Causal What-If and How-To Analysis Using HYPER

Fangzhu Shen*!, Kayvon Heravi*?, Oscar Gomez!, Sainyam Galhotra®, Amir Gilad', Sudeepa Roy', Babak Salimi?
Duke University, 2 University of California San Diego, University of Chicago

1{fangzhu.shen, oscar.gomez.quintero, amir.gilad,sudeepa} @duke.edu, ?{kheravi,bsalimi} @ucsd.edu, ®sainyam@uchicago.edu
* Authors have contributed equally

Abstract—What-if and How-to queries are fundamental data
analysis questions that provide insights about the effects of a
hypothetical update without actually making changes to the
database. Traditional systems assume independence across differ-
ent tuples and non-updated attributes of the database. However,
different attributes and tuples are generally dependent in real-
world scenarios. We propose to demonstrate HYPER, a novel
system to efficiently answer what-if and how-to queries while
capturing causal dependencies among different attributes and
tuples in the database. To compute the results, HYPER leverages a
suite of optimizations along with techniques from causal inference
to effectively estimate the answers. HYPER allows users to
formulate complex hypothetical queries by using a novel SQL-
like syntax and presents the output as interactive visualizations
that can be explored and analyzed with ease.

I. INTRODUCTION

We propose to demonstrate HYPER (Hypothetical
Reasoning novel system for hypothetical ‘what-if’ and
‘how-to’ reasoning that accounts for complex probabilistic
dependencies in the data and measures the collateral effects
of hypothetical updates. Today, decision-making in many
fields like business, healthcare, or real estate, is assisted by
hypothetical reasoning over the data [2], [3]. What-if queries
[4]], [5]] allow users to test assumptions by posing queries
about hypothetical updates in the database and examining
their effect on a query result. In contrast, how-to queries [6]]
have the opposite goal; users specify a target effect they want
to achieve and the system computes the appropriate update
that has to be performed in the database to fulfill the goal.
We illustrate these queries with an example below.

Example 1: Consider a (simplified) products-review
database [7] shown in Figure[I]containing Product and Review
table. Suppose an analyst wants to examine “what would be
the effect on the average ratings of Asus laptops by increasing
their price by 10%7?”, which is a what-if query. or “How
to increase average sentiment in the reviews for cameras by
changing their price?” These queries are respective forms
of what-if and how-to hypothetical reasoning that can assist
analysts and decision-makers in gaining insights about their
products and marketing strategies.

While several previous works in the database community
have studied hypothetical reasoning, a substantial part of
these [6]], [8], [9] have focused on provenance updates and
view manipulation as the main component for answering such

I'The research paper that develops the approach used by HYPER appeared
in SIGMOD 22’ [1f]

PID Category Price Brand PID RID Senti Rating

1 Laptop 999 Vaio 1 1 -0.95 2

2 Laptop 529 Asus 2 2 0.7 4

3 Laptop 599 HP 2 3 -0.2 1

4 DSLR 549 Canon 3 3 0.23 3

5 eBooks 15.99 T Press 4 5 0.7 4
(a) Product (b) Review

Fig. 1: A product-review database

queries. However, in many real-world situations, there are
complex probabilistic causal dependencies between attributes
of tuples and thus, updating an attribute of a tuple has
collateral effects on other attributes of the same tuple, as well
as attributes of other tuples. For instance, increasing the price
of a product p; not only might affect the ratings of p; but
also another competitor’s product ps of the same category
by comparison. Such dependencies cannot be expressed and
captured by provenance. In Example |1} the provenance of the
average rating of Asus laptops will not change if the price
of the laptops is augmented. Similarly, for the how-to query,
the provenance of the average sentiments for the reviews of
cameras will not be affected by the change in price. Thus,
previous work in databases fails to account for the collateral
effect that increasing the price of a laptop may have on the
user’s ratings. Such dependencies between the attributes and
tuples in the database can be captured by a causal model
depicted as an intuitive graph [1]] (such a graph is shown in
the bottom-left corner of Figure [3)).

Extensions of HYPER for the demonstration We extend
the HYPER methodology to capture database constraints and
present an efficient implementation of the system with an in-
tuitively designed interactive graphical user interface. HYPER
supports a rich class of what-if and how-to queries that involve
joins and aggregations taking into account causal dependencies
among attributes of the same or different tuples. Users can eas-
ily formulate such queries by simply specifying the aggregate
SQL query that calculates the output that the user wants to
evaluate. For example, the average rating of Asus laptops in
Example 1. HYPER then provides natural language and SQL
interfaces to specify hypothetical updates to the database. The
user can choose any of these interfaces to visualize the effect of
different updates to the database. HYPER provides the results
of the hypothetical update queries along with an explanation
of the variations across different subgroups in the database.
HYPER further allows users to “zoom-in” to compare the
effect of their chosen hypothetical update with other update

options. This comparison helps the user effectively explore the
effect of different updates and choose the suitable option for
their application. The inference mechanism in the backend is
highly optimized by leveraging techniques from probabilistic
databases [[10], and recent advancements in causal inference
over multi-table relational data [[11]. We will demonstrate
HYPER and enable users to explore HYPER themselves using
real-world data from the Amazon Products database and other
well-known datasets, showing its usefulness and effectiveness.

II. CAUSAL MODEL, QUERIES, SOLUTIONS

We next give an overview of the hypothetical updates, causal
model, and the HYPER algorithms to compute the output of
the hypothetical update query.

Hypothetical updates. We consider a standard multi-
relational database D. A;[t] € Dom(A4;) denotes the value of
the attribute A; of the tuple ¢. Some attributes can not change
values in a hypothetical update and are called immutable
(denoted by Ay, - - , A,,), other attributes are mutable and can
change values directly or indirectly (denoted by B, - - - , By).
For a tuple ¢ in a relation R in D, a possible world of ¢
is the set PWD(t) = {Ai[t], -, Am|t],v1, - ,ve : v €
Dom(B;),i = 1to ¢}, where Dom denotes the domain, i.e,
the set of all possible values the mutable attributes can
assume. The set of possible worlds of relation R and database
D are PWD(R) = x4 rPWD() and PWD(D) =
X rep PW D(R) respectively.

A hypothetical update U = ug B s on a database D is
then a 4-tuple that includes a relation R in D containing
the mutable update attribute B € Attr(R), a subset of
tuples S C R where the update will be applied, and a
function f : Dom(B) — Dom(B) specifying the update
for attribute B(t] for tuples ¢ € S to f(B[t]). A hypothet-
ical update upr p rs forces all tuples in set .S in relation
R to take the value f(B[t]) instead of B[t]. The state of
the database after a hypothetical update is modeled by the
post-update distribution, i.e., a probability distribution over
possible worlds, i.e., Prpy : PWD(D) — [0,1] such that
ZIGPWD(D) Prpu(l) =1.

Causal model. The post-update distribution stems from a
probabilistic relational causal model (PRCM) [11] expressed
through a ground causal DAG G over the set of tuple attributes
A[t]. Each node Alt] represents a variable that is functionally
determined by: (a) its parents Pa(A[t]) in G, and (b) some
set of noise factors that do not appear in G. The post-update
distribution is defined using a PRCM. Given a relation R in
D, an update attribute B € Attr(R), a hypothetical update
U = ugp,s can be interpreted as an intervention that
modifies the underlying PRCM and replaces the structural
equation associated with the variables B[t] for all t € S
with the constant f(B[t]). Updating B[t] propagates through
all attributes of tuples in different relations according to the
underlying PRCM. The uncertainty over unobserved noise
variables induces uncertainty over post-update states of all
tuples ¢’ captured by the post-update distribution on the possi-

TABLE I: Operators of what-if queries
Operator Meaning
SQL aggregate query that defines

USE T'able(...)OUuTPUT Agg(Y) the outﬁit ff int(elresrty
Condition on the attribute A; (ex-
pressed as the function g) that the
tuples that will be updated must
satisfy
Hypothetical ~update in the
database. The operator changes the
values in the attribute B to f(B)

WHEN g(4;)

UPDATE B = f(B)

POST(A;) The value of the attribute A; after
the update

PRE(A;) The value of the attribute A; before
the update

TABLE II: Operators of how-to queries

Operator Meaning
USE Table, WHEN g(A;), See Table [I]
Sets B1 and B> as the attributes

HOWTOUPDATE UPDATE Bi, B2 on which the updates can be
performed
In the update, B1 can get values
between [1 and hq and By can
get values at most at hp dis-
tance from its original value (for
each tuple)
Defines the objective of the
query: to maximize (or mini-
mize) the post update value of
an aggregate function on Y

For

LimIT I3 < PoST(B1) < h1 AND
L1(PRE(B2),PosT(B2)) < ho

TOMAXIMIZE Agg(PosT(Y))

ble worlds: Prp y(7) for 7 € PWD(t'), and the post-update
distribution of the entire database Prp ¢ (I),VI € PWD(D).

What-if queries. In HYPER, users can specify several pre-
conditions, update mechanisms, and constraints to formulate
what-if and how-to queries with the help of a GUI (no new
query language has to be learnt). HYPER takes as input an
update attribute and the manner in which the user wishes
to update it (part 3 in Figure [2). It then converts it to an
UPDATE operator that performs a causal intervention, where
the PrE value of the attribute is the default. In addition, the
user can define the subset of the aggregate view such that the
update will be computed only considering these tuples. This
is done using the next line of the template (part 3 in Figure [2)
that is converted to the FOR operator specified in [1]. The
optional ‘“‘WHEN’ clause is mapped to the WHEN operator [|1]
and specifies the set of tuples for which the update will be
performed; any valid SQL predicate can be used here, e.g.,
A =< const >, A € (SELECT ---As A---) etc. If the
WHEN operator is not specified the update will be performed
on the entire aggregate view.

Given a what-if query () and a database D, the result
of Q(D) is the expected value of valypaiz(Q,D,T)
over all possible worlds I € PWD(D), using
the post-update probability distribution Prpu:
valynatit (@, D) = Erepwp(p)[valinaris (@, D, I)], where
valynatis(Q, D, I) = aggr({Yr[t] pror(t) = true}),
where all ¢ are the tuples in the query aggregate view and
the aggregate aggr over Y;[t] values and p por (t) denotes the
value of the predicate in the FOR clause over the tuple ¢.

How-to queries. In addition to the aggregate query (same
as the what-if case), a how-to query requires specification
of a set of attributes that can be updated to achieve the
desired result. The user specifies these as the HOWTOUPDATE
operator, which consists of the set of mutable attributes that
can be updated, and uses only PRE values. To ensure that
the updates on these attributes are valid, we assume that,
for any pair of the attributes mentioned in this operator
B, Bs, there are no paths in the ground causal graph of
the PRCM between B [t] and Bs[t'] for any ¢,¢' € D. User
can state the constraints for the updates using the optional
LIMIT, i.e., this operator defines the conditions that restrict
the post-update values of the updates attributes specified in the
HOWTOUPDATE operator for tuples in the query aggregate
view that satisfy the WHEN operator. In particular, if an
attribute B is numeric, its updates can be bounded by numeric
limits, e.g., | < POST(B) < h, POST(B) < PRE(B)+ <
const >, POST(B) < PRE(B)X < const >, etc., and if B is
categorical (or numeric), the user can specify the permissible
values as a set, e.g., POST(B) IN {v1,ve, v3}. Furthermore,
this operator allows users to specify the maximal or minimal
L1(PosT(B),PRE(B)) distance between the original attribute
values and the updated ones.

The result of a how-to query is then defined as
argmarqy, ;€ Qunaris(Qur) V@ Lunatis (Qwr, D), where
valynatis(Qwr, D) denotes the result of the what-if query
Qwr, and Qupatif(Qrr denotes the set of all what-if
queries that have the same FOR and WHEN clauses, and
whose UPDATE clause specifies an update that satisfies the
update constraints in Q7.

Optimizations for computing query results. To evaluate
the query output, a naive approach requires the enumeration
of all possible worlds along with their probability estima-
tion. However, this is not practical due to the exponential
dependence of the instances on the number of attributes. For
what-if queries, we leverage the causal dependence between
attributes to simplify the estimation procedure. We decompose
the database into independent sets of tuples. This allows us
to compute the values of queries more efficiently. We further
draw a connection between the query results and estimating
the post-update distribution in causality. This, in turn, allows
us to use existing approaches from causal inference to evaluate
the query results. For a how-to queries, we assume a linear
model for the objective function and employ linear program
solvers to find the solution. We refer the reader to [1]] for the
complete details of our solution.

III. GUI OVERVIEW OF HYPER

The back-end of HYPER is implemented in Python with
the user interface in Flask. Figure [2| shows the graphical user
interface consisting of the query interface and the output view.

Input interface. The input interface (left half of the screen)
allows the user to choose the initial dataset, inspect the records
and specify the hypothetical updates. This section allows the
user to write a SQL aggregate query and specify various

updates in a specified template. These different forms of inputs
are processed by HYPER to identify different operators of
what-if and how-to queries, which are used to evaluate the
query output.

Results. The output of a what-if or a how-to query is divided
into two different tabs: (i) Overall, and (ii) Vary updates.
The first tab (“Overall”) shows a bar chart consisting of the
query output before (shown in green) and after (in orange)
the update. Additionally, it shows a plot demonstrating the
effect of the update on different subgroups identified by fixing
the value of an attribute. The user can choose this attribute
from a dropdown list of suggestions that is automatically
generated according to the what-if query. For how-to queries,
this tab additionally contains top-5 update recommendations
that are returned by HYPER. The user can choose any of
the recommendations to change the hypothetical update and
the previously described plots update accordingly. The second
tab (“Vary updates”) shows the effect of varying the updated
value of the attribute mentioned in the UPDATE operator on
query output. This comparison helps the user understand the
sensitivity of query output with respect to the update and
thereby choose an appropriate value for further exploration.

IV. DEMONSTRATION SCENARIO

We demonstrate HYPER on the Amazon product database,
which consists of two tables: (i) Product description, and (ii)
Reviews (Figure [T shows a sample). We will also provide three
additional popular datasets: (i) Adult income dataset, (ii) Ger-
man Credit dataset, and (iii) Academic review database. The
user can interact with HYPER by writing different aggregate
queries and varying updated attributes to try different types
of hypothetical queries. Figure [2] shows a screenshot of the
graphical user interface, where each step is annotated with a
circle. In the first part of the demonstration, there will be a
guided ‘tour’ of HYPER and in the second step, we will allow
users to formulate their own hypothetical queries. We now
discuss the different steps through which we guide the users
for what-if and how-to analyses.

Step 0 (Guided tour of HYPER): We will begin by explaining
the query interface using the what-if and how-to queries
detailed in Example [I] and show their representation, while
also allowing users to inspect the Amazon database itself.
Users will be able to view the general results, and we will
further show them how to zoom-in on different subsets of the
data, using the drop-down menu.

Step 1 (Dataset selection and inspection): After guiding the
users, they will choose a database from the drop-down menu
for running their choice of hypothetical update query. Figure 2]
shows the example with Amazon product database. Users can
view the products and reviews tables in the output panel of the
interface (right-half of the screen). The users can click on the
‘specify constraints’ button to modify the causal constraints
of the database.

Step 2 (Aggregate query): Users will be able to specify
the aggregate query that returns the output, which the user is
interested to evaluate under hypothetical updates. Users could

Output view
Choose Amazon Product v Specify Constraints
Database 2b \
Aggregate 1 SELECT Tl.category, AVG(T2.rating) AS rtng » Headphone
Query 2 FROM amazon_product AS T1, amazon_review AS T2 v)
3 WHERE T1.pid=T2.pid - 8 -
4 GROUP BY T1.categoryl L --- opiep
Phone
@ Run Aggregate Query
o 1 2 3 4 5
Rtng
Update template AVG(Rtng) by Category
X Tablet Type
Update If we were to update the attribute : PRE
i a q fl
:Attrlbute POST(Price) v as x V|| PRE(Price) %Headphone POST
For a subset that satisfies: 77771 > § Laptop
1 brand="Asus' Phone
n
0 1 2 3 4 5
AVG(Rtng)

Fig. 2: What-if query that computes average rating for Asus laptops on increasing the price by 10%

Overall Vary Updates

AVG(Rtng) on updating Price
Price 5

o
s
o
AVG(Rtng)
w -~

Fig. 3: Vary update tab in the query output view

write, e.g., a SQL query to join the two tables in the database
using product id as the key and return the average rating
for different categories of products. HYPER shows a bar plot
with the aggregated output for different values of the attribute
mentioned in the group-by clause (labeled 2b in Figure [2)).

Step 3 (Choose attributes to be updated): Users can specify
the update in the form of a template. The update clause can
contain complex conditions (similar to a WHEN clause in
SQL) e.g. update the price of records with ‘Brand=Asus’ and
‘Category # Laptop’. Users can click on the plus button to
specify multiple different updates that they want to compare.
Step 4 (Query Output view): On clicking “Run”, the query
output view will populate two different tabs with different
types of plots, according to the user query. In Figure [2| the
left plot shows the average rating for Asus products before and
after the change in price. The right plot shows the distribution
of average ratings for different categories of Asus products.
One conclusion from the results is that an increase in the price
improves the average rating of tablets and laptops but reduces
the rating of phones.

Step 5 (Varying updates view): The second tab in the output
view shows a line plot that demonstrates the effect of the
different updates of the chosen attribute on the output attribute.
For the query shown in Figure 2] the plot will show varying
price updates on the average rating of Asus products.

How-to query. Users will also be able to perform how-to
queries. The output of how-to queries is slightly different,
showing the top-5 updates for the query that will maxi-
mize/minimize the objective, and thus allowing users to choose
any of the updates and visualize its effect.

In the subsequent iterations, users can modify the relevant
view query, update and output attributes and repeat the above-
mentioned steps to get additional insights about the dataset.

REFERENCES

[1] S. Galhotra, A. Gilad, S. Roy, and B. Salimi, “Hyper: Hypothetical
reasoning with what-if and how-to queries using a probabilistic causal
approach,” in SIGMOD, 2022, pp. 1598-1611.

[2] M. Golfarelli and S. Rizzi, “What-if simulation modeling in business
intelligence,” Int. J. Data Warehous. Min., vol. 5, no. 4, pp. 24-43,
2009.

[3] B. Qureshi, “Towards a digital ecosystem for predictive healthcare
analytics,” in MEDES, 2014, pp. 34-41.

[4] L. V. S. Lakshmanan, A. Russakovsky, and V. Sashikanth, “What-if
OLAP queries with changing dimensions,” in /ICDE, 2008, pp. 1334—
1336.

[5] H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-based
optimization of mapreduce programs,” PVLDB, 2011.

[6] A. Meliou and D. Suciu, “Tiresias: the database oracle for how-to
queries,” in SIGMOD, 2012, pp. 337-348.

[71 R. He and J. McAuley, “Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering,” in WWW, 2016.

[8] D. Deutch, Z. G. Ives, T. Milo, and V. Tannen, “Caravan: Provisioning
for what-if analysis,” in CIDR, 2013.

[9]1 B. S. Arab and B. Glavic, “Answering historical what-if queries with

provenance, reenactment, and symbolic execution,” in USENIX, 2017.

N. N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic

databases,” VLDB J., vol. 16, no. 4, pp. 523-544, 2007.

B. Salimi, H. Parikh, M. Kayali, L. Getoor, S. Roy, and D. Suciu,

“Causal relational learning,” in SIGMOD, 2020, pp. 241-256.

[10]

[11]

	Introduction
	Causal Model, Queries, Solutions
	GUI Overview of HypeR
	Demonstration Scenario
	References

