, S. Thirumuruganathan, W. G. Aref, A. Elmagarmid, and M. Ouzzani. Ex-

plainer: Entity resolution explanations. In 2019 IEEE 35th International Conference
on Data Engineering (ICDE), pages 2000–2003. IEEE, 2019.

[17] R. Fagin, B. Kimelfeld, and P. G. Kolaitis. Dichotomies in the complexity of

preferred repairs. In PODS, pages 3–15, 2015.
[18] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and

query answering. Theor. Comput. Sci., 336(1):89–124, 2005.
[19] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. PVLDB,

2(1):407–418, 2009.

[20] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The LLUNATIC data-cleaning

framework. PVLDB, 6(9):625–636, 2013.
[21] A. Gilad, D. Deutch, and S. Roy. On multiple semantics for declarative database

repairs. In SIGMOD, pages 817–831, 2020.
[22] D. Haas, S. Krishnan, J. Wang, M. J. Franklin, and E. Wu. Wisteria: Nurturing

scalable data cleaning infrastructure. PVLDB, 8(12):2004–2007, 2015.

[23] D. Janzing, L. Minorics, and P. Blöbaum. Feature relevance quantification in

explainable ai: A causal problem. In AISTATS, pages 2907–2916, 2020.
[24] M. N. Katehakis and A. F. Veinott Jr. The multi-armed bandit problem: decom-

position and computation. Mathematics of Operations Research, 12(2):262–268,
1987.

[25] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian. Metric functional

dependencies. In ICDE, 2009.
[26] V. Kuleshov and D. Precup. Algorithms for multi-armed bandit problems. arXiv

preprint arXiv:1402.6028, 2014.
[27] F. Li and H. V. Jagadish. Constructing an interactive natural language interface

for relational databases. PVLDB, pages 73–84, 2014.
[28] S. Lipovetsky and M. Conklin. Analysis of regression in game theory approach.

Applied Stochastic Models in Business and Industry, 17(4):319–330, 2001.
[29] E. Livshits, B. Kimelfeld, and S. Roy. Computing optimal repairs for functional

dependencies. In SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 225–237, 2018.

[30] S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions.

In NIPS, pages 4765–4774, 2017.
[31] I. Mann and L. Shapley. Values for large games, iv: Evaluating the electoral

college by monte carlo techniques. the rand corporation. Research Memorandum,

2651, 1960.

[32] D. Metzler and W. B. Croft. Linear feature-based models for information retrieval.

Inf. Retr., 10(3):257–274, 2007.
[33] C. Molnar. Interpretable machine learning. Lulu.com, 2020.

[34] C. H. Papadimitriou and M. Yannakakis. On the complexity of database queries.

J. Comput. Syst. Sci., 58(3):407–427, 1999.
[35] J. Rammelaere and F. Geerts. Explaining repaired data with cfds. PVLDB,

11(11):1387–1399, 2018.

[36] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with

probabilistic inference. PVLDB, 10(11):1190–1201, 2017.
[37] M. T. Ribeiro, S. Singh, and C. Guestrin. "why should I trust you?": Explaining

the predictions of any classifier. In SIGKDD, pages 1135–1144, 2016.
[38] L. SHAPLEY. A value for n-person games. Contributions to the Theory of Games,

(28):307–317, 1953.

[39] A. Slivkins. Introduction to multi-armed bandits. arXiv preprint arXiv:1904.07272,
2019.

[40] E. Strumbelj and I. Kononenko. Explaining prediction models and individual

predictions with feature contributions. Knowl. Inf. Syst., 41(3):647–665, 2014.
[41] M. Sundararajan and A. Najmi. The many shapley values for model explanation.

arXiv preprint arXiv:1908.08474, 2019.
[42] M. Sundararajan and A. Najmi. The many shapley values for model explanation.

In International Conference on Machine Learning, pages 9269–9278, 2020.
[43] X. Wang, X. L. Dong, and A. Meliou. Data x-ray: A diagnostic tool for data errors.

In SIGMOD, pages 1231–1245. ACM, 2015.

[44] X. Wang, A. Meliou, and E. Wu. Qfix: Diagnosing errors through query histories.

In SIGMOD, pages 1369–1384. ACM, 2017.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

371

http://academic.research.microsoft.com
https://bitbucket.org/JanedoeforCIKM/systemxcikm
https://bitbucket.org/JanedoeforCIKM/systemxcikm

	Abstract
	1 Introduction
	2 Preliminaries
	3 Framework for Data Repair Explanations
	3.1 Black Box Data Repair
	3.2 Black Box Data Repair Explanations

	4 Optimized Computation of Contributions
	4.1 Optimized Sampling Algorithm
	4.2 Optimizations based on repair properties

	5 Experiments
	5.1 Experimental Setup
	5.2 Accuracy and Scalability Results
	5.3 T-Rex Usability

	6 Conclusions and Future Work
	References

