
QPlain : Query By Explanation

Daniel Deutch and Amir Gilad
Computer Science Department, Tel Aviv University

Abstract—To assist non-specialists in formulating database
queries, multiple frameworks that automatically infer queries
from a set of input and output examples have been proposed.
While highly useful, a shortcoming of the approach is that if users
can only provide a small set of examples, many inherently differ-
ent queries may qualify. We observe that additional information
about the examples, in the form of their explanations, is useful in
significantly focusing the set of qualifying queries. We propose to
demonstrate QPlain, a system that learns conjunctive queries
from examples and their explanations. We capture explanations
of different levels of granularity and detail, by leveraging recently
developed models for data provenance. Explanations are fed
through an intuitive interface, are compiled to the appropriate
provenance model, and are then used to derive proposed queries.
We will demonstrate that it is feasible for non-specialists to
provide examples with meaningful explanations, and that the
presence of such explanations result in a much more focused
set of queries which better match user intentions.

I. INTRODUCTION

It has long been acknowledged that writing database
queries in a formal language may be a cumbersome task for
the non-specialist. Different approaches have been proposed
to assist users in this task; a prominent approach (see e.g. [1],
[2], [3]) allows users to provide examples of input and output
databases, based on which the intended query is automatically
inferred. This approach can be highly effective if the examples
provided by the user are plenty and representative. But coming
up with such a set of examples is non-trivial, and unless this
is the case, the system may be unable to distinguish the true
intention of the user from other qualifying queries.

As a simple illustration, consider a user planning to
purchase plane tickets for a trip. She has rather specific
requirements of this trip: it should include five countries in
South America, visiting each for a week and staying in Bolivia
in the third week, in time for a carnival taking place there.
After viewing a list of border crossings such as Table I, she
concludes that Argentina and Brazil would serve as good end-
points for the trip, and so would Peru and Paraguay. Since
airfare from the US to these particular destinations at her dates
of interest are quite expensive, she is interested in viewing
additional recommendations. However, based only on these
two examples of output tuples, there are many inherently
different queries that yield them, and there is no reasonable
way to distinguish between them. In particular the trivial query
copying the content of Table I clearly does not capture the
intention of the user, but is a reasonable query that may be
proposed given the examples set.

Intuitively, if users would provide some form of “explana-
tions” attached to their examples, it could guide the system
in identifying the actual intended query. Of course, the most
useful form of such explanation is the query itself, but the
premise is that users are unable to write formal queries. Still,

they have provided examples with some underlying logic in
mind, and may be able to describe it. Ideally, we would like to
allow users to provide explanations of varying level of detail
(to be made formal), and to have the system compute and
present an increasingly focused candidate queries in response
to an increasing precision of the explanation. Continuing our
running example, an explanation for a pair of end-points
involves a full or partial description of actual trips that she
has in mind, and are compatible with the example end-points.
This would in turn limit the queries of interest to those that
not only result in the example output, but rather do so based
on criteria that are compatible with the explanation.

To achieve this goal, we first need a formal notion of
explanations, one that supports different levels of granularity.
To this end, we note that multiple lines of work have fo-
cused on the somewhat “reverse” problem of explaining query
results. Multiple forms for such explanations, often termed
lineage or provenance, have been proposed in recent years,
and the tracking, storing and use of such explanations have
been extensively studied. The work of [4] has put multiple
such models on common grounds, namely the provenance
semiring model [5]. Importantly, it has further formalized and
characterized the level of detail supported by each model.

Building upon these foundations, we propose here a novel
framework of query-by-explanation. The input to the frame-
work is a set of examples, each consists of an input and output
relation. Importantly, output tuples are further associated with
explanations, which may take a form of one of multiple prove-
nance models (we support here the “provenance semiring”
N[X] [5], as well as Why(X) [6] and Lineage [7] in their
polynomial interpretation of [4]; see Section II). The frame-
work then computes and presents candidate queries, namely
queries that, when evaluated with respect to the example input
database, return the example output tuples, and the provenance
that is associated with them is consistent with the provided
explanation. We make a quite standard choice in this context
(see e.g. [3], [2]) of further restricting our attention to minimal
Conjunctive Queries with disequalities (CQ6=).

We note that explanations essentially detail the course of
derivation of output tuples by the intended query. The various
explanation models differ in the level of details they provide for
each derivation. The most informative model is N[X] (called
the “provenance semiring” in [5]), detailing precisely the tuples
used in different derivations, including the number of times
each tuple was used. In the context of our example, this means
that the user explains a desired pair of countries by detailing
all border crossings in some (but not necessarily all) trips that
match her criteria and start and end in these countries. A
less informative explanation, but one that is typically easier
to formulate, would detail all tuples participating in some
derivation, without distinguishing joint from alternative uses
(this corresponds to the lineage model). E.g., the user may

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

detail all countries (or all border crossings) that she would
like to visit in her trips between the two end-points, without
mentioning whether two countries should appear together in
a single trip. Naturally, the proposed set of queries would be
more focused for the more informative explanation.

We have designed a suite of algorithms for learning queries
from examples and their explanations, based on the different
provenance models. We have implemented the algorithms in
a system called QPlain. The system allows users to input
examples and explanations through a user-friendly GUI, which
does not assume any knowledge on provenance or its particular
models. Instead, they simply drag-and-drop database tuples to
form explanations, and the system automatically compiles an
instance of the “simplest” model that can still accommodate
the complexity of the provided explanation (see Section III).

We propose to demonstrate QPlain using a diverse dataset
derived from Wikipedia. We will guide participants in choosing
a “topic” out of the dataset, and will allow them to provide
examples of output tuples as well as explanations, through
the GUI. The system will compute a candidate consistent
query, and will run it to compute more output tuples which
will in turn be presented to the participants. They will then
be able to provide feedback on the presented output, adding
or removing examples as they see fit, and re-compute the
results. We will demonstrate that it is feasible for non-experts
to provide explanations, and that using such explanations,
QPlain proposes queries of superior quality.

II. TECHNICAL BACKGROUND

Provenance Polynomials: We focus here on conjunctive
queries with disequalities (CQ6=) [8] and consider various
provenance models proposed in the literature, varying in the
amount of information that is maintained. The work of [4] has
led to a unified perspective of these models via the notion of
provenance polynomials, which we next intuitively explain.
The idea is to associate an annotation with every tuple in
the input database, and to extend the operations of relational
algebra so that they will work on these annotated tuples,
in an algebraic structure is based on two main components:
operations that match the transformations that the data under-
goes and equivalence relations over obtained expressions, that
match equivalences in the underlying transformation language.
It was shown in [5] that the most general such structure, i.e.
the one storing the most information while obeying to the
equivalence laws of CQs is that of semiring of polynomials
over the domain of basic annotations, with natural numbers
as coefficients, denoted N[X]. Intuitively, in this structure,
multiplication (denoted by ·) corresponds to joint use of tuples
in a derivation, and summation (denoted by +) corresponds
to alternative derivations. Multiple other proposed models
for provenance, such as Why(X) [6], lineage [7] and others
may then be expressed in this model by introducing further
congruences (e.g. “forgetting” coefficients or exponents). By
that, they encode less provenance information, but may do so
in a much more concise manner.

Example 2.1: Reconsider our example from the Introduc-
tion of a user planning a trip with specific requirements. Her
logic may be captured by the following query (route is the
relation depicted in Table I):

prov. A B
a Argentina Brazil
b Brazil Bolivia
c Bolivia Argentina
d Peru Colombia
e Colombia Bolivia
f Argentina Colombia
g Peru Paraguay
h Argentina Paraguay

prov. A B
i Germany Belgium
j France Belgium
k Belgium Germany
l Hungary Slovakia

m Poland Slovakia
n Slovakia Hungary

TABLE I: Relation route

A B N[X] Why(X) Lin(X)
Argentina Brazil f · e · c · a + a2 · c · b f · e · c · a + a · c · b {a, b, c, e, f}

Peru Paraguay d · e · c · h d · e · c · h {c, d, e, h}

TABLE II: Relation trip

A N[X] Why(X) Lin(X)
Germany i · j · k i · j · k {i, j, k}
Hungary l ·m · n l ·m · n {l,m, n}

TABLE III: Relation trip2

q = trip(x,w) : − route(x, y), route(y,Bolivia),

route(Bolivia, z), route(z, w)

The provenance-aware result of evaluating q over the
relation route is shown in Table II. Different columns include
provenance based on different models. Consider for example
the tuple trip(Argentina,Brazil). It is obtained through two
different derivations: one that maps four distinct tuples (anno-
tated a, c, e, f) to the four atoms, and one that maps the tuple
annotated a to two atoms and b, c to the rest. Consequently,
the tuple “exact” (N[X]) provenance is f · e · c · a+ a2 · c · b.
Note that each summand stands for an alternative suitable trip
that starts at Argentina and ends at Brazil. If we alternatively
store Why [6] provenance, we still have summands standing for
alternative derivations (trips), but we lose track of exponents
and coefficients, i.e. the number of times each tuple and
summand were used (e.g., we do not know that a border was
crossed twice). Finally, one may be interested in the tuple
lineage, in which case we store the set of tuples that have been
used in some derivation, but we cannot distinguish between
alternatively and jointly used tuples.

Query-By-Explanation: We consider the following
problem. The user provides as input multiple examples for
input databases and tuples in the desired output relation,
and further associates an explanation with each of these
output tuples. Explanations are captured by either one of the
provenance models we have illustrated above, with the more
experienced users being able to provide a more detailed form
of provenance. The system output is then a conjunctive query
(possibly with disequalities) that meets the following require-
ments: (1) it “matches” the specification, i.e. when evaluated
with respect to the input database it would generate the output
tuples (and possibly more), with their provenance matching the
user specification, and (2) it is minimal in the standard sense:
no conjunctive query with less atoms is equivalent to it. There
may be multiple queries that qualify, in which case we present
multiple options and prioritize them, preferring short and more
specific queries (see Section III).

Example 2.2: Reconsider our running example. Assume
first that the user gives no provenance at all. Of course, the
“real” underlying user query is still a valid output, but there
are many other simpler queries that fit the specification. In

2

particular, the simple query:

q2 = trip(x, y) : − route(x, y)

would have been a reasonable output. However, it is quite
far from matching the user’s intention, which is only reflected
in the provenance. As a more detailed provenance model
is used, more queries become unsuitable as answers, which
means that the set of possibly derived queries is more focused.
Indeed, given each of the provenance expressions we have
exemplified, q2 is not a valid output. In particular, an N[X]
provenance expression exactly dictates the number of query
atoms (4 in this case). It may still allow multiple options, such
as (in our case):
q3 = trip(x,w) : − route(x, y), route(y,Bolivia),

route(Bolivia,Argentina), route(Argentina,w)

which is more specific than q (and would be “disqualified”
if we had further examples not involving Argentina in the
trip) but much closer to the user’s true intention than q2.
In this particular case, the Why(X) provenance still shows
that there are at least 4 atoms; furthermore, one may verify
that introducing an exponent to either c or b in the first
monomial does not result in a qualifying query. Consequently,
the “shortest” qualifying query is obtained by assuming an
exponent 2 associated with a, and we again get q3 (but note
if we do not care about length, many more queries now
quality, including one with 16 atoms). However, if e.g. we
were only given the output tuple trip(Argentina,Brazil)
with only the derivation a2 · c · b (which is represented by
a · c · b in Why(X)), then there exist three-atom queries such
as trip(x,w) : − route(x,w), route(w, z), route(z, x) that
fit the Why(X) but not the N[X] provenance.

We next use a simpler example to illustrate the difference
between learning from Lin(X) and Why(X) expressions.

Example 2.3: Consider Table III detailing examples of
different constraints for a trip in Europe. In this case, the
shortest query based on the N[X] and Why(X) provenance
is trip2(x) : − route(x, y), route(z, y), route(y, x), z 6= x.
In contrast, when given the Lin(X) expressions, they may in
principle correspond to any combination of the annotations
into monomials of any length (only some of which actually
fit the examples). In this case, the shortest one based on the
Lin(X) expression is trip2(x) : − route(y, z), route(z, x).

We have developed a suite of algorithms for learning
queries from expressions corresponding to the different prove-
nance models. We next briefly explain each algorithm, omitting
details for lack of space.

Algorithm for N[X]: With N[X] provenance, the exact
number of query atoms and the input relations they pertain
to, is immediately given by the provenance expression. Thus,
what needs to be decided is (1) which body variables appear
in the head and (2) which equalities/disequalities are imposed.
For the former, we generate a separate output row for each
monomial and pick two output rows with maximally different
set of constants. For these, we generate a full bipartite graph
whose nodes are the annotations, each side corresponds to
the monomial of one of the chosen tuples, and each edge is
labeled with a set of output attributes that are “covered” by
the edge end-nodes. Covering of an attribute A means here
that the vector of values appearing in A for the output tuples

equals the vector of values appearing in some attribute for
the two input tuples corresponding to the end-nodes. Next, we
find a matching in this graph whose edges cover all attributes
of the output tuples. We can show that it is sufficient to
look for such matchings of size bounded by the number of
output attributes. This matching dictates the location of head
variables in the body, to be placed at the appropriate locations
of “covering” atoms. Now, the algorithm checks if this query
is consistent with the rest of the examples, by simply matching
it to their provenance (this is much faster than evaluation). If
so, the algorithm attempts to minimize the query by gradually
imposing further equalities and disequalities between variables
(and replacing variables by constants where possible), in a
greedy manner. If not, we try a different matching in the graph
and repeat (if no matching works, we declare that there is no
qualifying query).

Algorithm for Why(X): In contrast, Why(X) provenance
does not reveal the exact number of query atoms, since
arbitrary exponents may have appeared in the N[X] provenance
of the intended query, and are not shown by the Why(X)
expression. In principle, the number of queries to consider
could have thus been infinite. However, we can show a “small
world” property, namely that if a qualifying query exists, then
there exists such query whose number of atoms is less than the
product of all monomial sizes (perhaps surprisingly, the maxi-
mum monomial size is an insufficient bound). We can use this
result to generate a “sufficiently long” N[X] provenance, and
re-run the previous algorithm on it. However, in practice one
expects shorter queries to qualify; consequently, we greedily
consider greater exponents and attempting a solution for them,
using the bound to decide when to terminate the algorithm if
a query was not found.

Algorithm for Lin(X): With Lin(X), we face the chal-
lenge of not knowing the number of query atoms, and can
again derive a “small world” property with the bound being
the product of annotation sets sizes. In addition, for each
query size there are multiple combinations of annotations into
monomials. Again we employ a greedy approach in this two
axes, generating combinations based on locally maximizing
the number of “covered” (as explained above) attributes.

Related work: Previous work has focused on learning
queries from examples (see e.g. [2], [1], [3], [9], [10] and the
somewhat different problem in [11]). Here we propose, for
the first time to our knowledge, to further leverage provenance
information as explanations in this process. This requires more
work from the user, but one that is feasible in many cases
(see further discussion in Section III) and provides otherwise
unattainable insights regarding the intended query. An addi-
tional, computational advantage, is that only tuples whose
annotation occur in the provenance need to be considered.
Multiple models for data provenance have been proposed (see
e.g. [5], [6], [12], [13], [14]); we have focused here on three
particular models, but others may fit the framework as well.

III. IMPLEMENTATION

QPlain is implemented in JAVA with JAVAFX GUI using
SceneBuilder, and runs on Windows 8. It uses MS SQL server
as its underlying database management system. The system
architecture is depicted in Figure 1. Users can load an input
database, and provide examples of output tuples (see Fig. 2).
For each output tuple they may press the Explain! button,

3

Fig. 1: System architecture

Fig. 2: Input screen

which leads to the explanation pop-up window (see Fig. 3).
Users drag-and-drop tuples from the input database to form
an explanation. They may further press the “Add Explanation”
button to start a new explanation, so that each row represents
a single alternative explanation. The “type” of provenance
(N[X], Why(X), Lin(X)) is not specified by the user, but
rather is automatically identified (see next). Then, the system
generates a minimal-length qualifying query, evaluates it and
shows the query along with its full result in a separate output
screen. The user may further evaluate the query with respect
to other databases, may ask for other qualifying queries (recall
our greedy approach of generating candidate queries), or may
refine the example and re-run the computation.

Recognizing Provenance Types: Before an appropriate
query can be generated, QPlain needs to know the type of
provenance that has been fed. Since the intended users are
non-experts, they cannot be expected to be able to know and
distinguish between the different provenance models. To this
end, we assume the “simplest” model of provenance that can
accommodate the user-provided explanations. That is, if only
a single explanation was fed for every tuple, then Lin(X) is
assumed to be used. If multiple explanations have been used
but every tuple was drag-and-dropped at most once to a single
explanation, then Why(X) provenance is assumed. Otherwise,
N[X] provenance is assumed.

IV. DEMONSTRATION SCENARIO

We will demonstrate the usefulness of QPlain, and in
particular that (1) users are able to provide explanations for
their examples, (2) with such explanations, QPlain can infer
more focused queries, and (3) queries are inferred at interactive
speed. The system will be demonstrated using real-life data
from Wikipedia (stored as relational database) and will interac-
tively engage the audience, demonstrating the different facets
of the system. The demonstration will start by reproducing
the scenario in Example 2.1, showing the system performance
and output for different types of provenance. During this
demonstration we will explain the system architecture and

Fig. 3: Explanation screen

the different options that it provides. We will show that a
more informative provenance results in a more focused set of

queries that better fits the user intention. In the second part
of the demonstration, we will ask participants to choose a
“topic”, out of a variety of Wikipedia datasets: geographic
data (as in our running example), academic and influence
relationships, movies and trading data. We will allow the
audience to experiment with the system, giving examples and
explanations of their choice. If the results are not satisfactory,
they could change the tuples or the explanations and iteratively
run the system while improving the example until the results
are satisfactory. The output tuples and explanations will be
fed by the participants to QPlain through its user-friendly
GUI, and we will again show and discuss the analysis results.
Finally, we will allow the audience to look “under the hood”,
discussing details of the algorithms and showing alternative
queries that they have considered (and discarded).

REFERENCES

[1] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy, “Query by output,” in
SIGMOD ’09.

[2] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava, “Reverse
engineering complex join queries,” in SIGMOD ’13.

[3] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik, “Dis-
covering queries based on example tuples,” in SIGMOD ’14.

[4] T. J. Green, “Containment of conjunctive queries on annotated rela-
tions,” in ICDT, 2009.

[5] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in PODS, 2007.

[6] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A charac-
terization of data provenance,” in ICDT, 2001.

[7] Y. Cui, J. Widom, and J. L. Wiener, “Tracing the lineage of view data
in a warehousing environment,” ACM Trans. Database Syst., 2000.

[8] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases.
Addison-Wesley, 1995.

[9] Y. Ishikawa, R. Subramanya, , and C. Faloutsos, “Mindreader: Querying
databases through multiple examples,” in VLDB 1998.

[10] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas, “Exemplar
queries: Give me an example of what you need,” VLDB 2014.

[11] M. M. Zloof, “Query by example,” in AFIPS NCC, 1975.
[12] D. Gawlick and V. Radhakrishnan, “Fine grain provenance using

temporal databases,” in TaPP, 2011.
[13] U. A. Acar, A. Ahmed, J. Cheney, and R. Perera, “A core calculus for

provenance,” Journal of Computer Security, vol. 21, no. 6, 2013.
[14] B. Glavic and G. Alonso, “Perm: Processing provenance and data on

the same data model through query rewriting,” in ICDE, 2009.

ACKNOWLEDGMENT

This research was partially supported by the Israeli Science
Foundation (ISF, grant No. 1636/13), by the Broadcom
Foundation and by ICRC — The Blavatnik Interdisciplinary
Cyber Research Center.

4

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
