
selP: Selective Tracking and Presentation of
Data Provenance

Daniel Deutch, Amir Gilad, Yuval Moskovitch
Computer Science Department, Tel Aviv University

{danielde,amirgilad,moskovitch1}@post.tau.ac.il

Abstract—Highly expressive declarative languages, such as
Datalog, are now commonly used to model the operational
logic of data-intensive applications. The typical complexity of
such Datalog programs, and the large volume of data that
they process, call for the tracking and presentation of data
provenance. Provenance information is crucial for explaining and
justifying the Datalog program results. However, the size of full
provenance information is in many cases too large (and its concise
representations are too complex) to allow its presentation to the
user. To this end, we propose a demonstration of selP, a system
that allows the selective presentation of provenance, based on
user-specified top-k queries. We will demonstrate the usefulness
of selP using a real-life program and data, in the context of
Information Extraction.

I. INTRODUCTION

Many real-life applications rely on an underlying database
in their operation. In different domains, such as declarative
networking [1], social networks [2], and information extraction
[3], it has recently been proposed to use Datalog for the
modeling of such applications. The Datalog programs em-
ployed in these contexts are typically quite complex, calling
for explanations of the way results were obtained.

Consider for example AMIE [3], a system for mining
logical rules from Knowledge Bases (KBs), based on observed
correlations in the data. After being mined, these rules are then
treated as a Datalog program 1 and evaluated with respect to a
KB of facts (e.g. YAGO) that were directly mined form sources
such as Wikipedia. This allows to address incompleteness of
Knowledge Bases, gradually deriving additional new facts and
introducing them to the KB. However, since the rules are
automatically mined, there is an inherent uncertainty with
respect to their validity. Indeed, many rules mined in such a
way are not universally valid, but are nevertheless very useful
(and used in practice), since they contribute to a higher recall
of facts. Thus, it is crucial to accompany the presentation of
derived facts with provenance information, such as the set of
derivation trees 2 of a given fact [4], [5]. These may be viewed
as explanations for the derived facts.

However, presenting full provenance in such contexts is
unlikely to be useful to the user. This is due to the complexity
and large size of provenance information. To illustrate, the
number of different rules that may be used to directly derive a
single fact in AMIE exceeds 20; naturally, derivations based on

1Strictly speaking AMIE is based on Inductive Logic Programming, but
derived rules may be translated to Datalog.

2Various other provenance models appear in the literature, see discussion
of related work.

these rules use additional facts, which again have many pos-
sible rules deriving them, etc. This means that the variability
and quantity of derivation trees is extremely large in practical
cases (there in fact may be infinitely many trees in presence of
recursion in the Datalog rules). While compact representations
for Datalog provenance were proposed in previous work [5],
[4] (and used as intermediate, internal, representations in our
context), their complex structure renders them unsuitable for
presentation.

Our solution to this problem is based on the intuitive ob-
servation that not all derivation trees are equally “interesting”.
First, a derivation tree importance is effected by the facts
that are used in the derivation (“supporting facts”) as well
as the fact that is eventually derived (we may be interested in
explanations for some facts, or ones that are based on some
facts). Second, it is effected by the rules that are used for
derivation. Reconsidering our running example, we note that
AMIE assigns confidence scores to the different rules. Intu-
itively, derivations that make extensive use of low-confidence
rules, are less convincing and less useful for presentation
purposes.

To this end, we present selP, a system that allows the
selective, user-defined, tracking and presentation of provenance
information. The input to the system, in addition to a Datalog
program (set of derivation rules) and a relational Database,
is a specification of requested provenance, in a novel query
language called selPQL that we have designed for this
purpose. selPQL is based on two facets, as follows. The
first is the selection of a subset of derivation trees that are
of interest. This subset may be specified by the user, via a
notion of derivation tree patterns, which are reminiscent of
tree patterns used in XML querying, modified so that nodes
refer to (base or derived) facts. The second facet is the ranking
of derivation trees, based on assigning weights to the different
rules and aggregating them to form weights of derivation trees.
Together, this defines the requested provenance as the top-k
derivation trees out of those conforming to the given pattern
(k, number of presented trees, is a user-defined parameter). We
have designed a novel algorithmic solution to compute these
top-k derivations.

selP may operate in one of two “modes”. In an “online”
mode, the selPQL query is specified before execution of the
Datalog program, and is then interpreted as instructions to
selP, specifying which parts of the provenance to track. This
may be the case if we want to restrict provenance tracking in
advance. An “offline” mode is suitable for a case where the
selPQL query is specified after the program execution. Here

Country Product
France wine
Cuba tobacco
Cuba coffee beans

(a) exports

Country Product
Cuba wine
Mexico wine
Mexico tobacco
France tobacco

(b) imports

Fig. 1: Database

we track full provenance (stored using a compact, internal,
representation), and use it as input to our novel top-k query
evaluation algorithm. Offline evaluation leads to a storage
overhead, but on the other hand allows issuing multiple queries
without re-running the program.

We will demonstrate selP in the context of the AMIE
system, using real-life data from YAGO [6] and real-life rules
extracted by AMIE based on YAGO. YAGO is a large seman-
tic knowledge base, derived from Wikipedia and additional
sources, and its data and AMIE-derived rules range over
multiple interesting domains. Specifically, we will demonstrate
selP in the context of information regarding trading relation-
ships between countries, academic relationships and influence,
movies and geographic data. Using multiple examples, and
interactively engaging the audience, we will demonstrate that
selP allows users to obtain concise, useful, relevant and clear
explanations for derived facts, even in settings where complete
provenance information is incomprehensible.

Related Work: Data provenance has been studied for
different data transformation languages, from the positive
relational algebra to functional programs, and with different
provenance models (see e.g. [7], [8], [4], [9]). Obviously there
is a tradeoff between the expressivity of transformations for
which provenance is captured, and the ease of viewing and
understanding provenance. selP is unique in that it supports
provenance for highly expressive data transformations (in
Datalog), and handles the complexity of provenance through
an expressive and intuitive query language for provenance,
supporting in particular top-k queries. Previous solutions for
querying provenance are either suitable only for weaker trans-
formation models (see e.g. [10]) or are not declarative [7]
and also lack a ranking mechanism. Last, works on querying
workflow provenance for presentation (e.g. [11]), focus on
the workflow’s modules, inputs and outputs flow, and data
provenance is typically abstracted away.

II. MODEL

We (informally) introduce the model underlying selP,
through a running example.

A. Datalog

We refer the reader to [12] for a formal definition of Dat-
alog and here we only illustrate it with our running example.

Example 2.1: The following three rules (focusing on inter-
national trade relations, and presented here using the Datalog
syntax) were mined by AMIE [3] using the YAGO Knowledge
Base. We note that since rules were mined by AMIE based on
correlation in Data, the validity of some rules (and in particular
r1, r2) is questionable.

(a) Pattern p1 (b) Pattern p2

(c) Pattern p3

Fig. 2: Tree Pattern Examples

r1 dealsWith(a, b):- imports(a, c), exports(b, c)
r2 dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)
r3 dealsWith(a, b):- dealsWith(b, a)

The lefthand side of each rule (in the above example
dealsWith(a, b)) is called the rule’s head, and the righthand
side is its body. Variables (e.g. a, b) are bound if they appear
in the head, and are otherwise free. Rules are evaluated with
respect to a instance I of the relations, binding variables to
constants accordingly. Considering the instance I of Fig. 1,
for the first rule we may assign a, b, c to Cuba, France, wine
resp. Values of bound variables for each such assignment
are used in its head, possibly generating a new fact (e.g.
dealsWith(Cuba, France)). The new fact is added to the
instance, and evaluation continues until reaching a fixpoint.

B. Provenance

A derivation tree of a fact t with respect to a Datalog
program and a Database instance I is a tree whose nodes are
labeled by facts. The root is labeled by t, leaves are labeled
by facts in I , and internal nodes by derived facts. The tree
structure is dictated by the Datalog program: the labels set of
the children of node N corresponds to an instantiation (via an
assignment) of the body of some rule r, such that the label of
N is the corresponding instantiation of r’s head (we refer to
this as an occurrence of r in the tree). Finally, the provenance
of a fact t with respect to a program and an input instance is
defined as the set of possible derivation trees of t [4]. Note
that this set may be quite large, and in fact may be infinite
when the Datalog rules are recursive.

Example 2.2: Three (out of the infinitely many) derivation
trees for the fact t = dealsWith(Cuba, France), based on
the program given in Example 2.1 and the example Database
given in Figure 1, are presented next:

C. Querying the Provenance

A derivation tree pattern is a node-labeled tree. Labels
correspond to facts, that may include wildcards (*) instead of

values. Edges may be marked as regular (/) or transitive (//),
and in the former (latter) case may be matched to a single edge
(path of any length). We say that a derivation tree t satisfies
a pattern p if there exists a homomorphism from nodes and
(transitive) edges of p to nodes and edges (paths, respectively)
of t, such that the root of p is mapped to the root of t, and
node labels and descendant relations are preserved. We omit
the formal definition and illustrate it with an example.

Example 2.3: Three derivation tree patterns are shown
in Figure 2. Pattern p1 will match any derivation tree
of facts dealsWith(Cuba, ∗) for some constant replac-
ing the wildcard. p2 queries the structure of derivations,
specifying that we are only interested in derivations of
dealsWith(Cuba, France) that are (directly or indirectly)
based on the fact that Cuba exports tobacco. Pattern p3 is useful
when (omitted) rules perform integration of two ontologies
(YAGO and DBPedia). Intuitively p3 will match derivations
based on integrated data from both sources: imports (exports)
information from YAGO (DBPedia).

Since there may still be (infinitely) many trees matching a
pattern, we further rank derivation trees based on the rules
and facts used in them. For that, we associate with each
Database fact and each Datalog rule a numeric weight. Weights
are elements of an ordered commutative monoid, which is
an algebraic structure (M,+, 0, <) where + is an associative
and commutative binary operation referred to as the aggregate
function, 0 is an identity for + and < is a total order over the
monoid elements.

Example 2.4: Each rule mined by AMIE is associated with
a confidence value reflecting the rule “reliability”. This serves
as our weighting function, mapping rules to elements in the
ordered monoid ([0, 1], ·, 1, <), e.g.: w(r1) = 0.8, w(r2) =
0.5, w(r3) = 1. Individual confidence scores are in the range
[0, 1] (1 being the highest confidence), they are aggregated
via multiplication, and are ordered based on standard order
relation on numbers. Similarly, fact weights may reflect their
confidence (in this simplified example we assign the neutral 1
to all facts).

We then define a derivation tree weight as the aggregation
of weights of facts and rules occurrences in the tree, using the
monoid + operation as aggregation function.

Example 2.5: Consider the derivation trees given in Ex-
ample 2.2 and the above weight-aware datalog example. The
weights of the trees are w(τ1) = 0.8 , w(τ2) = 0.8 · 1 = 0.8
and w(τ3) = 0.5 · 1 · 0.8 · 0.8 = 0.32

The combination of weighting and pattern (and k, number
of requested results) is referred to as a selPQL query. Its
top-k results, which are the system output, are the k derivation
trees of highest weight, out of those satisfying the pattern.

Example 2.6: The top-2 query results for our running
example (with pattern p2) are τ2 and τ3 in Example 2.2 with
weights of 0.8 and 0.32 respectively. Note that τ1 does not
match the pattern.

III. SYSTEM ARCHITECTURE AND EVALUATION

selP is implemented in JAVA with JAVAFX GUI using
SceneBuilder, and runs on Windows 7. It uses MS SQL server

Pattern Intersection
(with program)

Provenance
Generation

Program P’

Top-K

Provenance
Generation

Pattern Intersection
(with prov.)

Provenance
π

Provenance
π’

Top-k trees

Program P, Pattern p

Database D

k

Pattern p

Program P, Database D

k

Online

Offline

Provenance
π’

Fig. 3: System architecture

as its underlying database management system. The system
architecture is depicted in Figure 3, and the input/output user
interfaces are depicted in Figures 4 and 5 respectively. As
explained in the Introduction, selP can either operate in
online or offline mode, based on the user choice. Evalua-
tion of selPQL queries in both cases are based on three
main components: (1) “intersecting” the pattern with the pro-
gram/provenance, (2) compact representation of provenance,
and (3) finding top-k trees based on this representation. We
next briefly explain each component, omitting details for lack
of space.

Pattern intersection (with program): This module im-
plements a novel algorithm that given a Datalog program P
(fed as input through the GUI presented in the lefthand side
of Fig. 4) and a tree pattern p (see righthand side of Fig. 4),
generates a new program P ′ which is the “intersection” of
the program with the pattern. Namely, P ′ is such that (up to
relation renaming) its derivation trees are exactly those deriva-
tion trees of P that satisfy p. This is done by introducing new
relation names that reflect “guarantees” to generate gradually
larger parts of the pattern, and rules to enforce that.

Provenance Generation: This module implements the
algorithm of [4] to compute, along side with standard evalua-
tion of the Datalog program a succinct, internal representation
of (full) provenance for a given Datalog program and a given
instance. The representation is through a system of fixpoint
equations, with variables standing for facts and equations
following the structure of the program (see [4]).

Top-K: Given the system of equations representing full
provenance, this module applies a novel iterative algorithm that
computes the top-k derivations. The basic idea is that at itera-
tion i we compute, for every intermediate fact (represented by
a variable in the equation system), its top-k derivations out of
those of depth at most i; these are the “best” (highest-weight)
extensions of those derivations computed up to iteration i− 1.
We may show that convergence to a fixpoint is guaranteed.
The output trees are shown graphically, as depicted in Figure
5, alongside with the standard Datalog output.

Putting it all together: As depicted in Figure 3, the
modules are combined for either online or offline evaluation. In
the online mode, selP sequentially applies the three modules
as follows: first, the pattern is intersected with the Datalog
program, and the output (“intersected”) program is fed to the
provenance generator. The full provenance is then fed to the
Top-K module, outputting the top-k derivation trees. Offline
evaluation uses the modules in a different order: provenance

Fig. 4: Input screen

Fig. 5: Output screen

generation (along side with program execution) is applied with
respect to the input program, generating full provenance. Then,
the pattern is intersected w.r.t. the generated provenance rather
than the program (through a modified intersection module).
Finally, Top-K is applied as in the online mode.

IV. DEMONSTRATION SCENARIO

We will demonstrate that selP provides concise and useful
explanations for the output of data-intensive applications. The
system’s operation will be demonstrated in an Information
Extraction setting, using real-life data from YAGO (stored in
a relational Database) and real-life weighted Datalog program,
whose rules and their weights were extracted by AMIE. The
demonstration will interactively engage the audience, demon-
strating the different facets of the system.

For the first part of the demonstration we will run in
advance the Datalog program with full provenance tracking
(as in the offline approach). We will ask participants to choose
a “topic”, out of a variety of options available in the YAGO
dataset: trading data (as in our running example), academic
and influence relationships, movies and geographic data. For
the selected domain, we will browse through the relevant parts
of the database and rules, focusing on some examples and
showing them to the audience. We will then ask the audience
to choose a few derived facts, and to “guess” some intuitive
explanations for their derivations. Next, we will pose the

appropriate simple patterns (each selecting explanations for
one of the chosen facts), and use selP to compute the top-3
explanations for the facts. We will present the explanations
to the audience, demonstrating that they intuitively reflect
“most prominent” explanations for the reason the facts of
interest were obtained, and discussing whether the presented
explanations match their original intuition.

Second, we will ask the audience to further specify
selPQL queries with respect to the same demonstrated facts.
For instance, if they were expecting a particular supporting
fact to show up in prominent explanations, they may wish to
explicitly ask for explanations using this fact. The queries will
be fed by the participants to selP through its user-friendly
GUI, and we will again show and discuss the analysis results.

Third, we will demonstrate the online approach, using
the same selPQL queries and applying the system’s online
evaluation. We will demonstrate that the overhead of selective
provenance tracking is feasible and significantly reduced with
respect to full provenance tracking.

Finally, we will allow the audience to look “under the
hood”. In particular we will show the “instrumented” Datalog
program generated as part of the online evaluation algorithm.
We will also show the intermediate internal representation for
the full provenance, explaining why full provenance cannot
be presented as intuitive and concise explanations. We will
highlight how our approach of presenting selective provenance
allows to alleviate this difficulty.

Acknowledgments: This research was partially sup-
ported by the Israeli Ministry of Science, by the Isareli Science
Foundation (ISF), by the Broadcom Foundation and Tel Aviv
University Authentication Initiative, and by the Advanced ERC
grant Modas (grant 291071).

REFERENCES

[1] B. T. Loo and W. Zhou, Declarative Networking, ser. Synthesis Lectures
on Data Management. Morgan & Claypool Publishers, 2012.

[2] R. Ronen and O. Shmueli, “Soql: A language for querying and creating
data in social networks,” in ICDE, 2009, pp. 1595–1602.

[3] L. A. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek, “Amie:
association rule mining under incomplete evidence in ontological
knowledge bases,” in WWW, 2013, pp. 413–422.

[4] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in PODS, 2007.

[5] D. Deutch, T. Milo, S. Roy, and V. Tannen, “Circuits for datalog
provenance,” in ICDT, 2014.

[6] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A Core of
Semantic Knowledge,” in WWW, 2007.

[7] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera, “A core calculus for
provenance,” Journal of Computer Security, vol. 21, no. 6, 2013.

[8] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar,
T. Sugihara, and J. Widom, “Trio: A system for data, uncertainty, and
lineage,” in VLDB, 2006.

[9] D. Gawlick and V. Radhakrishnan, “Fine grain provenance using
temporal databases,” in TaPP, 2011.

[10] G. Karvounarakis, Z. G. Ives, and V. Tannen, “Querying data prove-
nance,” in SIGMOD Conference, 2010, pp. 951–962.

[11] O. Biton, S. C. Boulakia, and S. B. Davidson, “Zoom*userviews:
Querying relevant provenance in workflow systems,” in VLDB, 2007.

[12] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

