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Abstract
A probabilistic database with attribute-level uncertainty consists of relations where cells of some
attributes may hold probability distributions rather than deterministic content. Such databases arise,
implicitly or explicitly, in the context of noisy operations such as missing data imputation, where we
automatically fill in missing values, column prediction, where we predict unknown attributes, and
database cleaning (and repairing), where we replace the original values due to detected errors or
violation of integrity constraints. We study the computational complexity of problems that regard
the selection of cell values in the presence of integrity constraints. More precisely, we focus on
functional dependencies and study three problems: (1) deciding whether the constraints can be
satisfied by any choice of values, (2) finding a most probable such choice, and (3) calculating the
probability of satisfying the constraints. The data complexity of these problems is determined by
the combination of the set of functional dependencies and the collection of uncertain attributes. We
give full classifications into tractable and intractable complexities for several classes of constraints,
including a single dependency, matching constraints, and unary functional dependencies.
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1 Introduction

Various database tasks amount to reasoning about relations where attribute values are
uncertain. To name a few, systems for data cleaning may detect errors and suggest alternative
fixes with different confidence scores [14, 25, 26], approaches to data repair may suggest
alternative values due to the violation of integrity constraints (e.g., key constraints and
more general functional dependencies) [2, 32], and algorithms for missing-data imputation
may suggest a probability distribution over possible completions of missing values [3, 22].
Such uncertainty is captured as a probabilistic database in the so called attribute-level
uncertainty [27] (as opposed to the commonly studied tuple-level uncertainty [8]).

We refer to a relation of a probabilistic database in the attribute-level uncertainty as a Cell-
Independent Relation (CIR). A CIR is a probabilistic database with a single relation, where
the content of a cell is a distribution over possible values, and different cells are probabilistically
independent. The CIR is the correspondent of a relation in the Tuple-Independent Database
(TID) under the tuple-level uncertainty, where the existence of each tuple is uncertain (while
its content is certain), and different tuples are probabilistically independent [27]. In contrast,
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tid room ?specialist time
1 41 Bart(0.5) | Lisa(0.5) 5 PM
2 163 Bart(0.7) | Lisa(0.3) 5 PM
3 41 Bart(0.2) | Maggie(0.8) 5 PM

(a) CIR U1 with uncertain specialist.

F1 := {?specialist time → room}
F2 := {?specialist time → room ,

room time → ?specialist}

(b) Sets F1 and F2 of functional dependencies

tid room ?specialist time
1 41 Lisa 5 PM
2 163 Bart 5 PM
3 41 Maggie 5 PM

tid room ?specialist time
1 41 Bart 5 PM
2 163 Lisa 5 PM
3 41 Bart 5 PM

(c) Samples r (left) and r′ (right) of U1.

Figure 1 Running example: CIR, FDs, and samples.

the tuples of a CIR always exist, but their content is uncertain. For illustration, Figure 1a
depicts a CIR with uncertain information about specialists attending rooms (e.g., since their
attendance is determined by noisy sensors). Some attributes (here room and business) are
certain and have deterministic values. The uncertain attributes (e.g., ?specialist) are marked
by a question mark and their cells have several options for values. We later explain how this
distinction has crucial impact on the complexity of CIRs.

A natural scenario, studied by previous work for the TID model [11, 19], considers a
probabilistic database in the presence of a given set of integrity constraints, and specifically,
Functional Dependencies (FDs). Such a scenario gives rise to several interesting computational
challenges, and we focus here on three basic ones. In the problem of possible consistency,
the goal is to test for the existence of a possible world (with a nonzero probability) that
satisfies the FDs. The problem of the most probable database (“MPD” [11]) is that of finding
a possible world that satisfies the FDs and has the highest probability. In the problem of
computing the probability of consistency, the goal is to calculate the above probability exactly
(beyond just deciding whether it is nonzero), that is, the probability that (a random sample
of) the given CIR satisfies the underlying FDs. We investigate the computational complexity
of these three problems for the CIR model. Our results provide classifications of tractability
for different classes of FDs. Importantly, we show that, for the studied classes, the complexity
of these problems is determined by two factors: (1) the location of the uncertain attributes in
the FDs (left or right side), and (2) the combination of the FDs in the given set of constraints.

The three problems relate to each other in the following manner. To solve MPD, we
need to be able to solve the possible consistency problem. The analysis of the probability of
consistency sheds light on the possible consistency problem (is it fundamentally harder to
compute the probability than to just determine whether it is nonzero?), but its importance
goes beyond that. As we explain in Section 4, computing this probability is useful to any
type of constraints over CIRs, as the tractability of this probability implies that we can
efficiently sample correctly from the conditional space of consistent samples.

Our study adopts the standard yardstick of data complexity [31], where we fix the
relational schema and the set of functional dependencies. The schema mentions not only
what attributes are in the header of the relation, but also which attribute is certain and
which attribute is uncertain. The complexity of the problems can be different for different
combinations of schema and constraints, and we aim for a detailed understanding of which
combinations are tractable and which are not.

▶ Example 1. Consider again the CIR U1 in Figure 1a along with the FD set F1 of Figure 1b,
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consisting of a single FD. The FD says that at a specific time, a specialist can be found
in only one location. Figure 1c shows a consistent sample r of U1 whose probability is
Pr(r) = 0.5 · 0.7 · 0.8 = 0.28. In particular, this probability is nonzero and, so, U1 is possibly
consistent. This sample has a maximal probability among the consistent samples; therefore,
r is a most probable database for U1. Now, consider the FD set F2 shown in Figure 1b,
where the first FD is the one of F1 and the second states that no two specialists should be in
the same room at the same time. The sample r in Figure 1c is no longer consistent, but r′

(in the same figure) is a consistent sample and also a most probable database. In fact, r′ is
the only consistent sample in this case, so the probability of consistency for F2 turns out to
be that of r′. ♦

In contrast to the state of affairs in the attribute-level uncertainty, for tuple-level uncer-
tainty much more is known about MPD (i.e., finding the most likely instance of a probabilistic
database conditioned on conformance to a set of FDs). In the case of tuple-independent
databases, Gribkoff, Van den Broeck, and Suciu [11] established dichotomy in the complexity
of MPD for sets of unary FDs. This dichotomy has been generalized by Livshits, Kimelfeld
and Roy [19] to a full classification over all sets of FDs, where they also established that the
problem is equivalent to finding a cardinality repair of an inconsistent database. Carmeli
et al. [5] showed that two tractable cases, namely a single FD and a matching constraint,
remain tractable even if the FDs are treated as soft constraints (where every violation incurs
a cost). In this work, we aim to bring our understanding of attribute-level uncertainty closer
to tuple-level uncertainty.

Results. We establish classification results on several classes of functional dependencies:
singleton FDs, matching constraints (i.e., FD sets of the form {X → Y, Y → X}), and
arbitrary sets of unary FDs. Each classification consists of three internal classifications—one
for each of the three problems we study (possible consistency, most probable database,
and the probability of consistency). In every case, finding a most probable database is
tractable whenever possible consistency is tractable. There are cases where the probability of
consistency is intractable in contrast to the tractability of the most probable database, but
we did not find any case where the other direction holds (and we will be surprised if such
case exists). We also establish some general conclusions beyond these classes. For example,
in Theorem 13 (of Section 5) we claim that if we make no assumption that some attributes
are certain, then possible consistency is hard for every nontrivial set of FDs.

▶ Example 2. Reconsider the CIR U1 in Figure 1a along with the FD set F1 of Figure 1b,
consisting of a single FD. Our classification shows that, in general, finding a solution to the
possible consistency problem for such an FD, with uncertain attributes on the left side, is
NP-complete. Now, reconsider the FD set F2 shown in Figure 1b, where the first FD is
the one of F1. Thus, F1 ⊂ F2, however, interestingly, our results show that for sets with
the structure of F2, finding an MPD (and, hence, also solving possible consistency) is in
polynomial time. Intuitively, the additional FD in F2 constrains the uncertain attribute
on the left side of the first FD, making the problem tractable. Finally, computing the
probability of consistency for sets with the structure of F1 and F2 is #P-hard (or more
precisely FP#P-complete). ♦

Related work. A most probable database is the same as the “Most Likely Intention” (MLI)
in the framework of Probabilistic Unclean Databases (PUD) of De Sa et al. [26], in the
special case where the intention model demands hard constraints and the realization model
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applies random changes to cells independently in what they refer to as parfactor/update
PUD. They showed that finding an MLI of a parfactor/update PUD generalizes the problem
of finding an update repair of an inconsistent database with a minimum number of value
changes. In turn, finding a minimal update repair has been studied in the literature and
several complexity results are known for special cases of FDs, such as hardness (e.g., for
the FD set {A→ B, B → C} due to Kolahi and Lakshmanan [17]) and tractability (e.g.,
for lhs-chains such as {A→ B, AD → C} due to Livshits et al. [19]). There are, though,
substantial differences between finding a most probable consistent sample of a CIR and
finding an optimal update repair of an inconsistent database, at least in the variations where
complexity results are known. First, they allow to select any value (from an infinite domain)
for a cell, in contrast to the distributions of the CIR that can limit the space of allowed values;
indeed, this plays a major role in past repair algorithms (e.g., Proposition 5.6 of [19] and
Algorithm FindVRepair of [17]). Second, they allow to change the value of any attribute
and do not distinguish between uncertain attributes (where changes are allowed) and certain
ones, as we do here; this is critical since, again, without such assumptions the problem is
intractable for every nontrivial set of FDs (Theorem 13).

The problem of possible consistency does not have a nontrivial correspondence in the
tuple-independent database model since, there, if there is any consistent sample then the
subset that consists of all deterministic tuples (i.e., ones with probability one) is such a
sample. The probability of consistency might be reminiscent of the problem of repair counting
that was studied for subset repairs [4, 20]. Besides the fact that subset repairs are about
tuple-level uncertainty (and no probabilities are involved), here we do not have any notion of
maximality (while a repair is required to be a maximal consistent subset).

A CIR can be easily translated into a relation of a block-independent-disjoint (BID)
probabilistic database [24]. In a BID, every relation is partitioned into independent blocks
of mutually exclusive tuples, each associated with a probability. This model has also been
studied under the terms dirty database [2] and x-tuples [6, 21,23]. This translation implies
that every upper bound for BIDs applies to CIRs, and the contrapositive: every hardness
result that we establish (e.g., for the most probable database) extends immediately to BIDs;
yet, it does not imply the other direction. Moreover, we are not aware of any positive results
on inference over BIDs regarding integrity constraints. In addition, the translation from a
CIR to a BID loses the information of which attributes are certain and which are uncertain,
and as aforesaid, if we allow every attribute to be uncertain then the problem is hard for
every nontrivial set of FDs (Theorem 13).

Organization. The remainder of the paper is organized as follows. We begin with preliminary
definitions and notation (Section 2). We then define the CIR data model (Section 3) and
the computational problems that we study (Section 4). Next, we describe our analysis for
the case of singleton and matching dependencies (Section 5), and then the case of unary
functional dependencies (Section 6). Lastly, we give concluding remarks (Section 7). Some
of the proofs are omitted for lack of space, and they can be found in the Appendix.

2 Preliminaries

We begin with preliminary definitions and notation.

Relations. We assume countably infinite sets Val of values and Att of attributes. A relation
schema is a finite set R = {A1, . . . , Ak} of attributes. An R-tuple is a function t : R→ Val
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that maps each attribute A ∈ R to a value that we denote by t[A]. A relation r is associated
with a relation schema, denoted Att(r), a finite set of tuple identifiers, denoted tids(r), and
a mapping from tids(r) to Att(r)-tuples. (Note we allow for duplicate tuples, as we do not
assume that the tuples of different identifiers are necessarily different.) We say that r is a
relation over the relation schema Att(r). We denote by r[i] the tuple that r maps to the
identifier i. Hence, r[i][A] is the value that tuple i has for the attribute A. As an example,
Figure 1c (left) depicts a relation r with Att(r) = {room, ?specialist, time} (for now, the
question mark in ?specialist should be ignored.) Here, tids(r) = {1, 2, 3} and r[1][room] = 41.

Suppose that X is a set of attributes. We denote by πXr the projection of r onto
X. More precisely, πXr is the relation r′ such that Att(r′) = X, tids(r′) = tids(r), and
r′[i][A] = r[i][A] for every A ∈ Att(r) ∩X. Observe that in our notation, (πXr)[i] is the
projection of tuple i to X. As a shorthand notation, we write r[i][X] instead of (πXr)[i]. For
example, in Figure 1c we have r[2][room ?specialist] = (163, Bart).

Functional dependencies. A functional dependency, or FD for short, is an expression of
the form X → Y where X and Y are finite sets of attributes. We say that X → Y is over a
relation schema R if R contains all mentioned attributes, that is, X ∪ Y ⊆ R. A relation r

satisfies the FD X → Y over Att(r) if every two tuples that agree on X also agree on Y .
In our notation, we say that r satisfies X → Y if for every two tuple identifiers i and i′ in
tids(r) it holds that r[i][Y ] = r[i′][Y ] whenever r[i][X] = r[i′][X]. A relation r satisfies a set
F of FDs over Att(r), denoted r |= F , if r satisfies every FD in F .

We use the standard convention that in instances of X and Y we may remove curly
braces and commas. To compactly denote a set of FDs, we may also intuitively combine
multiple FD expressions and change the direction of the arrows. For example, the notation
A↔ B ← CD is a shorthand notation of {A→ B, B → A, CD → B}.

An FD X → Y is unary if X consists of a single attribute, and it is trivial if Y ⊆ X (i.e.,
it is satisfied by every relation). A matching constraint (as termed in past work [5]) is a
constraint of the form X ↔ Y , that is, the set {X → Y, Y → X}.

The closure F + of a set F of FDs is the set of all FDs that are implied by F (or,
equivalently, can be inferred by repeatedly applying the axioms of Armstrong). For example,
F + includes all of the trivial FDs. The closure X+

F of a finite set X of attributes is the set of
all attributes A such that X → A is in F +. Two finite attribute sets X and Y are equivalent
(w.r.t. F ) if X+

F = Y +
F , or in other words, X → Y and Y → X are both in F +. By a slight

abuse of notation, we say that two attributes A and B are equivalent if {A} and {B} are
equivalent. Finally, if F is a set of FDs, then we denote by Att(F ) the set of all attributes
that occur in either the left or right sides of rules in F .

Probability distributions. We restrict our study in this paper to finite probability spaces
(Ω, π) where Ω is a nonempty finite set of samples and π : Ω→ [0, 1] is a probability function
satisfying

∑
o∈Ω π(o) = 1. The support of δ = (Ω, π), denoted supp(δ), is the set of samples

o ∈ Ω such that π(o) > 0. We denote by Prδ(o) the probability π(o). We may write just
Pr(o) when δ is clear from the context.

3 Cell-Independent Relations

A Cell-Independent Relation, or CIR for short, is similar to an ordinary relation, except that
in certain attributes the values may be probabilistic; that is, instead of an ordinary value,
each of them contains a probability distribution over values. One could claim that the model
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tid business ?spokesperson ?location
1 S. Propane Mangione(0.6) | Strickland(0.4) Arlen(0.6) | McMaynerberry(0.4)
2 Mega Lo Mart Mangione(0.45) | Thatherton(0.55) Arlen(0.5) | McMaynerberry(0.5)
3 Mega Lo Mart Mangione(0.4) | Buckley(0.6) Arlen(0.55) | McMaynerberry(0.45)

4 Get In Get Out Peggy(1.0) Arlen(0.35) | McMaynerberry(0.3) |
Dallas(0.35)

Figure 2 CIR U2 with spokesperson and location as the uncertain attributes.

should allow every attribute to have uncertain values. However, knowing which attributes
are certain has a major impact on the complexity of operations over CIRs. Formally, a CIR
U is defined similarly to a relation, with the following differences:

The schema of U , namely Att(U), has marked attributes where uncertain values are
allowed. We denote a marked attribute using a leading question mark, as in ?A, and the
set of marked attributes by ?Att(U). (Note that ?Att(U) is a subset of Att(U).)
For every i ∈ tids(U) and marked attribute ?A ∈ ?Att(U), the cell U [i][?A] is a probability
distribution over Val.

By interpreting cells as probabilistically independent, a CIR U represents a probability
distribution over ordinary relations. Specifically, a sample of U is a relation that is obtained
from U by sampling a value for each uncertain cell. More formally, a sample of U is a relation
r such that Att(r) = Att(U), tids(r) = tids(U), and for every i ∈ tids(r) and unmarked
attribute A we have that r[i][A] = U [i][A].

The probability PrU (r) of a sample r of U is the product of the probabilities of the values
chosen for r:

PrU (r) =
∏

i∈tids(U)

∏
?A∈?Att(U)

PrU [i][?A](r[i][?A])

Note that PrU [i][?A](r[i][?A]) is the probability of the value r[i][?A] (i.e., the value that tuple
i of r has for the attribute ?A) according to the distribution U [i][?A] (i.e., the distribution
that tuple i of U has for the attribute ?A).

▶ Example 3. Figures 1a and 2 depict examples U1 and U2, respectively, of CIRs. U1 has
been discussed in Example 1 and U2 describes a CIR that stores businesses along with their
spokespeople and headquarters locations. Some information in U2 is noisy (e.g., since the
rows are scraped from Web pages), and particularly the identity of the spokesperson and the
business location. U1 has a single uncertain attribute, namely ?specialist, and U2 has two
uncertain attributes, namely ?spokesperson and ?location. In particular, we have:

Att(U1) = {room, ?specialist, time} ?Att(U1) = {?specialist}

Distributions over values are written straightforwardly in the examples. For example, the
distribution U1[2][?specialist] is the uniform distribution that consists of Bart and Lisa, each
with probability 0.5.

The relations r and r′ of Figure 1c are samples of U1. By the choices made in r, the
probability PrU (r) is 0.5·0.7·0.8. Note that the probability of r is smaller than the probability
of the sample where the specialists are Lisa, Bart and Maggie, for instance, respectively. ♦

Simplified notation. In the analyses that we conduct in later sections, we may simplify the
notation when defining a CIR U . When Att(U) = {A1, . . . , Ak}, we may introduce a new
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tuple t[i] with t[i][Aℓ] = aℓ simply as (a1, . . . , ak), assuming that the attributes are naturally
ordered alphabetically by their symbols. For example, if Att(U) = {A, B, C}, then (a, b, c)
corresponds to the tuple that maps A, B and C to a, b and c, respectively. We can also use
a distribution δ instead of a value aℓ. In particular, we write b1| . . . |bt to denote a uniform
distribution among the values b1, . . . , bt.

▶ Example 4. Continuing Example 3, in the simplified notation the tuple U1[2] can be written
as (163, Bart|Lisa, 5 pm) since the attributes are ordered lexicographically and, again, the
distribution happens to be uniform. ♦

Consistency of CIRs

Let F be a set of FDs and let U be a CIR, both over the same schema. A consistent sample of
U is a relation r ∈ supp(U) such that r |= F . We say that U is possibly consistent if at least
one consistent sample exists. By the probability of consistency, we refer to the probability
Prr∼U (r |= F ) that a random sample of U satisfies F . As a shorthand notation, we denote
this probability by PrU (F ). Note that U is possibly consistent if and only if PrU (F ) > 0. A
consistent sample r is a most probable database (using the terminology of Gribkoff, Van den
Broeck and Suciu [11]) if Pr(r) ≥ Pr(r′) for every other consistent sample r′.

▶ Example 5. Consider the CIR U1 of Figure 1a. Let F1 be that of Figure 1b, saying that
at a specific time, a specialist can be found in only one location. Figure 1c (left) shows a
consistent sample r of U1. Then Pr(r) = 0.5 · 0.7 · 0.8 = 0.28. In particular, this probability
is nonzero, hence U1 is possibly consistent. The reader can verify that r has a maximal
probability among the consistent samples (and, in fact, among all samples); therefore, r is a
most probable database for U1. To calculate the probability of consistency, we will take the
complement of the probability of inconsistency. An inconsistent sample can be obtained in
two ways: (1) selecting Lisa in both the first and second tuples, or (2) selecting Bart in the
second tuple and in at most one of the first and the third (which we can compute as the
complement of the product of the probabilities of selecting the others). Therefore,

PrU1(F1) = 1−
(
0.3 · 0.5 + 0.7 · (1− 0.5 · 0.8)

)
.

Now suppose that we use F2 of Figure 1b saying that, in addition to F1, a room can host
only one specialist at a specific time. In this case, r is no longer a consistent sample since
Room 41 hosts different specialists at 5 PM, namely Lisa and Maggie. The reader can verify
that the only consistent sample now is r′ of Figure 1c. In particular, U1 remains possible
consistent, the sample r′ is the most probable database, and the probability of consistency is
the probability of r′, namely 0.5 · 0.3 · 0.2. ♦

4 Consistency Problems

We study three computational problems in the paper, as in the following definition.

▶ Definition 6. Fix a schema R and a set F of FDs over R. In each of the following
problems, we are given as input a CIR U over R:
1. Possible-consistency: determine whether PrU (F ) > 0.
2. Most probable database: find a consistent sample with a maximum probability.
3. Probability of consistency: calculate PrU (F ).
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Observe that these problems include the basics of probabilistic inference: maximum
likelihood computation and marginal probability calculation. An MPD can be viewed as
an optimal completion of missing values, or an optimal correction of values suspected of
being erroneous, assuming the independence of cells (as a prior distribution) and conditioned
on satisfying the constraints (as a posterior distribution). A necessary condition for the
tractability of the most probable database is possible consistency, where we decide whether at
least one consistent sample exists. The problem of computing the probability of consistency
can be thought of as a basic problem that sheds light on possible consistency. For example,
if possible consistency is decidable in polynomial time in some case, is it because we can,
generally, compute the probability of consistency or because there is something fundamentally
easier with feasibility? We will see cases that feature both phenomena.

A more technical reason to why we wish to be able to compute the probability of
consistency is that it guarantees the ability to sample soundly from the conditional probability
distribution (the posterior), that is, have an efficient randomized algorithm that produces a
consistent sample r with the probability PrU (r | r |= F ). The idea is quite simple and applies
to every condition F over databases, regardless of being FDs (and was used in different
settings, e.g., [7]). For completeness of presentation, we give the details in the Appendix.

As aforesaid, the second and third problems are at least as hard as the first one: finding
a most probable database of U requires knowing whether U is possibly consistent, and
calculating the exact probability is at least as hard as determining whether it is nonzero.
There is no reason to believe a-priori that their complexities are comparable. Yet, our analysis
will show that the third has the same or higher complexity in the situations that we study.

4.1 Complexity Assumptions

In our complexity analysis, we will restrict the discussion to uncertain cells that are finite
distributions represented explicitly by giving a probability for each value in the support.
Note that if all uncertain cells of U have a finite distribution, then U has a finite set of
samples. Yet, its size can be exponential in the number of rows of U (and also in the number
of columns of U , though we will treat this number as fixed as we explain next), even if each
cell distribution is binary (i.e., has only two nonzero options). Every probability is assumed
to be a rational number that is represented using the numerator and the denominator.

We will focus on the data complexity of problems, which means that we will make the
assumption that the schema R of the CIR and the set F of FDs are both fixed. Hence, every
combination (R, F ) defines a separate computational problem, and different pairs (R, F ) can
potentially have different complexities.

4.2 Preliminary Observations

In the following sections, we study the complexity of the three consistency problems that we
defined in Definition 6. Before we move on to the actual results, let us state some obvious
general observations.

Possible consistency is in NP, since we can verify a “yes” instance U in polynomial time
by verifying that a relation r is a consistent sample.
If possible consistency is NP-complete for some schema R and set F of FDs, then it is
NP-hard to find a most probable database, and it is NP-hard to compute the probability
of consistency.
We will show that the probability of consistency can be #P-hard, or more precisely
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Table 1 Complexity of the consistency problems for a binary schema. “Possibility” refers to
possible consistency, “MPD” refers to the most probable database problem, and “Probability” refers
to the probability of consistency.

FDs Possibility MPD Probability Propositions
A→ ?B PTime PTime PTime 7
?A→ B NP-complete NP-hard FP#P-complete 10
A↔ ?B PTime PTime FP#P-complete 8 (PTime), 9 (FP#P-c.)
?A↔ ?B NP-complete NP-hard FP#P-complete 10

FP#P-complete.1 Membership in FP#P of the probability of consistency is based on our
assumption that probabilities are represented as rational numbers, and it can be shown
using standard techniques (e.g., [1, 10]) that we do not repeat here.

We will take the above for granted and avoid repeating the statements throughout the paper.

5 Singleton and Matching Constraints

In this section, we investigate the complexity of the three problems we study in two special
cases: a singleton constraint {X → Y } and a matching constraint X ↔ Y (as it has been
termed in past work [5]). We give full classifications of when such constraints are tractable
and intractable for the three problems. We note that we leave open the classification of the
entire class of FD sets, but we provide it for the general case of unary FDs in Section 6.

We begin with the case of a binary schema, where every set of FDs is equivalent to either
a singleton or a matching constraint.

5.1 The Case of a Binary Schema
Throughout this section, we assume that the schema is {A, B}. The complexity of the
different cases of FDs is shown in Table 1. To explain the entries of the table, let us begin
with the tractable cases.

5.1.1 Algorithms
In this section, we show algorithms for A→ ?B and for A↔ ?B.

For A → ?B, we need to determine a value b for each value a of the attribute A. The
idea is that we do so independently for each a. Let VA be the active domain of the attribute
A of U , and VB be the set of all values in the supports of the distributions of B. Formally:

VA := {U [i][A] | i ∈ tids(U)} VB :=
⋃
{supp(U [i][B]) | i ∈ tids(U)}

A consistent sample r selects a value ba ∈ VB for each a ∈ VA, and then PrU (r) =∏
a∈VA

p(a, ba) where p(a, b) is given by:

p(a, b) :=
∏

i:U [i][A]=a

PrU [i][B](b)

1 Recall that FP#P is the class of functions that are computable in polynomial time with an oracle to a
problem in #P (e.g., counting the number of satisfying assignments of a propositional formula). This
class is considered intractable, and above the polynomial hierarchy [28].
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Therefore, to find a most probable database, we consider each a ∈ VA independently, and
find a b ∈ VB that maximizes p(a, b). This b will be used for the tuples with the value a in
A. In addition, we have the following formula that gives us immediately a polynomial-time
algorithm (via a direct computation) for the probability of consistency:

PrU ({A→ B}) =
∏

a∈VA

∑
b∈VB

p(a, b)

Where
∑

b∈VB
p(a, b) is the probability that the tuples with the value a for A agree on their

B attribute. In summary, we have established the following.

▶ Proposition 7. All three problems in Definition 6 are solvable in polynomial time for
A→ ?B.

Next, we discuss A ↔ ?B. Let U be a CIR. A consistent sample r of U entails the
matching of each A value a to each B value b, so that no two a values occur with the same b,
and no two bs occur with the same a. Therefore, we can solve this problem using an algorithm
for minimum-cost perfect matching, as follows. Let VA, VB and p(a, b) be as defined earlier
in the section for A→ ?B. We construct a complete bipartite graph G as follows.

The left-side vertex set is VA and the right-side vertex set is VB .
The cost of every edge (a, b) is (− log p(a, b)); we use this weight as as our goal is to
translate a maximum product into a minimum sum.2

Note that |VA| and |VB | are not necessarily of the same cardinally. If |VA| > |VB |, then U

has no consistent sample at all. If |VA| < |VB |, then we add to the left side of the graph
dummy vertices a′ that are connected to all VB vertices using the same cost, say 1. With this
adjustment, we can now find a most probable database by finding a minimum-cost perfect
matching in G. In summary, we have established the following.

▶ Proposition 8. For A↔ ?B, a most probable database can be found in polynomial time.

It turns out that the third problem, the probability of consistency, is intractable. We
show it in the next section.

5.1.2 Hardness
We now discuss the hardness results of Table 1. We begin with A↔ ?B. Recall that possible
consistency and the most probable database are solvable in polynomial time (Proposition 8).
The probability of consistency, however, is hard.

▶ Proposition 9. For A↔ ?B, it is FP#P-complete to compute the probability of consistency.

The proof of Proposition 9 is by a reduction from counting the perfect matchings of a
bipartite graph, which is known to be #P-complete [30]. The next proposition addresses the
case of ?A→ B and the case of ?A↔ ?B.

▶ Proposition 10. For each of ?A→ B and ?A↔ ?B:
1. Possible consistency is NP-complete.
2. The probability of consistency is FP#P-complete.

2 We assume that the computational model for finding a minimum-cost perfect matching can handle
the representation of logarithms, including log 0 = −∞. As an alternative, we could use directly an
algorithm for maximizing the product of the edges in the perfect matching [29].



A. Gilad, A. Imber, and B. Kimelfeld 11

For possible consistency, we show reductions from variations of SAT, where we translate
satisfying assignments of a formula to consistent samples of a CIR. For the probability
of consistency we use a similar idea to Proposition 9. The proofs of Proposition 9 and
Proposition 10 can be found in the Appendix.

We have now completed all results of Table 1. We will use these results for the extension
to singleton, matching, and unary constraints.

5.2 Singleton and Matching Constraints

We generalize the results for the binary case to the more general case where the FD set is
either a singleton or a matching constraint.

▶ Theorem 11. Let X and Y be sets of attributes such that X ̸⊆ Y and Y ̸⊆ X, and at
least one attribute in X ∪ Y is uncertain.
1. In the case of X → Y , if X consists of only certain attributes, then all three problems

are solvable in polynomial time. Otherwise, possible consistency is NP-complete and the
probability of consistency is FP#P-complete.

2. In the case of X ↔ Y , if either X or Y consists of only certain attributes, then a most
probable database can be found in polynomial time; otherwise, possible consistency is
NP-hard. In any case, the probability of consistency is FP#P-complete.

Proof sketch. For the first part, the hardness side is due to a straightforward reduction
from ?A→ B, where hardness is stated in Proposition 10, and for the tractability side, we
show a reduction to the case of A→ ?B, which is tractable due to Proposition 7. For the
second part, the tractability side is via a reduction to the case of A↔ ?B, which is tractable
due to Proposition 8. The hardness of possible consistency relies on the cases of ?A→ B

and ?A↔ ?B from Proposition 10, and the hardness of probability of consistency relies on
the case A↔ ?B from Proposition 9. The full proof can be found in the Appendix. ◀

▶ Example 12. Consider again the CIR U1 of Figure 1a, and the following two constraints:
F1 := {?specialist time→ room} and F2 := F1 ∪ {room time→ ?specialist}. For F1, all three
problems are hard, since the left hand side of the FD contains the uncertain attribute
?specialist. For F2, a most probable database can be found in polynomial time, since F2 is
equivalent to room time ↔ ?specialist time, where one side (the left side) consists of only
certain attributes. However, the probability of consistency remains FP#P-hard. ♦

Note that in Theorem 11, the assumption that X ̸⊆ Y and Y ̸⊆ X does not lose generality,
for the following reason. If X ⊆ Y , then the FD X → Y is equivalent to X → Y \X, the
FD Y → X is trivial, and the matching constraint X ↔ Y is equivalent to the singleton
{X → Y } (which is covered in Part 1).

From Theorem 11 we can conclude that when all attributes are uncertain, possible
consistency is hard, unless the FDs are all trivial (and then all three problems are clearly
solvable in polynomial time); this is under the reasonable (and necessary) assumption that
F has no consensus FDs, that is, the left hand side of every FD is nonempty [19]. We
later discuss this assumption. This emphasizes the importance of having a data model that
distinguishes between certain and uncertain attributes.

▶ Theorem 13. Let F be a nontrivial set of FDs over a relation schema R, none being a
consensus FD. Then possible consistency is NP-complete.
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The proof (in the Appendix) selects between a reduction from MPD with the singleton
{?A→ ?B} and a reduction from MPD with the matching constraint ?A↔ ?B, depending
on the structure of the F .

We note that the assumption that F has no consensus FDs is necessary. For example, for
F = {∅ → ?A}, which is nontrivial, we can find a most probable database by considering
every possible value a for ?A, computing the probability of selecting a in all distributions,
and finally using the value with the maximal probability.

From Theorem 13 we immediately conclude the hardness of the three problems on
every nontrivial set of FDs in the block-independent-disjoint (BID) model of probabilistic
databases [24], due to the translation mentioned in the Introduction.

6 General Sets of Unary Functional Dependencies

In Section 5.1, we studied the complexity of the three problems in the case of a binary schema,
and we gave a full classification of the different possible sets of FDs. In this section, we
extend these results to a general classification (dichotomy) for every set of unary FDs, that
is, FDs with a single attribute on the left side. Our result uses a decomposition technique
that we devise next.

6.1 Reduction by Decomposition
In this section, we devise a decomposition technique that allows us to reduce our computational
problems from one set of FDs into multiple smaller subsets of the set. This technique is
stated in the next theorem. After the theorem, we show several consequences that illustrate
the use of the technique. Later, we will use these consequences to establish a full classification
of complexity for the sets of unary FDs.

▶ Theorem 14. Let F be a set of FDs over a relation schema R. Suppose that F = F1 ∪ F2
and that all attributes in Att(F1) ∩ Att(F2) are certain (unmarked). Each of the three
problems (in Definition 6) can be solved in polynomial time if its version with Fj and Att(Fj)
is solvable in polynomial time for both j = 1 and j = 2.

Proof sketch. Let Uj = πAtt(Fj)U for j = 1, 2. We show the following:
1. U is possibly consistent w.r.t. F if and only if U1 and U2 are possibly consistent w.r.t. F1

and F2, respectively.
2. MPDs of U1 and U2 can be easily combined to produce an MPD of U .
3. PrU (F ) = PrU1(F1) · PrU2(F2).
The full details are provided in the Appendix. ◀

An immediate conclusion from Theorem 14 is that we can eliminate the FDs that involve
only certain attributes if we know how to deal with the remaining FDs.

▶ Corollary 15. Let F be a set of FDs over a relation schema R. Let X → Y be an FD in
F , and suppose that all attributes in X and Y are certain. Then each of the three problems
(in Definition 6) is polynomial-time reducible to its version with R and F \ {X → Y }.

▶ Remark 16. Eliminating the FDs over the certain attributes is not always beneficial, since
these FDs might be needed for applying a polynomial-time algorithm. As an example,
consider the following set of FDs: {?A→ B , B → C , C → ?A}. As we will show later, for
this set of FDs we can find a most probable database in polynomial time. However, we will
also show that possible consistency is NP-hard for the subset {?A→ B , C → ?A}. Hence,
B → C is needed for the polynomial-time algorithm. ◀
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The following consequence of Theorem 14 identifies a general tractable case: the problems
are solvable in polynomial time if uncertain attributes do not appear in the left side of the
FDs (but they can appear in the right side or outside of the FDs).

▶ Theorem 17. Let F be a set of FDs. If the left side of every FD includes only certain
attributes, then each of the three problems (in Definition 6) is solvable in polynomial time.

Proof sketch. Assume, without loss of generality, that each FD in F contains a single
attribute on the right side. For every A ∈ Att(F ), let FA be the subset of F that contains all
FDs with A being the right side (i.e., all FDs of the form X → A). Then F = ∪A∈Att(F )FA.
Note that sets FA and FB, where A ≠ B, share only certain attributes. This is true since
our assumption implies that an uncertain attribute ?A can appear only in F?A. Hence, we
can apply Theorem 14 repeatedly and conclude that we need a polynomial-time solution for
each F?A. In the Appendix, we show that we can obtain that using a similar concept to the
algorithm for A→ ?B from Section 5.1.1. ◀

6.2 Classification
We now state the precise classification of the complexity of the problems in the case of
unary FDs. The statement uses the following terminology. Let F be a set of unary FDs.
Recall that two attributes A and B and are equivalent if they have the same closure, that
is, {A}+

F = {B}+
F . An attribute A is called a sink if {A}+

F = {A}, that is, A does not
appear in the left hand side of any nontrivial FD. In this section, we will prove the following
classification (trichotomy) result, which is also illustrated in Figure 3.

▶ Theorem 18. Let F be a set of unary FDs over a relation schema R. Then following hold.
1. If every uncertain attribute is either a sink or equivalent to a certain attribute, then a

most probable database can be found in polynomial time; otherwise, possible consistency
is NP-complete.

2. If every uncertain attribute is a sink, then the probability of consistency can be calculated
in polynomial time; otherwise, it is FP#P-complete.

The following examples illustrate the instantiation of the theorem to specific scenarios.

▶ Example 19. We give several examples for the case of a ternary schema {A, B, C}. Consider
the following sets of FDs:

F1 := {A→ B → ?C} F2 := {A→ ?B → C} F3 := {A↔ ?B → ?C}

Theorem 18 tells us that the following. All three problems are solvable in polynomial time in
the case of F1, since the uncertain attribute ?C is a sink. In the case of F2, we can see that
?B is neither a sink nor equivalent to any certain attribute; hence, all three problems are
intractable for F2. In the case of F3, it holds that ?C is a sink and ?B is not a sink but is
equivalent to the certain attribute A. Hence, the consistency of F3 is FP#P-complete, but
we can find a most probable database in polynomial time. ♦

▶ Example 20. Consider again the CIR U2 of Figure 2. Consider the following constraints.
1. business→ ?spokesperson?location
2. ?spokesperson→ ?location
3. business↔ ?spokesperson→ ?location
For the first constraint, all three problems are tractable since both ?spokesperson and ?location
are sinks. For the second constraint, all three problems are intractable since ?spokesperson
is neither a sink nor equivalent to any certain attribute. For the third constraint, a most
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Figure 3 Classification of the complexity of consistency problems for sets of unary FDs. (See
Table 1 for the naming of the problems.) “All sink” refers to the case where every uncertain attribute
is sink, and “All sink or Certain≡” refers to the case where every uncertain attribute is either a sink
or equivalent to a certain attribute.

probable database can be found in polynomial time since ?spokesperson is equivalent to the
certain business and ?location is a sink, but the probability of consistency is FP#P-complete
since ?spokesperson is not a sink. ♦

In the remainder of this section, we prove each of the two parts of Theorem 18 separately.

6.2.1 Part 1 of Theorem 18 (Possible Consistency and MPD)
We first prove the tractability side of Part 1 of the theorem.

▶ Lemma 21. Let F be a set of unary FDs over a schema R. If every uncertain attribute is
either a sink or equivalent to a certain attribute, then a most probable database can be found
in polynomial time.

Proof sketch. The idea to define a set F?A of FDs for every uncertain attribute ?A ∈ ?Att(U),
and a set F ′ of FDs where all left-side attributes are certain, such that F is equivalent to
F ′∪

⋃
?A∈?Att(U) F?A. Then, we repeatedly apply Theorem 14 to reduce the original problem

to instances that are solvable in polynomial time by Proposition 8 and Theorem 17. ◀

For the hardness side of Part 1 of Theorem 18, we will need the following lemma, which
generalizes the case of ?A↔ ?B from Proposition 10.

▶ Lemma 22. Let R = {?A1, . . . , ?Ak} consist of k > 1 uncertain attributes, and suppose
that F is a set of FDs stating that all attributes in R are equivalent. Then possible consistency
is NP-complete.

The next lemma states the hardness side of Part 1 of Theorem 18.

▶ Lemma 23. Let F be a set of unary FDs over a schema R. If there is an uncertain
attribute that is neither a sink nor equivalent to a certain attribute, then possible consistency
is NP-complete.

Proof sketch. Let ?A be an attribute that is neither a sink nor equivalent to a certain
attribute. Let X be the closure of ?A and X ′ be X \ {?A}. Observe the following. First, X ′

must be nonempty since ?A is not a sink. Second, if any attribute in X ′ implies ?A then it
is equivalent to ?A, and then it is necessarily uncertain. We consider two cases:
1. No attribute in X ′ implies ?A.
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2. Some attribute in X ′ implies ?A.
For the first case, we show a reduction from ?A → B, where possible consistency is NP-
complete due to Proposition 10. For the second case, let ?B1, . . . , ?Bℓ be the set of all
attributes in X ′ that imply ?A. As said above, each ?Bj must be uncertain. Then all of
?B1, . . . , ?Bℓ, ?A are equivalent. We show a reduction from the problem of Lemma 22 where
k = ℓ + 1. The constructions of the reductions for the two cases and the proofs of correctness
can be found in the Appendix. ◀

6.2.2 Part 2 Theorem 18 (Probability of Consistency)
We now move on to Part 2. The tractability side follows immediately from Theorem 17, since
if all uncertain attributes are sinks, then all left-side attributes are certain (up to trivial FDs
?A → ?A that can be ignored). Hence, it remains to prove the hardness side of Part 2 of
Theorem 18. We start with the following lemma, where we use a reduction from the case of
A↔ ?B, where probability of consistency is FP#P-complete by Proposition 9, to establish
hardness for a more general case.

▶ Lemma 24. Let F be a set of unary FDs over a schema R. If at least one uncertain attribute
is equivalent to a certain attribute, then the probability of consistency is FP#P-complete.

We can now complete the proof of the hardness side of Part 2.

▶ Lemma 25. Let F be a set of unary FDs over a schema R. If there is at least one uncertain
attribute that is not a sink, then the probability of consistency is FP#P-complete.

Proof sketch. Let ?A be an uncertain attribute that is not a sink. Let Y = (?A)+
F \ {?A}.

Note that Y is nonempty, since ?A is not a sink. If any attribute B in Y functionally
determines ?A, then we can use this attribute as a certain attribute (even if it is uncertain)
and use Lemma 24, since ?A is equivalent to B. Otherwise, suppose that no attribute in Y

determines ?A. For this case, we show (in the Appendix) a reduction from ?A→ B, where
the probability of consistency is FP#P-hard according to Proposition 10. ◀

6.2.3 Recap
We can now complete the proof of Theorem 18. For Part 1, the tractability side is given
by Lemma 21, and the hardness is given by Lemma 23. As for Part 2, the tractability side
follows immediately from Theorem 17, and the hardness side is stated in Lemma 25.

7 Conclusions

We defined the concept of a CIR and studied the complexity of three problems that relate
to consistency under FDs: possible consistency, finding a most probable database, and the
probability of consistency. A seemingly minor feature of the definition of a CIR is the
distinction between certain and uncertain attributes; yet, this distinction turns out to be
crucial for detecting tractable cases. We gave classification results for several classes of FD
sets, including a single FD, a matching constraint, and arbitrary sets of unary FDs. We also
showed that if all attributes are allowed to be uncertain, then the first two problems are
intractable for every nontrivial set of FDs.

This work leaves many problems for future investigation. Within the model, we have
not yet completed the classification for the whole class of FD sets, where the problem
remains open. Recall that a full classification is known for the most probable database for
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tuple-independent databases [19]. Moreover, as we hit hardness already for simple cases
(e.g., ?A → B), it is important to identify realistic properties of the CIR that reduce the
complexity of the problems and allow for efficient algorithms.

Going beyond the framework of this paper, we plan to study additional types of constraints
that are relevant to data cleaning [9], such as conditional FDs, denial constraints, and foreign-
key constraints (where significant progress has been recently made in the problem of consistent
query answering [13]). Another useful direction is to consider soft or approximate versions
of the constraints, where it suffices to be consistent to some quantitative extent [5,15,18].
Finally, we have made the assumption of probabilistic independence among the cells as this
is the most basic setting to initiate this research. To capture realistic correlations in the
database noise, it is important to extend this work to data models that allow for (learnable)
probabilistic dependencies, such as Markov Logic [16].
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A Sampling Consistent Relations

As stated in Section 4, we now explain how computing the probability of consistency can
help to sample correctly (i.e., with the correct probability) from the conditional probability
where the condition is the satisfaction of a set F of constraints. Suppose that X1, . . . , XN

are the random elements that represent the distributions of the uncertain cells of a CIR U .
To produce a random sample r with probability Pr(r | F ), we sample from the Xi one by
one, from X1 to XN . When we sample from Xj , the probability of each value a is adjusted
to be Pr(Xi = a | F ∧X1, . . . , Xj−1 = a1, . . . , aj−1) where a1, . . . , aj−1 are the values chosen
already for X1, . . . , Xj−1.3 We can compute these adjusted probabilities if we know how to
compute the probability of consistency. Specifically, by application of the Bayes rule, the
adjusted probability can be represented as:

Pr(X1, . . . , Xj = a1, . . . , aj−1, a) · Pr(F | X1, . . . , Xj = a1, . . . , aj−1, a)
Pr(X1, . . . , Xj−1 = a1, . . . , aj−1) · Pr(F | X1, . . . , Xj−1 = a1, . . . , aj−1)

Then, the probabilities Pr(F | X1, . . . , Xℓ = b1, . . . , bℓ) are simply PrU ′(F ) where U ′ is
obtained from U by replacing each Xj with the deterministic bj .

B Proofs for Section 5 (Singleton and Matching Constraints)

▶ Proposition 9. For A↔ ?B, it is FP#P-complete to compute the probability of consistency.

Proof. We show a reduction from the problem of counting the perfect matchings of a bipartite
graph (which is the same as calculating the permanent of a 0/1-matrix). This problem is
known to be #P-complete [30]. We are given a bipartite graph G = (VL, VR, E) such that
|VL| = |VR| and the goal is to compute the number of perfect matchings that G has. We
construct a CIR U as follows. For each vertex v ∈ VL we collect the set Nv ⊆ VR of neighbors
of v. Let Nv = {u1, . . . , uℓ}. We add to U the tuple (v, u1| . . . |uℓ).

Observe that every consistent sample induces a perfect matching (due to A↔ ?B), and
vice versa. Hence, the number of consistent samples of U is the same as the number of
perfect matchings of G. Since we used only uniform probabilities, every sample of U has
the same probability, namely 1/(

∏
v∈VL

|Nv|). Therefore, the number of perfect matchings is
PrU (A↔ ?B) ·

∏
v∈VL

|Nv|. ◀

▶ Lemma 26. For ?A→ B:
1. Possible consistency is NP-complete.
2. It is FP#P-complete to compute the probability of consistency.

Proof. We prove each part separately.

Part 1. We show a reduction from non-mixed satisfiability (NM-SAT), where each clause
contains either only positive literals (“positive clause") or only negative literals (“negative
clause”). This problem is known to be NP-complete [12].

We are given a formula c1 ∧ · · · ∧ cm over x1, . . . , xn. We construct an uncertain table as
follows. For each positive ci = y1 ∨ · · · ∨ yℓ we have in the table the tuple

(y1| . . . |yℓ, true) ,

3 This is true because the probability of a sample r of U can be written as Pr(X1, . . . , XN = a1, . . . , aN | F ),
which is equal to

∏N

j=1 Pr(Xj = aj | F ∧ X1, . . . , Xj−1 = a1, . . . , aj−1).
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that is, a tuple with a distinct identifier i such that U [i][A] is a uniform distribution
over {y1, . . . , yℓ} and U [i][B] is the value true. Similarly, for each negative clause ci =
¬y1 ∨ · · · ∨ ¬yℓ we have in the table the tuple

(y1| . . . |yℓ, false) .

Hence, for each positive clause we need to select one satisfying variable, for each negative
clause we need to select one satisfying variable, and we cannot select the same variable
to satisfy both a positive and a negative clause. The correctness of the reduction is fairly
obvious.

Part 2. To prove Part 2, we use a reduction from counting the perfect matchings, similarly
to the proof of Proposition 9, except that now we reverse the order of the attributes: Instead
of adding the tuple (v, u1| . . . |uℓ), we add the tuple (u1| . . . |uℓ, v). The reader can easily verify
that each consistent sample again encodes a unique perfect matching, and vice versa. ◀

▶ Lemma 27. For ?A↔ ?B:
1. Possible consistency is NP-hard.
2. It is FP#P-complete to compute the probability of consistency.

Proof. We prove each part separately.

Part 1. We need to show the NP-hardness of possible consistency. We show a reduction
from standard SAT, where we are given a formula φ = c1 ∧ · · · ∧ cm over x1, . . . , xn, and we
construct a CIR U over {A, B} as follows. For each clause c = d1 ∨ · · · ∨ dℓ we add to U the
tuple

(c, ⟨c, d1⟩| . . . |⟨c, dℓ⟩) .

Note that the values of U are clauses c and pairs ⟨c, d⟩ where d is a literal. In addition to
these tuples, we collect every two pairs ⟨c, d⟩ and ⟨c′, d′⟩ such that d and d′ are in conflict,
that is, if d = x then d′ = ¬x and if d = ¬x then d′ = x. For each such pair, we add to U

the tuple
(⟨c, d⟩|⟨c′, d′⟩, ⟨c, d⟩|⟨c′, d′⟩) .

This completes the reduction. Next, we prove the correctness of the reduction, that is, φ is
satisfiable if and only if U is possibly consistent.

For the “only if” direction, suppose that τ is a satisfying truth assignment for φ. We
construct a consistent sample r as follows. For every tuples of the form (c, ⟨c, d1⟩| . . . |⟨c, dℓ⟩),
we choose for B a value ⟨c, di⟩ such that τ(di) = true. In the case of tuples of the form
(⟨c, d⟩|⟨c′, d′⟩, ⟨c, d⟩|⟨c′, d′⟩), we choose the pair ⟨c′, d′⟩ such that τ(d′) = false for both
attributes A and B. We need to show that r satisfies ?A↔ ?B. It is easy to see why the left
attribute determines the right attribute, and so, ?A→ ?B holds. Regarding ?B → ?A, we
need to see verify that we do not have any conflicting tuples (c, ⟨c, d⟩) and (⟨c′, d′⟩, ⟨c′, d′⟩)
where c = c′ and d = d′. This is due to the fact that τ(d) = true and τ(d′) = false.

For the “if” direction, suppose that r is a consistent sample. We define a satisfying truth
assignment τ as follows. Suppose that r contains (c, ⟨c, d⟩). Then r necessarily contains
(⟨c′, d′⟩, ⟨c′, d′⟩) for every c′ that contains the negation d′ of d. Therefore, r does not contain
any (c′, ⟨c′, d′⟩) where d′ contradicts d. So, we choose τ such that τ(d) = true. If needed,
we complete τ to the remaining variables arbitrarily. From the construction of τ it holds
that every clause c is satisfied. This completes the proof of Part 1.
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Part 2. Note that this part is immediate from Proposition 9, since every instance of A↔ ?B

can be viewed as an instance of ?A↔ ?B where all A values are known. ◀

▶ Proposition 10. For each of ?A→ B and ?A↔ ?B:
1. Possible consistency is NP-complete.
2. The probability of consistency is FP#P-complete.

Proof. We proved each constraint separately in Lemma 26 and Lemma 27, respectively. ◀

▶ Theorem 11. Let X and Y be sets of attributes such that X ̸⊆ Y and Y ̸⊆ X, and at
least one attribute in X ∪ Y is uncertain.
1. In the case of X → Y , if X consists of only certain attributes, then all three problems

are solvable in polynomial time. Otherwise, possible consistency is NP-complete and the
probability of consistency is FP#P-complete.

2. In the case of X ↔ Y , if either X or Y consists of only certain attributes, then a most
probable database can be found in polynomial time; otherwise, possible consistency is
NP-hard. In any case, the probability of consistency is FP#P-complete.

Proof. We prove each part separately.

Part 1. The hardness side is due to straightforward reduction from ?A→ B where hardness
is stated in Lemma 26. For the tractability side, we show a reduction to the case of A→ ?B,
which is tractable due to Proposition 7. Without loss of generality, suppose that all attributes
of Y are uncertain (and we assume that all attributes of X are certain). Given an input U

for X → Y , we construct an instance U0 for A→ ?B with tids(U0) = tids(U) by converting
each tuple of U into a tuple of U0. The construction is simple: for each identifier i ∈ tids(U),
the tuple U0[i] is obtained as follows:

U0[i](A) = πXU [i] (i.e., the concatenation of the values in the attributes of X);
U0[i](?B) is the distribution over all possible tuples that can be generated from πY U [i],
each with its probability (i.e., the product of the values of the different attributes of Y ).

The correctness of the reduction is straightforward.

Part 2. The tractability side is via a reduction to the case of A↔ ?B, which is tractable
due to Proposition 8. The reduction is the same as the one to A→ ?B that we showed in
Part 1.

For the hardness side, let us begin with possible consistency. We consider two cases. If
X and Y share an uncertain attribute ?A, then there are easy reductions from the case of
?A↔ ?AB (by fixing all other attributes to a single constant), and ?A↔ ?AB is equivalent
to ?A → B where hardness is due to Lemma 26. If X and Y do not share an uncertain
attribute, then X and Y contain distinct uncertain attributes ?A and ?B, and then we
have easy reductions (again fixing all other attributes different from ?A and ?B to a single
constant) from the case of ?A↔ ?B, where hardness is due to Lemma 27.

The above arguments also imply FP#P-completeness of the probability of consistency,
except for the case where all attributes of X are certain. In the latter case, we apply our
easy reduction from A↔ ?B and use Proposition 9. ◀

▶ Theorem 13. Let F be a nontrivial set of FDs over a relation schema R, none being a
consensus FD. Then possible consistency is NP-complete.
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Proof. Let X → Z be a nontrivial FD in F such that X is minimal (with respect to
containment) among the left hand sides of FDs in F . Let Y = X+

F \ X. Note that X is
nonempty due to the assumption of the theorem. Also note that Y is nonempty since the
closure of X contains every attribute in Z. We consider two cases:
1. F |= Y → ?A for some ?A ∈ X.
2. Y +

F = Y .
Note that these are the only possible two cases, since X ∪ Y is closed under F .

We first select an attribute ?A ∈ X as follows. In the first case, we use the ?A of the case;
in the second case, we choose an arbitrary ?A ∈ X (which exists due to the assumption that
X is nonempty). In the first case we apply a reduction from ?A↔ ?B, and in the second we
apply a reduction from ?A→ ?B. Note that the two problems are hard for both constraints,
according to Theorem 11. The reduction is detailed next.

Let U be an input CIR over {?A, ?B}. We construct a CIR U ′ over R with tids(U ′) =
tids(U) by transforming every tuple U [i] into a tuple U ′[i], as follows. Let c ∈ Val be an
arbitrary constant value. Let δ be a uniform distribution over all pairs ⟨a, b⟩ where a ∈ Val
and b ∈ Val are values in the (ranges of) distributions in U [?A] and U [?B], respectively. For
every attribute ?C of R,

U ′[?C] =:


U [i][?A] if ?C = ?A;
U [i][?B] if ?C ∈ Y ;
c if ?C ∈ X \ {?A};
δ otherwise.

The correctness of the reduction is due to the following. First, if r′ is a consistent sample of
U ′, then π{?A,?B}r′ is a consistent sample of U due to the construction of U ′.

Second, every consistent sample r of U can be extended into a consistent sample r′ of U ′

by choosing the value ⟨r[i][?A], r[i][?B]⟩ for each distribution δ in a cell of the tuple i. To
see that r′ |= F , consider a nontrivial FD X ′ → Y ′ and let i and j be two tuple identifiers in
tids(r′). Suppose that r′[i] and r′[j] agree on the tuples of X ′. Note that X ′ cannot be a
strict subset of X due to the minimality of X. If X ′ includes at least one attribute outside
of Y , then r′[i][X] and r′[j][X] include an occurrence of r[i][?A] and, hence, they must be
equal (due to the construction of r′ and the consistency of r). If X ′ ⊆ Y and we are in the
first case, then r′[i][X] and r′[j][X] include an occurrence of r[i][?B] and, hence, they must
be equal. If X ′ ⊆ Y and we are in the second case, then Y ′ ⊆ Y and, hence, r′[i][Y ′] and
r′[j][Y ′] are again the same tuples (due to the construction of r′). ◀

C Proofs for Section 6 (General Sets of Unary Functional
Dependencies)

▶ Theorem 14. Let F be a set of FDs over a relation schema R. Suppose that F = F1 ∪ F2
and that all attributes in Att(F1) ∩ Att(F2) are certain (unmarked). Each of the three
problems (in Definition 6) can be solved in polynomial time if its version with Fj and Att(Fj)
is solvable in polynomial time for both j = 1 and j = 2.

Proof. We start with the problem of possible consistency. Let Uj = πAtt(Fj)U for j = 1, 2,
and let U ′ = πAtt(U)\Att(F )U . We show that U is possibly consistent w.r.t. F if and only if
Uj is possibly consistent w.r.t. Fj for j = 1, 2. If r is a consistent sample of U then πAtt(F1)r

is a consistent sample of U1 w.r.t. F1 and πAtt(F2)r is a consistent sample of U2 w.r.t. F2.
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Next, assume that r1 is a consistent sample of U1 w.r.t. F1 and r2 is a consistent sample of
U2 w.r.t. F2. Let r′ be a sample in the support of U ′. We show that r1 +r2 +r′ is a consistent
sample of U w.r.t. F , where r1 + r2 + r′ is the relation r such that tids(r) = tids(r1), that
Att(r) = Att(r1) ∪Att(r2) ∪Att(r′), and that r[i] = r1[i] ∪ r2[i] ∪ r3[i] (i.e., the natural
join of the tuples r1[i], r2[i] and r′[i]) for all i ∈ tids(r). Observe that

tids(r1) = tids(r2) = tids(r′) = tids(U1) = tids(U2) = tids(U ′) = tids(U) ,

and that for every tuple identifier i it is the case that the three relations (r1, r2 and r′) agree
on the common attributes of tuple i, since these are certain attributes. Therefore, r1, r2 and
r′ can be naturally combined to produce a relation. This relation is consistent since every
FD is covered by one of the Fjs. Moreover, the addition of r′ (that has a disjoint set of
attributes) does not change the consistency.

For the problem of most probable database, if r1 and r2 are most probable databases of
U1 and U2, respectively, then by similar arguments, r1 + r2 + r′ is a most probable database
of U for every sample r′ in the support of U ′.

Finally, for the probability of consistency, we show that PrU (F ) = PrU1(F1) · PrU2(F2).
Let r denote the random element that corresponds to a sample of U , let r1 be the random
element πAtt(F1)r, and r2 be the random element πAtt(F2)r. Then r |= F if and only if
r1 |= F1 and r2 |= F2. Moreover, r1 and r2 are probabilistically independent, since they
involve disjoint sets of distributions, and in particular, their consistencies are probabilistically
independent. This completes the proof. ◀

▶ Theorem 17. Let F be a set of FDs. If the left side of every FD includes only certain
attributes, then each of the three problems (in Definition 6) is solvable in polynomial time.

Proof. Following the proof sketch, we show that we can solve each of the three problems
for each F?A desperately. Consider the undirected graph G that has as vertices the tuple
identifiers of U , and an edge between two identifiers i and i′ whenever the two agree on
all attributes of the left hand side of some dependency in F?A. Hence, an edge means that
the two tuples should have the same value in every consistent sample. Therefore, we can
compute the most probable database, and calculate the probability of consistency, in a similar
manner to the algorithms for A→ ?B from Section 5.1.1, except that now we consider entire
connected components rather than simple groups by the attribute A. ◀

▶ Lemma 21. Let F be a set of unary FDs over a schema R. If every uncertain attribute is
either a sink or equivalent to a certain attribute, then a most probable database can be found
in polynomial time.

Proof. Note that a sink uncertain attribute ?A cannot appear in the left side of any FD in
F , unless it is the trivial FD ?A→ ?A. We assume that F does not contain such trivial FDs,
and so, a sink attribute can appear only on the right side of a rule. For every uncertain
attribute ?A ∈ ?Att(U) we define a set F?A of FDs as follows.

If ?A is a sink or not at all in Att(F ), then F?A = ∅.
If ?A is non-sink, then we find an equivalent certain attribute B and set F?A = {?A↔ B}.

Then F is equivalent to the set

F ′ ∪
⋃

?A∈?Att(U)

F?A (1)

where F ′ is obtained from F by replacing every non-sink uncertain attribute ?A by its partner
B in F?A. Now, observe the following.
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For each F?A we can find a most probable database in polynomial time, according to
Proposition 8.
In F ′ we have that all left-side attributes are certain, and so, we can find a most probable
database according to Theorem 17.

Finally, observe that every uncertain attribute appears in at most one subset in Equation (1).
Hence, we can repeatedly apply Theorem 14 and complete the proof. ◀

▶ Lemma 22. Let R = {?A1, . . . , ?Ak} consist of k > 1 uncertain attributes, and suppose
that F is a set of FDs stating that all attributes in R are equivalent. Then possible consistency
is NP-complete.

Proof. The case of k = 2, namely ?A1 ↔ ?A2, has been shown in Lemma 27. For k > 2, we
will show a reduction from ?A1 ↔ ?A2. Given an input U0 for {?A1, ?A2}, we construct an
instance U for {?A1, . . . , ?Ak} by adding to U0 columns to the right. We need k − 2 such
columns. We set in each cell of these k − 2 columns the same distribution: the uniform
distribution over m distinct values, where m = |tids(U0)| is the number of tuples in U0.

The correctness of the reduction is due to the following observations. First, if r is a
consistent sample for U , then π{?A1,?A2}r is a consistent sample for U0. Second, every
consistent sample r0 of U0 can be extended into a feasible consistent sample of U by adding
to each tuple a value that is uniquely determined by the values in the row. Third, the
probability of every sample r of U is determined only by the values in ?A1 and ?A2:

PrU (r) = PrU0(π{?A1,?A2}r) ·m−m(k−2)

In particular, finding a consistent sample r for U is the same problem as finding a consistent
sample r0 for U0. ◀

▶ Lemma 23. Let F be a set of unary FDs over a schema R. If there is an uncertain
attribute that is neither a sink nor equivalent to a certain attribute, then possible consistency
is NP-complete.

Proof. We consider the two cases that are specified in the proof sketch of Lemma 23 (in the
main body of the paper).

Case 1: No attribute in X ′ implies ?A. We show a reduction from ?A→ B, where possible
consistency is NP-complete due to Proposition 10. Let U0 be an input for {?A, B} and
?A→ B. We construct an input U for R and F as follows. The two CIRs have the same set
of identifiers, that is, tids(U) = tids(U0). For each i ∈ tids(U) we define the tuple U [i] by:

U [i][?A] = U0[i][?A];
U [i][B] = U0[i][B] for every B ∈ X ′ (even if B is uncertain);
U [i][C] = i for every C ∈ R \X.

Note that we are using the tuple identifier i as a value to assure that every two tuples have
different values in the corresponding C attributes. We will prove that U is possibly consistent
if and only if U0 is possibly consistent. From a consistent sample r for U we can get a
consistent sample r0 for U0 by projecting on ?A and some attribute C ∈ X, and renaming C

as B. Note that r0 is a consistent sample of U0 since r satisfies ?A→ C.
For the other direction, suppose that r0 is a consistent sample for U0. To obtain a

consistent sample for U , we select each ?A value U [i][?A] to be one chosen by r0, namely
r0[i][?A]. Denote the result by r. We need to show that r satisfies F . Let D → E an FD in
F . If D = ?A then E ∈ X and then the FD is satisfied since r0 satisfies ?A→ B. If D ∈ X ′

then E ∈ X, and E ̸= ?A since D and ?A are not equivalent. Hence, E ∈ X ′ as well. It
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thus follows that the E column is equal to the D column and, therefore, D → E is satisfied.
Finally, if D /∈ X then no two tuples agree on D, and then D → E is satisfied in a vacuous
manner.

Case 2: Some attribute in X ′ implies ?A. Let ?B1, . . . , ?Bℓ be the set of all attributes in
X ′ that imply ?A. As said above, each ?Bj must be uncertain. Then all of ?B1, . . . , ?Bℓ, ?A

are equivalent. We will show a reduction from the problem of Lemma 22 where k = ℓ + 1.
Let U0 be an input for that problem; hence, U0 is a CIR over {?A1, . . . , ?Ak}. We construct
a CIR U over R, as follows. Again, tids(U) = tids(U0) and for each i ∈ tids(U) we define
the tuple U [i] according to the following rules. We use an arbitrary constant value that we
denote by c.

U [i][?A] = U0[i][?Ak];
U [i][?Bj ] = U0[i][?Aj ] for j = 1, . . . , ℓ;
U [i][C] = c for every C ∈ X ′ \ {?B1, . . . , ?Bℓ};
U [i][C] = i for every C ∈ R \X.

Again, we show that U is possibly consistent if and only if U0 is possibly consistent. From
a consistent sample r for U we can get a consistent sample r0 for U0 by projecting on
{?B1, . . . , ?Bℓ, ?A}, renaming each ?Bj as ?Aj and ?A as ?Ak. Note that r0 is a consistent
sample for U0 (and in particular r0 satisfies the FDs of Lemma 22) since r satisfies ?B1 ↔
. . .↔ ?Bℓ ↔ ?A.

For the other direction, let r0 be a consistent sample of U0. For each tuple identifier
i ∈ tids(U) we need to state the choice for the value U [i][?A] and U [i][?Bj ] for j = 1, . . . , ℓ.
We set the former to r0[i][?Ak] and the latter to r0[i][?Aj ]. Let the result be r. We need to
show that r satisfies F . Let D → E be an FD in F . We have the following cases:

D /∈ X. Then no two tuples agree on D, and then D → E is satisfied in a vacuous
manner.
E /∈ X. Then D /∈ X (previous case) since X is a closure.
E ∈ X \ {?A, ?B1, . . . , ?Bℓ}. Then D → E holds since all values of the attribute E are
equal (to c) in r.
D ∈ X \ {?A, ?B1, . . . , ?Bℓ}. Then E ∈ X and E cannot be in {?A, ?B1, . . . , ?Bℓ}, or
otherwise D is also equivalent to ?A (while we know that only ?B1, . . . , ?Bℓ are equivalent
to ?A).
{D, E} ⊆ {?A, ?B1, . . . , ?Bℓ}. Then D → E is satisfied since r0 satisfies the constraint
?A1 ↔ . . .↔ ?Ak.

We conclude that r satisfies F , and so, r is a consistent sample. This concludes the proof. ◀

▶ Lemma 24. Let F be a set of unary FDs over a schema R. If at least one uncertain attribute
is equivalent to a certain attribute, then the probability of consistency is FP#P-complete.

Proof. Let A be a certain attribute, and let ?B be an uncertain attribute that is equivalent to
A. We will use Proposition 9 and show a reduction from R0 = {A, ?B} and F0 = {A↔ ?B}.
Let U0 be an input for R0 and U0. We will produce an input U for R and F by adding
columns with certain values, regardless of whether the attribute is certain or not, and we
will show that the probability of consistency if the same in U and U0. The construction is
straightforward: we simply copy the A column. In notation, for each identifier i ∈ tids(U)
and attribute C ∈ R \ {A, B} we set U [i][C] = U0[i][A].

Observe that every sample r0 of U0 has a unique extension r+
0 of U , and every sample of

U is the unique extension r+
0 of some sample r0 of U . To complete the proof, we show that

both of the following hold:
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1. PrU0(r0) = PrU (r+
0 );

2. r0 |= F0 if and only if r+
0 |= F .

Part 1 is straightforward from the construction, since all values of U are certain except for
those in ?B. So we now prove Part 2. The “if” direction is due to the fact that F implies
both A→ ?B and ?B → A. For the “only if” direction, suppose that r0 |= F0 and let r = r+

0 .
We show that r |= F . Let C → D be an FD in F , let i and j be two identifiers, and suppose
that r[i][C] = r[j][C]. We need to show that r[i][D] = r[j][D]. Due to our construction,
r[i][C] = r[j][C] implies that either r[i][A] = r[j][A] or r[i][?B] = r[j][?B] (in case C is ?B).
Since r satisfies A → ?B, it holds that both r[i][A] = r[j][A] and r[i][?B] = r[j][?B] hold.
Finally, observe that D is either ?B or a copy of A (from our construction). Therefore,
r[i][D] = r[j][D], as claimed. ◀

▶ Lemma 25. Let F be a set of unary FDs over a schema R. If there is at least one uncertain
attribute that is not a sink, then the probability of consistency is FP#P-complete.

Proof. Following the proof sketch, we assume that no attribute in Y determines ?A. For this
case, we show a reduction from ?A→ B, where the probability of consistency is FP#P-hard
according to Proposition 10.

Let R0 = {?A, B} and F0 = {?A→ B}. Let U0 be an input for R0 and U0. We will
again produce an input U for R and F by adding columns with certain values, regardless of
whether the attribute is certain or not, and we will show that the probability of consistency
is the same in U and U0. The construction is as follows: we copy the B column to every
attribute in Y , and use a unique fresh value for every other attribute. In notation, for each
identifier i ∈ tids(U) and attribute C ∈ Y we set U [i][C] = U0[i][B], and for every attribute
C ∈ R \ (Y ∪ {?A}) we set U [i][C] = i.

We show the correctness of the reduction, using a similar argument as in the proof of
Lemma 24. Note that our construction is such that every sample r0 of U0 has a unique
extension r+

0 of U , and every sample of U is the unique extension r+
0 of some sample r0 of U .

Then, the following hold:
1. PrU0(r0) = PrU (r+

0 ).
2. r0 |= F0 if and only if r+

0 |= F ;
Again, Part 1 is straightforward from the construction, so we prove Part 2. The “if” direction
holds since F |= ?A→ B. For the “only if” direction, suppose that r0 |= F0 and let r = r+

0 .
We show that r |= F . Let C → D be an FD in F , let i and j be two different identifiers,
and suppose that r[i][C] = r[j][C]. We need to show that r[i][D] = r[j][D]. Note that the
construction implies that C must be in the closure of ?A, since i ̸= j. If C is ?A, then D

belongs to Y , and then r[i][D] = r[j][D] since r0 is consistent. If C belongs to Y , then D

also belongs to Y (since D cannot be ?A), and then r[i][D] = r[j][D] by construction. This
completes the proof. ◀
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