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Abstract—Provenance is a valuable tool for explaining and
validating query results. On the other hand, provenance also
reveals much of the details about the query that generated it,
which may include proprietary logic that the query owner does
not wish to disclose. To this end, we propose to demonstrate
PITA, a system designed to allow the release of provenance
information, while hiding the properties of the underlying query.
We formalize the trade-off between the level of information
encoded in a provenance expression and the breach of privacy
it incurs. Following this model, we design PITA to abstract
the provenance so that it incurs minimum loss of information,
while keeping privacy above a given threshold, namely protecting
details of the original query from being revealed.

Index Terms—provenance, privacy, explanations, k-anonymity

I. INTRODUCTION

Data provenance is commonly used for explaining and justi-
fying query results [1], [2]. Organizations, as data owners, can
therefore use provenance to explain some of their query-based
decisions by showing (a user friendly form of) provenance to
users. However, publishing the provenance of specific query
results may reveal the properties of the proprietary query that
generated them [3]. This, in turn, may discourage data owners
from providing provenance-based explanations.

Example 1.1: Consider an online advertising company that
wishes to match ads to people. Their database contains in-
formation about people, their hobbies and interests, a sample
of which appears in Figure 1. Each tuple has an identifier,
appearing to its left. The company may run queries such as
Qreal appearing in Table I looking for people that like dancing
and music. The query output includes James and Brenda,
and relevant advertisements may then be presented to them.
Upon request, Brenda may receive an explanation of why the
advertisement was shown to her (see, e.g., [4], [5]). However,
the company may wish to avoid disclosing the general criteria
(i.e., the query Qreal), since these criteria are part of the
company’s confidential business strategy.

TABLE I: Queries for the running example. Qreal is the
original, Qfalse1 and Qfalse2 are similar but not identical

Name Query
Qreal Q(id) :- Person(id,name,age), Hobbies(id,‘Dance’,src1),

Interests(id,‘Music’,src2)
Qfalse1 Q(id) :- Person(id,name,age), Hobbies(id,‘Trips’,src1),

Interests(id,‘Music’,src2)
Qfalse2 Q(id) :- Person(id,name,age), Hobbies(id,‘Dance’,src1),

Interests(id,‘Parties’,src2)

Interests
PID Interest Source

i1 1 Music WikiLeaks
i2 2 Music Facebook
i3 3 Music LinkedIn
i4 1 Parties WikiLeaks
i5 2 Parties Facebook
i6 4 Movies WikiLeaks

Hobbies
PID Hobby Source

h1 1 Dance Facebook
h2 2 Dance LinkedIn
h3 4 Dance Facebook
h4 1 Trips Facebook
h5 2 Trips LinkedIn
h6 3 Trips WikiLeaks

Persons
PID Name Age

p1 1 James T 27
p2 2 Brenda P 31

Fig. 1: Partial database instance of hobbies and interests of
people collected from different sources

Output Provenance
1 p1 · h1 · i1
2 p2 · h2 · i2

(a) Exreal

Output Provenance
1 p1 · h4 · i1
2 p2 · h5 · i2

(b) Exfalse1

Output Provenance
1 p1 · h1 · i4
2 p2 · h2 · i5

(c) Exfalse2

Fig. 2: N[X]-examples. Exreal, Exfalse1 and Exfalse2 are
the outputs of Qreal, Qfalse1 and Qfalse2, respectively

We propose to demonstrate PITA, a novel system for
obfuscating the provenance of query results so that it remains
useful and informative, while hiding the underlying query.

The provenance of a given query result describes the tuples
used by the query to derive the result and the manner in which
they were used. We use here the well-established model of
provenance semirings [6], and specifically that of provenance
polynomials (N[X], using the notation of [6]).

Example 1.2: The provenance of the output tuple (1)
according to Qreal (Table I) is presented in the first row of
Figure 2a. The expression, formulated as a product of the
annotations p1, h1, i1, intuitively means that the three tuples
with these annotations in the database (Figure 1) have jointly
participated in an assignment to Qreal that yielded this result.

Provenance obfuscation is done by abstracting it. Namely,
abstracting the tuple annotations in it. We do so by replacing
some tuple annotations in the provenance expression with
meta-annotations. To ensure that the replacement is logical, we
rely on the concept of an abstraction tree - a tree whose leaves
correspond to actual tuple annotations and ancestors can be
used as abstractions of their descendants. This idea is adapted
from [7] where trees were used to compress provenance.

When the original annotations in the provenance are ab-
stracted, the specifics of the tuples that they represent are
lost. We quantify this loss using entropy [8]. Information
entropy expresses the level of uncertainty of the given data.
In our context, we wish to measure “how uncertain” is a
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WikiLeaks

i6i4i1h6

Social Network

LinkedIn

i3h5h2

Facebook

i5i2h4h3h1

Fig. 3: Abstraction tree containing a subset of the tuple
annotations in the database in Figure 1 as leaves, and inner
nodes that are abstractions of the leaves

viewer of the abstracted provenance expression, with respect
to the actual one (each possibility for the actual provenance,
given an abstraction, is called a concretization). We assume a
given distribution over the concretizations. Lacking additional
knowledge, this distribution may simply be taken as uniform.
The entropy for an abstraction is then defined with respect to
a tree and a distribution.

The privacy given by a certain abstraction of the provenance
is then measured as the number of ‘likely’ queries that can
yield it when generating the output. Specifically, we define
a ‘likely’ query as a connected inclusion-minimal (CIM)
query [3], i.e., queries whose join graph is connected and are
not included in any other query in this set. This idea draws
on the well founded concept of k-anonymity [9], originally
developed for data rather than queries.

Given a subset of the query results and their provenance,
an abstraction tree, and a privacy threshold k, PITA finds an
optimal abstraction, i.e., an abstraction that has at least k CIM
queries that ‘can fit’ it, and minimizes the loss of information
among all such abstractions.

Example 1.3: Consider Exreal presented in Figure 2a show-
ing two outputs of the query Qreal and their provenance. The
allowed abstractions are defined based on the tree T depicted
in Figure 3. The leaves of T are annotations (identifiers) of the
tuples in Figure 1, and its inner nodes are abstracted forms of
these annotations. An abstraction of the provenance in Exreal

w.r.t. T may, e.g., replace the annotation h1 with its ancestors
Facebook or Social Network. Other tuple annotations may be
abstracted as well. A choice of abstraction dictates a certain
amount of information loss since the annotation Facebook can
stand for any one of the annotations h1, h3, h4, i2, i5, and when
viewing the annotation Facebook we cannot be sure which
annotation is the original. At the same time, it may obfuscate
the underlying query Qreal, as more queries can possibly fit
the observable provenance information.

Finding an optimal abstraction is NP-hard. Hence, we
provide novel heuristic algorithms for computing optimal
abstractions in practically efficient ways.

Query owners can therefore upload to PITA a set of
results along with their provenance, an abstraction tree, and
a privacy threshold. PITA will then compute an optimal
abstraction of the provenance according to the tree and output
this abstraction. This allows query owners to publish a subset
of the results along with their (abstracted) provenance as
explanations, while guaranteeing the privacy of the query
itself. We will demonstrate PITA using real-world data from
IMDB, showing its usefulness and effectiveness.

To the best of our knowledge, PITA is the first system to
demonstrate the approach of obfuscating fine-grained prove-
nance through abstraction, guaranteeing a privacy threshold
for queries.

II. TECHNICAL DETAILS

We (informally) introduce the model underlying PITA,
through a running example.

Queries and Provenance: We assume that the reader is
familiar with Conjunctive Queries, and refer to [6], [3] for
formal definitions of provenance, and N[X]-examples. We
denote by N[X]-example (“example”) a row composed of a
query result and its provenance.

Example 2.1: An N[X]-example is depicted in Figure 2a
where the left column shows two output examples, and the
right column shows the provenance of each, respectively.

Obfuscating Provenance through Abstraction: We pro-
pose a simple way to obfuscate provenance, based on a
provenance abstraction tree. The general idea is to replace
tuple annotations with “meta-annotations”, e.g., in Figure 3,
the tuples h2, h5, i3 can be abstracted to LinkedIn.

An abstraction function maps the annotations found in the
provenance of an N[X]-example to their abstraction according
to the structure of the abstraction tree. Essentially, an abstrac-
tion function converts the explicit provenance in the N[X]-
example into an implicit one by replacing some of the original
tuple annotations with their ancestors.

Example 2.2: Reconsider the N[X]-example Exreal in Fig-
ure 2a and the abstraction function A1

T depicted in Figure 4.
Using A1

T on Exreal will create the abstracted N[X]-example
Ẽxabs1 shown in Figure 5. Formally, A1

T (Exreal) = Ẽxabs1.

A
1
T (v) =


Facebook, if v = h1, h4

LinkedIn, if v = h2, h5

v, otherwise

A
2
T (v) =


WikiLeaks, if v = i1, i4

Facebook, if v = i2, i5

v, otherwise

Fig. 4: Abstraction Func-
tions

Ẽxabs1 = A1
T (Exreal) =

A1
T (Exfalse1)=

Output Provenance
1 p1 · Facebook · i1
2 p2 · LinkedIn · i2

Ẽxabs2 = A2
T (Exreal) =

A2
T (Exfalse2)=

Output Provenance
1 p1 · h1 · WikiLeaks
2 p2 · h2 · Facebook

Fig. 5: Abstracted N[X]-
examples

A concretization is the ‘reverse’ operation of abstraction.
The concretization set of Ẽx is defined by C(Ẽx) = {Ex |
∃AT . AT (Ex) = Ẽx}.

Example 2.3: Reconsider the abstracted N[X]-example
Ẽxabs1 presented in Figure 5, the N[X]-example Exreal

shown in Figure 2a and the abstraction function A1
T given in

Figure 4. From Example 2.2, we have Exreal ∈ C(Ẽxabs1)

since A1
T (Exreal) = Ẽxabs1. Now consider the N[X]-

example Exfalse1 shown in Figure 2b. It also holds that
A1

T (Exfalse1) = Ẽxabs1, and thus Exfalse1 ∈ C(Ẽxabs1),
i.e., Exfalse1 is also in the concretization set of Ẽxabs1.
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Quantifying Loss of Information: Each abstraction entails
a loss of information. We measure the loss of information of
an abstracted N[X]-example Ẽx via the notion of Entropy.
Entropy is the average level of “information” or “uncertainty”
inherent in the possible outcomes of a random variable [8].
Given a random variable X , with possible outcomes xi, each
with probability PX(xi), the entropy H(X) of X is as follows:
H(X) = −

∑
i PX(xi) lnPX(xi). The entropy quantifies how

‘informative’ or ‘surprising’ the random variable is, averaged
over all of its possible outcomes. The loss of information of
AT (Ex) is then defined by the entropy on the concretization
set: −

∑n
i=1 PX(xi) lnPX(xi) where X = C(AT (Ex)) =

{x1, . . . , xn} and PX(xi) is the probability of the concretiza-
tion xi. The probabilities may be determined using statistical
properties of the database or external information.

Example 2.4: Reconsider the abstracted N[X]-example
Exreal, the abstracted tree T and the abstraction function
A1

T (shown in Figures 2a, 3 and 4 resp.). The output of
A1

T (Exreal) is the abstracted N[X]-example Ẽxabs1 shown in
Figure 5. Let c1 . . . , c15 be the concretizations of Ẽxabs1. As-
suming the probabilities of the concretizations are PX(ci) =
0.05 if i ∈ (1, ..., 10) and PX(ci) = 0.1 if i ∈ (11, ..., 15).
The loss of information of Ẽxabs1 with those probabilities is
then −

∑15
i=1 PX(ci) lnPX(ci) ≈ 2.649.

Note that for a finite probability space X with a discrete
uniform distribution over n states, the entropy is H(X) =
ln(n). Since C(AT (Ex)) is a finite set, if the probabilities of
all concretizations in C(AT (Ex)) are equal then the loss of
information of AT (Ex) is ln(|C(AT (Ex))|).

Provenance Privacy: Recall that our goal is to show
an abstraction of a given N[X]-example, while hiding the
query that yielded the N[X]-example. To measure the privacy
of an abstraction, we can consider the set of its possible
concretizations. For each concretization, we look at the set
of queries that, when given the provenance of each row in
N[X]-example would generate the corresponding output tuple
(previously referred to as consistent [3]). For example, Qreal

(Table I) is consistent w.r.t. Exreal (Figure 2a) since when
given the tuple annotated by p1, h1, i1, it will output (1) and
this is also the case for the second row. However, not all such
queries are “interesting”. Therefore, we may restrict attention
to CIM (connected inclusion-minimal) queries., i.e., queries
whose join graph is connected and are not contained in any
other query in this set. These queries are representative of the
viable options for the hidden query. We define the privacy
incurred by an abstraction as the cardinality of this set (i.e.,
the number of CIM queries that match some concretization).

Example 2.5: Reconsider the abstracted N[X]-example
Ẽxabs1 shown in Figure 5. There are only 2 CIM queries,
Qreal and Qfalse1, shown in Table I. Both are (1) consistent,
(2) connected, and (3) are not subsumed by other consistent
queries (the rest of the consistent queries are either discon-
nected or are not inclusion-minimal since they contain less
joins or fewer constants). Thus, the privacy of Ẽxabs1 is 2.

The Problem of Optimizing Abstractions: These two
components (privacy and loss of information) are then com-

bined to define the problem of optimal provenance abstraction:
given an N[X]-example and a privacy threshold, we want
to find an abstraction that satisfies this threshold but also
minimizes the loss of information. We call this abstraction
an optimal abstraction.

Example 2.6: Reconsider the database depicted in Figure 1,
the query Qreal shown in Table I, its output Exreal given in
Figure 2a and the abstraction tree T presented in Figure 3.
Assume that the privacy threshold is 2 (i.e., we want our
privacy to be at least 2) and the loss of information is
entropy with discrete uniform distribution, therefore the loss
of information is ln |C(Ẽx)| where C(Ẽx) is the set of all
concretization of Ẽx. We can use the abstraction function
A2

T (detailed in Figure 4) so that A2
T (Exreal) yields Ẽxabs2

(depicted in Figure 5). Since the queries Qreal and Qfalse2

(shown in Table I) are CIM w.r.t. Ẽxabs2, its privacy is 2.
In addition, ln |C(Ẽxabs2)| = ln 20 ≈ 2.996, thus the loss of
information incurred by A2

T (Exreal) is 2.996. On the other
hand, we can use the abstraction function A1

T (detailed in
Figure 4) so that A1

T (Exreal) yields Ẽxabs1 (depicted in
Figure 5). In Example 2.5 we have seen that the privacy of
Ẽxabs1 is 2. In addition, ln |C(Ẽxabs1)| = ln 15 ≈ 2.708,
thus the loss of information incurred by A1

T (Exreal) is 2.708.
Since the loss of information of A1

T is smaller than all possible
abstraction functions that guarantee privacy ≥ 2 (in particular,
A2

T ), it is an optimal abstraction.
Solution: The problem of finding an optimal abstrac-

tion is NP-hard. Bearing this bound in mind, we provide
novel heuristic algorithms for computing optimal abstractions
in practically efficient ways. Our approach revolves around
several key ideas. First, we optimize the order of traversal over
the possible abstractions, by examining “simpler” abstractions
first. We further prioritize the computation of loss of informa-
tion over privacy, as the former can be done significantly more
efficiently. Additionally, privacy computation is performed in
a greedy fashion, relying on the properties of the N[X]-
example. Namely, we check the connectedness and consistency
of candidate queries in a row-by-row fashion. Finally, caching
is used in order to avoid repetitive computations. Our heuristics
and optimizations render our approach scalable even for large
databases and complex queries.

III. SYSTEM OVERVIEW

PITA’s back-end side is implemented in Java 13. Its web-
based GUI was built using JavaScript, CSS and HTML.
The general architecture of PITA is shown in Figure 7. In
order to provide explanations for a query without revealing
it, users may employ any provenance-aware query engine
(such as SelP [10]) to get the query results alongside their
provenance. These N[X]-example, together with an abstraction
tree (provided as a JSON file) and a privacy threshold are
then fed to PITA. The system contains three components.
The main algorithm is implemented in the Abstraction Fac-
tory, which iterates over all possible abstractions. For each
abstraction, it utilizes the Privacy Computation Engine and
the LOI Computation Engine to evaluate the privacy and the
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(a) Input Screen

(b) Output Screen
Fig. 6: PITA User Interface

Fig. 7: PITA Architecture

loss of information for each abstraction. Finally, the optimal
abstraction is returned to the user. The input and output screens
of the system are shown in Figure 6.

Input Screen (Figure 6a): PITA presents the given N[X]-
example. The user can insert rows manually (using ‘Add
Row’ and ‘Delete Row’ buttons), or load the N[X]-example
(generated using a provenance-aware engine) from a JSON file
(using ‘Load Output And Provenance’ button). Using a check-
mark, the user may choose a subset of rows. The user can then
load the abstraction tree JSON file (using ‘Load Tree’ button)
and input the desired privacy threshold (in the ‘Choose Privacy
Threshold’ field). Clicking on the ‘Find Optimal Abstraction’
button will invoke PITA to compute the optimal abstraction
that satisfies the privacy threshold for the chosen rows, using
the abstraction tree.

Output Screen (Figure 6b): Once the optimal abstraction
is computed, PITA presents the computed abstraction of the
chosen rows, with the abstracted tuples highlighted in different
colors. Hovering over an abstracted tuple shows all options for
replacing this abstracted tuple with a concrete tuple (based on
the abstraction tree). In addition, the system list all possible
CIM queries, i.e., all queries that might be the original one,
so users can validate that these are reasonable queries and that

their original query is properly obfuscated.

IV. DEMONSTRATION SCENARIO

We will first walk the audience through the process of
obfuscating provenance using real-world data from the IMDB
dataset [11]. We will start by presenting the underlying
database to the audience. The participants will then be asked
to select a query from a set of pre-defined queries or formulate
one on their own. In this demonstration, we will use the SelP
system [10] to generate the N[X]-example. We will invite
participants to use PITA allowing them to change the privacy
threshold, the selected rows and the abstraction tree. For the
demo purpose, we will have several abstraction trees at hand
allowing users to experiment with different tree structures.

In the second phase, we will demonstrate how the abstracted
N[X]-example provides the desired privacy while still being
informative and useful. We will generate an abstracted N[X]-
example from an unrevealed query and let them interactively
try to reverse-engineer the original query, showing that our
system successfully hides the original query. To demonstrate
usefulness, we will ask them several hypothetical questions
about the data, showing that most of the questions can be
answered successfully using only the abstracted N[X]-example
(e.g., we could ask “would the output be affected if we were
to remove all comedy movies?”, referring to Figure 6b).

Finally, we will allow the audience to look “under the
hood”. In particular, we will show the audience intermediate
results of the algorithm (e.g., the privacy and loss of infor-
mation for representative abstraction) and the computational
sequence that lead to the resulting abstraction.
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