
On Optimizing the Trade-off between Privacy and Utility in
Data Provenance

Daniel Deutch

Tel Aviv University

danielde@tauex.tau.ac.il

Ariel Frankenthal

Tel Aviv University

frankenthal@mail.tau.ac.il

Amir Gilad

Duke University

agilad@cs.duke.edu

Yuval Moskovitch

University of Michigan

yuvalm@umich.edu

ABSTRACT
Organizations that collect and analyze data may wish or be man-

dated by regulation to justify and explain their analysis results. At

the same time, the logic that they have followed to analyze the data,
i.e., their queries, may be proprietary and confidential. Data prove-

nance, a record of the transformations that data underwent, was

extensively studied as means of explanations. In contrast, only a

few works have studied the tension between disclosing provenance

and hiding the underlying query.

This tension is the focus of the present paper, where we formal-

ize and explore for the first time the tradeoff between the utility

of presenting provenance information and the breach of privacy

it poses with respect to the underlying query. Intuitively, our for-

malization is based on the notion of provenance abstraction, where

the representation of some tuples in the provenance expressions is

abstracted in a way that makes multiple tuples indistinguishable.

The privacy of a chosen abstraction is then measured based on

how many queries match the obfuscated provenance, in the same

vein as 𝑘-anonymity. The utility is measured based on the entropy

of the abstraction, intuitively how much information is lost with

respect to the actual tuples participating in the provenance. Our

formalization yields a novel optimization problem of choosing the

best abstraction in terms of this tradeoff. We show that the problem

is intractable in general, but design greedy heuristics that exploit

the provenance structure towards a practically efficient exploration

of the search space. We experimentally prove the effectiveness of

our solution using the TPC-H benchmark and the IMDB dataset.

ACM Reference Format:
Daniel Deutch, Ariel Frankenthal, Amir Gilad, and Yuval Moskovitch. 2021.

On Optimizing the Trade-off between Privacy and Utility in Data Prove-

nance. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD ’21), June 20–25, 2021, Virtual Event , China. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3452835

1 INTRODUCTION
Data provenance, namely a record of the transformations that pieces

of data underwent when processed by a query, has been the subject

of extensive investigation in recent years [8, 16, 28, 29, 34, 45, 50].

Most of these works focus on the utility of provenance, showing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event , China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3452835

that it is highly effective for applications such as hypothetical rea-

soning [3, 4, 25], explaining and justifying query results [9, 12, 23],

and others. The cost of provenance tracking is typically measured

in terms of the execution time / memory overhead it incurs, and

significant research effort has been dedicated to optimizing such

computational aspects. In this paper, we shed light on a different

kind of cost incurred by publishing provenance: the exposure of

the query that has been executed and for which provenance has

been tracked. We ask: can we obfuscate provenance so that it remains
useful, while hiding the underlying query?

This aspect of provenance has become increasingly important

as more and more agencies and organization aim to provide expla-

nations for their decisions [27, 32] while governmental bodies and

research communities stress the need for privacy-aware mecha-

nisms [35, 42, 48].

Interests
PID Interest Source

𝑖1 1 Music WikiLeaks

𝑖2 2 Music Facebook

𝑖3 3 Music LinkedIn

𝑖4 1 Parties WikiLeaks

𝑖5 2 Parties Facebook

𝑖6 4 Movies WikiLeaks

Hobbies
PID Hobby Source

ℎ1 1 Dance Facebook

ℎ2 2 Dance LinkedIn

ℎ3 4 Dance Facebook

ℎ4 1 Trips Facebook

ℎ5 2 Trips LinkedIn

ℎ6 3 Trips WikiLeaks

Persons
PID Name Age

𝑝1 1 James T 27

𝑝2 2 Brenda P 31

Figure 1: Partial Database instance of hobbies and interests
of people collected from different sources

Example 1.1. Consider an online advertising company that wishes
to match ads to people. Their database contains information about
people, their hobbies and interests, a sample of which appears in Fig-
ure 1. Each tuple has an identifier, appearing to its left. The company
may run queries such as𝑄𝑟𝑒𝑎𝑙 appearing in Table 1 looking for people
that like dancing and music. The query output includes James and
Brenda, and relevant advertisements may then be presented to them.
Upon request, Brenda may receive an explanation of why the adver-
tisement was shown to her (see e.g., [27, 32]). In the case where James
and Brenda are friends, they may obtain each other explanation in
addition to their own. However, the company may wish to avoid dis-
closing the general criteria (i.e., the query 𝑄𝑟𝑒𝑎𝑙), since these criteria
are part of the company’s confidential business strategy.

The provenance of a given query result describes the tuples used

by the query to derive the result and the manner in which they

were used. We use here the well-established model of provenance
semirings [34].

Example 1.2. The provenance of the output tuple (1) according
to the query 𝑄𝑟𝑒𝑎𝑙 shown in Table 1 is presented in the first row

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

379

https://doi.org/10.1145/3448016.3452835
https://doi.org/10.1145/3448016.3452835

Table 1: Queries for the running example. 𝑄𝑟𝑒𝑎𝑙 is the origi-
nal,𝑄 𝑓 𝑎𝑙𝑠𝑒1,𝑄 𝑓 𝑎𝑙𝑠𝑒2 are similar but not identical, and𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑙
is a generalization of the original

Name Query
𝑄𝑟𝑒𝑎𝑙 𝑄(id) :- Person(id,name,age), Hobbies(id,‘Dance’,src1), Inter-

ests(id,‘Music’,src2)

𝑄 𝑓 𝑎𝑙𝑠𝑒1 𝑄(id) :- Person(id,name,age), Hobbies(id,‘Trips’,src1), Inter-

ests(id,‘Music’,src2)

𝑄 𝑓 𝑎𝑙𝑠𝑒2 𝑄(id) :- Person(id,name,age), Hobbies(id,‘Dance’,src1), Inter-

ests(id,‘Parties’,src2)

𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑙 𝑄(id) :- Person(id,name,age), Hobbies(id,‘Dance’,src1), Inter-

ests(id,interest,src2)

Output Provenance

1 𝑝1 · ℎ1 · 𝑖1
2 𝑝2 · ℎ2 · 𝑖2

(a) 𝐸𝑥𝑟𝑒𝑎𝑙

Output Provenance

1 𝑝1 · ℎ4 · 𝑖1
2 𝑝2 · ℎ5 · 𝑖2

(b) 𝐸𝑥𝑓 𝑎𝑙𝑠𝑒1

Output Provenance

1 𝑝1 · ℎ1 · 𝑖4
2 𝑝2 · ℎ2 · 𝑖5

(c) 𝐸𝑥𝑓 𝑎𝑙𝑠𝑒2
Figure 2:𝐾-examples. 𝐸𝑥𝑟𝑒𝑎𝑙 , 𝐸𝑥 𝑓 𝑎𝑙𝑠𝑒1 and 𝐸𝑥 𝑓 𝑎𝑙𝑠𝑒2 are the out-
puts of 𝑄𝑟𝑒𝑎𝑙 , 𝑄 𝑓 𝑎𝑙𝑠𝑒1 and 𝑄 𝑓 𝑎𝑙𝑠𝑒2, respectively

of Figure 2a. The expression, formulated as a product of the anno-
tations 𝑝1, ℎ1, 𝑖1, intuitively means that the three tuples with these
annotations in the database (Figure 1) have jointly participated in an
assignment to 𝑄𝑟𝑒𝑎𝑙 that yielded this result.

We denote by 𝐾-example a subset (“example") of the results of

a (hidden) query and an explanation for each result, formulated

as its provenance (e.g., Figure 2a shows 𝐾-example derived by

𝑄𝑟𝑒𝑎𝑙 , modeling the explanations for James and Brenda). Given a

𝐾-example, the problem we address is how to modify the provenance
in a way that still allows users to gain information from it, but without
divulging the underlying query that produced it?

We next detail the main components of our solution.

Obfuscating provenance through abstraction. We propose

a simple way to obfuscate provenance, based on provenance abstrac-
tion. The main idea is to allow identification of multiple provenance

annotations, replacing themwith a common “meta-annotation". Not

all such identifications make sense in general, and so their choice

is constrained by a tree whose leaves correspond to actual annota-

tions and ancestors can be used as abstractions of their descendants.

This technique has recently been proposed in [25], where it was

used in a different context of reducing the provenance size.

Quantifying loss of information. We use entropy [46] to

quantify the loss of information incurred by a choice of provenance

abstraction. Information entropy expresses the level of uncertainty

of a given data. In our context, we wish to measure “how uncertain"

is a viewer of the abstracted provenance expression, with respect

to the actual one (each possibility for the actual provenance, given

an abstraction, is called a concretization). We assume a given distri-

bution over the concretizations. Lacking additional knowledge, this

distribution may simply be taken as uniform. The entropy for an

abstraction is then defined with respect to a tree and a distribution.

Model for provenance privacy. Recall that our goal is to show
an abstraction of a given 𝐾-example, while hiding the query that

yielded the 𝐾-example. To measure the privacy of an abstraction,

we may thus look at the set of its possible concretizations, and then

at the set of queries that would have yielded each concretization. In

fact, not all such queries are “interesting": we may restrict attention

to connected inclusion-minimal queries [24], i.e., queries whose

join graph is connected and are not included in any other query

in this set. These queries are representative of the viable options

for the hidden query. We then define the privacy incurred by an

abstraction as the cardinality of this set (i.e., how many connected

inclusion-minimal queries match some concretization).

The problem of optimizing abstractions. The last two com-

ponents are then combined to define the problem introduced and

studied in this paper: given an example of query results and their

provenance 𝐸𝑥 , a provenance abstraction tree 𝑇 , and a privacy

threshold 𝑘 , we aim at finding an abstraction that has at least 𝑘

connected inclusion minimal queries that ‘can fit’ it, and minimizes

the loss of information among all such abstractions.

Example 1.3. Consider the 𝐾-example 𝐸𝑥𝑟𝑒𝑎𝑙 presented in Fig-
ure 2a showing two outputs of the query 𝑄𝑟𝑒𝑎𝑙 and their provenance.
The allowed abstractions are defined based on the tree 𝑇 depicted in
Figure 3. The leaves of 𝑇 are annotations (identifiers) of the tuples in
Figure 1, and its inner nodes are abstracted forms of these annotations.
An abstraction of the provenance in 𝐸𝑥𝑟𝑒𝑎𝑙 w.r.t. 𝑇 may, e.g., replace
the annotation ℎ1 with its ancestors Facebook or Social Network.
Other tuple annotations may be abstracted as well. A choice of abstrac-
tion dictates a certain amount of information loss since the annotation
Facebook can stand for any one of the annotations ℎ1, ℎ3, ℎ4, 𝑖2, 𝑖5,
and when viewing the annotation Facebook we cannot be sure which
annotation is the original. At the same time, it may obfuscate the
underlying query 𝑄𝑟𝑒𝑎𝑙 , as more queries become consistent with the
observable provenance information.

★

WikiLeaks

𝑖6𝑖4𝑖1ℎ6

Social Network

LinkedIn

𝑖3ℎ5ℎ2

Facebook

𝑖5𝑖2ℎ4ℎ3ℎ1

Figure 3: Abstraction tree containing a subset of tuple anno-
tations in the database in Figure 1 as leaves, and inner nodes
that are abstractions of the leaves

We study the complexity of the problem and show that it is

intractable in general. Namely, deciding the existence of an abstrac-

tion with privacy at least 𝑘 and loss of information of at most 𝑙 , is

NP-hard. Bearing this bound in mind, we provide novel heuristic

algorithms for computing optimal abstractions in practically effi-

cient ways. Our approach revolves around several key ideas. First,

we optimize the order of traversal over the possible abstractions,

by examining “simpler" abstractions first. We further prioritize the

computation of loss of information over privacy, as the former can

be done significantly more efficiently. Additionally, privacy compu-

tation is performed in a greedy fashion, relying on the properties

of the 𝐾-example. Finally, caching is used in order to avoid repet-

itive computations. Our heuristics and optimizations render our

approach scalable even for large databases and complex queries, as

observed in our experiments overviewed next.

Experimental evaluation. We have conducted an experimen-

tal study using the TPC-H [5] and the IMDB [38] datasets in which

we examined the scalability and usability of our solution for differ-

ent settings. We study the performance in terms of varying data,

tree sizes, query complexity, 𝐾-example size, and privacy thresh-

olds. We show that thanks to our optimizations, our solution is

efficient even in complex settings that involve queries with many

joins, large volumes of data and a large space of abstractions. We

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

380

have also compared our solution with the provenance compression-

based method presented in [25]. Finally, we performed a user study,

showing that abstracted 𝐾-examples provide the desired privacy

while still being informative and useful.

2 PRELIMINARIES
We now define the background needed for our model.

2.1 Query Language and Provenance
We give a brief review of the concepts of Union of Conjunctive

Queries and Provenance Polynomials.

Unionof conjunctive queries. We recall the concept of Unions

of Conjunctive Queries. Fix a database schema S with relation

names {𝑅1, ..., 𝑅𝑛} over a domain C of constants. Further fix a do-

mainV of variables. A CQ 𝑄 over S is an expression of the form

𝑇 (®𝑢) : −𝑅1 (®𝑣1), . . . , 𝑅𝑙 (®𝑣𝑙) where 𝑇 is a relation name not in S.
For each 1 ≤ 𝑖 ≤ 𝑛, ®𝑣𝑖 is a vector of the form (𝑥1, . . . , 𝑥𝑘) where
∀1 ≤ 𝑗 ≤ 𝑘. 𝑥 𝑗 ∈ V ∪C.𝑇 (®𝑢) is the query head, denoted ℎ𝑒𝑎𝑑 (𝑄),
and 𝑅1 (®𝑣1), . . . , 𝑅𝑙 (®𝑣𝑙) is the query body and is denoted 𝑏𝑜𝑑𝑦 (𝑄).
The variables appearing in ®𝑢 are called the head variables of𝑄 , and
each of them must also appear in the body. A union of such queries

is a UCQ. We use 𝑈𝐶𝑄 to denote the class of all UCQs, omitting

details of the schema when clear from the context.

Next, we define the notion of derivations for UCQs. A derivation

𝛼 for a query 𝑄 ∈ 𝑈𝐶𝑄 with respect to a database instance 𝐷 is a

mapping of the relational atoms of 𝑄 to tuples in 𝐷 that respects

relation names and induces a mapping over arguments, i.e., if a

relational atom 𝑅(𝑥1, ..., 𝑥𝑛) is mapped to a tuple 𝑅(𝑎1, ..., 𝑎𝑛) then
we say that 𝑥𝑖 is mapped to 𝑎𝑖 (denoted 𝛼 (𝑥𝑖) = 𝑎𝑖). We require that

a variable 𝑥𝑖 will not be mapped to multiple distinct values, and

a constant 𝑥𝑖 will be mapped to itself. For a CQ 𝑞 ∈ 𝑄 , we define
𝛼 (ℎ𝑒𝑎𝑑 (𝑞)) as the tuple obtained from ℎ𝑒𝑎𝑑 (𝑞) by replacing each

occurrence of a variable 𝑥𝑖 by 𝛼 (𝑥𝑖).
Example 2.1. Reconsider the CQ𝑄𝑟𝑒𝑎𝑙 depicted in Table 1 and the

output tuple (1) in the first row of Figure 2a. It is derived using the
tuples with annotations 𝑝1, ℎ1, 𝑖1 (Figure 1) that are mapped to the
first, second and third atom of 𝑄𝑟𝑒𝑎𝑙 respectively.

Provenance semirings. We focus on databases whose tuples

are associated (“annotated") with elements of a set 𝑋 , or polynomi-

als (with positive coefficients) thereof [34]. 𝑋 may be thought of as

a set of identifiers each attached to a single input tuple.

A commutative monoid (from [24]) is an algebraic structure

(𝑀, +
𝑀
, 0
𝑀
) where +

𝑀
is an associative and commutative binary

operation and 0
𝑀
is an identity for +

𝑀
. A commutative semiring is

then a structure (𝐾, +
𝐾
, ·
𝐾
, 0
𝐾
, 1
𝐾
) where (𝐾, +

𝐾
, 0
𝐾
) and (𝐾, ·

𝐾
, 1
𝐾
)

are commutative monoids, ·
𝐾
is distributive over +

𝐾
, and 𝑎 ·

𝐾
0
𝐾
=

0 ·
𝐾
𝑎 = 0

𝐾
. A 𝐾-relation is a mapping between tuples and ele-

ments of 𝐾 . A 𝐾-database 𝐷 over a schema {𝑅1, ..., 𝑅𝑛} is then a

collection of 𝐾-relations, over each 𝑅𝑖 . Unless stated otherwise, we

will assume that in databases used as input to queries, all relations

are abstractly-tagged: namely, each tuple is annotated by a distinct

element of 𝑋 (intuitively, its identifier).

We then defineUCQs asmappings from𝐾-databases to𝐾-relations.

Intuitively, we define the annotation (provenance) of an output tu-

ple as a combination of annotations of input tuples. The idea is

that given a set of basic annotations 𝑋 (elements of which may

be assigned to input tuples), the provenance of an output is repre-

sented by a sum of products, i.e., a polynomial. Coefficients serve

in a sense as a “shorthand" for multiple derivations using the same

tuples, and exponents as a “shorthand" for multiple uses of a tuple

in a derivation.

Definition 2.2 (adapted from [34]). Let 𝐷 be a 𝐾-database
and let𝑄 ∈ 𝑈𝐶𝑄 , with𝑇𝑖 being the relation name in ℎ𝑒𝑎𝑑 (𝑞𝑖) where
𝑞𝑖 ∈ 𝑄 is a CQ. For every tuple 𝑡 ∈ 𝑇𝑖 , let 𝛼𝑡 be the set of derivations
of 𝑞𝑖 w.r.t. 𝐷 that yield 𝑡 . 𝑞𝑖 (𝐷) is defined to be a 𝐾-relation 𝑇𝑖 s.t.
for every 𝑡 , 𝑇𝑖 (𝑡) =

∑
ℎ𝑒𝑎𝑑 (𝑞𝑖)=𝑇𝑖

∑
𝛼 ∈𝛼𝑡

∏
𝑡 ′∈𝐼𝑚 (𝛼) 𝐴𝑛𝑛(𝑡 ′), where

𝐼𝑚(𝛼) is the image of 𝛼 , and𝐴𝑛𝑛(𝑡 ′) is the annotation of 𝑡 ′ according
to its 𝐾-relation.

Example 2.3. In Example 2.1, we showed that the output tuple (1)
of𝑄𝑟𝑒𝑎𝑙 (Table 1) is derived from the tuples annotated by 𝑝1, ℎ1, 𝑖1. As
a provenance polynomial, this corresponds to the monomial 𝑝1 ·ℎ1 · 𝑖1.

Provenance examples. We now define the notion of a 𝐾-

example, which intuitively captures output examples and their

explanations as provenance.

Definition 2.4 (adapted from [24]). A 𝐾-example is a pair
(𝐼 ,𝑂) where 𝐼 is an abstractly-tagged 𝐾-database called the input
and 𝑂 is a 𝐾-relation called the output.

In words, 𝑂 denotes an output example and 𝐼 its provenance.

Example 2.5. A 𝐾-example is depicted in Figure 2a where the left
column shows two output examples,𝑂1 and𝑂2, and the right column
shows the provenance of each of them, 𝐼1 and 𝐼2, respectively.

For a 𝐾-example 𝐸𝑥 = (𝐼 ,𝑂), we denote by 𝑉𝑎𝑟 (𝐸𝑥) the set of
tuple annotations in 𝐼 .

2.2 Provenance Abstraction Tree
Wedefine an abstraction tree over the provenance variables, drawing
on [25]. Intuitively, this defines groupings of different variables with

a single value as a generalized representation of all of them. The tree

is structured so that the labels associated with tuples of the input

examples are at the leaf level; inner nodes stand for abstractions of

the labels associated with leaves of their sub-trees.

Definition 2.6. An abstraction tree 𝑇 is a rooted labeled tree,
where each node has a unique label (we thus use “node" and “label"
interchangeably). 𝑉𝑇 is used to denote the set of labels in 𝑇 and 𝐿𝑇 is
the set of labels of the leaves in𝑇 . Given a 𝐾-database 𝐷 , we say that
𝑇 is compatible with 𝐷 if (𝑉𝑇 \ 𝐿𝑇) ∩ (∪𝑡 ∈𝐷𝐴𝑛𝑛(𝑡)) = ∅.

We say that an abstraction tree𝑇 is compatiblewith a 𝐾-example

(𝐼 ,𝑂) if 𝑇 is compatible with 𝐼 . If 𝑇 is not compatible with a 𝐾-

example then it cannot be used as an abstraction tree for this partic-

ular 𝐾-example. We will discuss ways of constructing abstraction

trees at the end of Section 4.

Example 2.7. Reconsider the 𝐾-example 𝐸𝑥𝑟𝑒𝑎𝑙 presented in Fig-
ure 2a. The abstraction tree 𝑇 shown in Figure 3 is compatible with
𝐸𝑥𝑟𝑒𝑎𝑙 since none of the inner nodes of 𝑇 (e.g., 𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘) are labeled
by the variables of 𝐸𝑥𝑟𝑒𝑎𝑙 .

3 MODEL
We define our novel model for the problem of provenance privacy.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

381

3.1 Abstractions and Concretizations
Let 𝑇 be an abstraction tree. For 𝑣, 𝑣 ′ ∈ 𝑉𝑇 , we say that 𝑣 ≤𝑇 𝑣 ′ if 𝑣
is a descendant of 𝑣 ′ in 𝑇 (or 𝑣 ′ = 𝑣).

Definition 3.1 (Abstraction Function). Given an abstraction
tree𝑇 that is compatible with a𝐾-example 𝐸𝑥 and an ordering over the
variables of 𝐸𝑥 where each variable occurrence is assigned an index 𝑖 ∈
N, an abstraction function over𝑇 is a function𝐴𝑇 : 𝑉𝑎𝑟 (𝐸𝑥) ×N→
(𝑉𝑇 ∪𝑉𝑎𝑟 (𝐸𝑥)) that maps each occurrence of a variable 𝑣 ∈ 𝑉𝑎𝑟 (𝐸𝑥)
at index 𝑖 such that 𝑣 ∈ 𝐿𝑇 to 𝑣 ′ ∈ 𝑉𝑇 , where 𝑣 ≤𝑇 𝑣 ′. If 𝑣 ∉ 𝐿𝑇 ,
𝐴𝑇 (𝑣, 𝑖) = 𝑣 .

Note that𝐴𝑇 maymap different occurrences of the same variable

𝑣 to different nodes in 𝑇 , namely, it is possible to have 𝐴𝑇 (𝑣, 𝑖) ≠
𝐴𝑇 (𝑣, 𝑗), where 𝐴𝑇 (𝑣, 𝑖) (𝐴𝑇 (𝑣, 𝑗)) is the mapping of the 𝑖-th (resp.

𝑗) occurrence of 𝑣 . To simplify notations, in the rest of the paper

we assume each variable appears once, and omit the index from𝐴𝑇 .

Overloading notation, we use 𝐴𝑇 (𝐸𝑥) to denote the 𝐾-example 𝐸𝑥

obtained by replacing each 𝑣 ∈ 𝑉𝑎𝑟 (𝐸𝑥) by 𝐴𝑇 (𝑣) for all 𝑣 ∈ 𝐿𝑇 .
We next demonstrate the notion of abstraction function. In prac-

tice, these functions are generated automatically by the algorithm

given in Section 4. In the rest of the paper, we will use the term

abstraction interchangeably for the concepts of an abstraction func-

tion and its output, an abstracted 𝐾-example.

Example 3.2. Reconsider the 𝐾-example 𝐸𝑥𝑟𝑒𝑎𝑙 given in Figure 2a
and the abstraction function 𝐴1

𝑇
depicted in Figure 4. Using 𝐴1

𝑇
on

𝐸𝑥𝑟𝑒𝑎𝑙 will create the abstracted𝐾-example 𝐸𝑥𝑎𝑏𝑠1 shown in Figure 5.
Formally, 𝐴1

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) = 𝐸𝑥𝑎𝑏𝑠1.

𝐴1

𝑇
(𝑣) =

𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘, if 𝑣 = ℎ1, ℎ4

𝐿𝑖𝑛𝑘𝑒𝑑𝐼𝑛, if 𝑣 = ℎ2, ℎ5

𝑣, otherwise

𝐴2

𝑇
(𝑣) =

𝑊𝑖𝑘𝑖𝐿𝑒𝑎𝑘𝑠, if 𝑣 = 𝑖1, 𝑖4

𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘, if 𝑣 = 𝑖2, 𝑖5

𝑣, otherwise

𝐴3

𝑇
(𝑣) =

{
𝑊𝑖𝑘𝑖𝐿𝑒𝑎𝑘𝑠, if 𝑣 = 𝑖1

𝑣, otherwise

Figure 4: Abstraction
Functions

𝐸𝑥𝑎𝑏𝑠1 = 𝐴1

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) = 𝐴1

𝑇
(𝐸𝑥𝑓 𝑎𝑙𝑠𝑒1) =

Output Provenance

1 𝑝1 · 𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 · 𝑖1
2 𝑝2 · 𝐿𝑖𝑛𝑘𝑒𝑑𝐼𝑛 · 𝑖2

𝐸𝑥𝑎𝑏𝑠2 = 𝐴2

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) = 𝐴2

𝑇
(𝐸𝑥𝑓 𝑎𝑙𝑠𝑒2) =

Output Provenance

1 𝑝1 · ℎ1 ·𝑊𝑖𝑘𝑖𝐿𝑒𝑎𝑘𝑠

2 𝑝2 · ℎ2 · 𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘

𝐸𝑥𝑎𝑏𝑠3 = 𝐴3

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) =

Output Provenance

1 𝑝1 · ℎ1 ·𝑊𝑖𝑘𝑖𝐿𝑒𝑎𝑘𝑠

2 𝑝2 · ℎ2 · 𝑖2
Figure 5: Abstracted 𝐾-
examples

A concretization is then the ‘reverse’ operation of abstraction.

Definition 3.3 (Concretization). Given an abstracted𝐾-example
𝐸𝑥 and an abstraction tree 𝑇 , a 𝐾-example 𝐸𝑥 is a concretization of
𝐸𝑥 if there exists an abstraction function 𝐴𝑇 such that 𝐴𝑇 (𝐸𝑥) = 𝐸𝑥 .
The concretization set of 𝐸𝑥 is 𝐶 (𝐸𝑥) = {𝐸𝑥 | ∃𝐴𝑇 . 𝐴𝑇 (𝐸𝑥) = 𝐸𝑥}

Since sub-trees in the abstraction tree may have multiple leaves,

an abstracted 𝐾-example can have more than one concretization.

Therefore, we have defined the concretization set containing all

options for concretizations.

Example 3.4. Consider again the abstracted 𝐾-example 𝐸𝑥𝑎𝑏𝑠1
presented in Figure 5, the 𝐾-example 𝐸𝑥𝑟𝑒𝑎𝑙 shown in Figure 2a and

the abstraction function 𝐴1

𝑇
given in Figure 4. From Example 3.2,

we have 𝐸𝑥𝑟𝑒𝑎𝑙 ∈ 𝐶 (𝐸𝑥𝑎𝑏𝑠1) since 𝐴1

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) = 𝐸𝑥𝑎𝑏𝑠1. Now

consider the 𝐾-example 𝐸𝑥 𝑓 𝑎𝑙𝑠𝑒1 shown in Figure 2b. It also holds
that 𝐴1

𝑇
(𝐸𝑥 𝑓 𝑎𝑙𝑠𝑒1) = 𝐸𝑥𝑎𝑏𝑠1, and thus 𝐸𝑥 𝑓 𝑎𝑙𝑠𝑒1 ∈ 𝐶 (𝐸𝑥𝑎𝑏𝑠1), i.e.,

𝐸𝑥 𝑓 𝑎𝑙𝑠𝑒1 is also in the concretization set of 𝐸𝑥𝑎𝑏𝑠1. 𝐶 (𝐸𝑥𝑎𝑏𝑠1) also
contains other 𝐾-examples beside 𝐸𝑥𝑟𝑒𝑎𝑙 and 𝐸𝑥 𝑓 𝑎𝑙𝑠𝑒1.

The following are simple observations regarding the size of a

concretization set that will be useful in the sequel. Note that 𝐿𝑇 is

the set of leaves of the abstraction tree 𝑇 and 𝐿𝑇 (𝑣) is the set of
leaves of the subtree of 𝑇 rooted in 𝑣 .

Proposition 3.5. Given an abstraction tree 𝑇 that is compatible
with a 𝐾-example 𝐸𝑥 and an abstraction function 𝐴𝑇 , it holds that:

(1) |𝐶 (𝐴𝑇 (𝐸𝑥)) | =
∏

𝑣∈𝑉𝑎𝑟 (𝐸𝑥)
| 𝐿𝑇 (𝐴𝑇 (𝑣)) |

(2) 1 ≤ |𝐶 (𝐴𝑇 (𝐸𝑥)) | ≤ |𝐿𝑇 |𝑛 , where 𝑛 = |{𝑣 ∈ 𝑉𝑎𝑟 (𝐸𝑥) | 𝑣 ≠

𝐴𝑇 (𝑣)}|, and these bounds are tight.
For brevity, the full proofs of all propositions are deferred from

this paper and are detailed in the full version [22].

3.2 Loss of Information
Each abstraction entails a loss of information. We measure the

loss of information of an abstracted 𝐾-example 𝐸𝑥 via the notion

of Entropy. Entropy is the average level of “information” or “un-

certainty” inherent in the possible outcomes of a random vari-

able [46]. Given a random variable 𝑋 , with possible outcomes 𝑥𝑖 ,

each with probability 𝑃𝑋 (𝑥𝑖), the entropy 𝐻 (𝑋) of 𝑋 is as follows:

𝐻 (𝑋) = −∑𝑖 𝑃𝑋 (𝑥𝑖) ln 𝑃𝑋 (𝑥𝑖). The entropy quantifies how ‘infor-

mative’ or ‘surprising’ the random variable is, averaged over all

of its possible outcomes. Next, we define the entropy induced by

abstraction, as follows:

Definition 3.6. Given an abstraction tree 𝑇 that is compatible
with a 𝐾-example 𝐸𝑥 , an abstraction function 𝐴𝑇 and a probability
space on𝑋 = 𝐶 (𝐴𝑇 (𝐸𝑥)) (the concretization set of𝐴𝑇 (𝐸𝑥)) we define
the loss of information by 𝐿𝑂𝐼 (𝐴𝑇 (𝐸𝑥)) = −

∑𝑛
𝑖=1 𝑃𝑋 (𝑥𝑖) ln 𝑃𝑋 (𝑥𝑖)

where 𝑋 = 𝐶 (𝐴𝑇 (𝐸𝑥)) = {𝑥1, . . . , 𝑥𝑛} and 𝑃𝑋 (𝑥𝑖) is the probability
of the concretization 𝑥𝑖 .

The probabilities may be determined using statistical proper-

ties of the database or external information. Note that for a finite

probability space 𝑋 with a discrete uniform distribution over 𝑛

states, the entropy is 𝐻 (𝑋) = ln(𝑛). Since 𝐶 (𝐴𝑇 (𝐸𝑥)) is a finite

set (Proposition 3.5), if the probabilities of all concretizations in

𝐶 (𝐴𝑇 (𝐸𝑥)) are equal then 𝐿𝑂𝐼 (𝐴𝑇 (𝐸𝑥)) = ln(|𝐶 (𝐴𝑇 (𝐸𝑥)) |).
Example 3.7. Reconsider the abstracted 𝐾-example 𝐸𝑥𝑟𝑒𝑎𝑙 pre-

sented in Figure 2a, the abstracted tree𝑇 shown in Figure 3 and the ab-
straction function 𝐴3

𝑇
depicted in Figure 4. The output of 𝐴3

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙)

is the abstracted 𝐾-example 𝐸𝑥𝑎𝑏𝑠3 shown in Figure 5. The con-
cretization set of 𝐸𝑥𝑎𝑏𝑠3 is given in Figure 6. Assuming the prob-
abilities of the concretizations are 𝑃𝑋 (𝑐1) = 0.1, 𝑃𝑋 (𝑐2) = 0.2,
𝑃𝑋 (𝑐3) = 0.3 and 𝑃𝑋 (𝑐4) = 0.4. the loss of information of 𝐸𝑥𝑎𝑏𝑠3 is
−∑4

𝑖=1 𝑃𝑋 (𝑐𝑖) ln 𝑃𝑋 (𝑐𝑖) = −(0.1 · ln 0.1 + . . . + 0.4 · ln 0.4) ≈ 1.279

3.3 Privacy
We next define our privacy measure for abstractions.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

382

Consistent and CIM queries. Next, we define the concepts of
consistent and connected inclusion-minimal queries with respect

to a 𝐾-example. Our definitions are inspired by [24] and extend

them. As a preliminary step, we define subsumption of 𝐾-relations.

Definition 3.8 (from [24]). Let (𝐾, +𝐾 , ·𝐾 , 0, 1) be a semiring
and define 𝑎 ≤𝐾 𝑏 iff ∃𝑐. 𝑎+𝐾 𝑐 = 𝑏. If ≤𝐾 is a (partial) order relation
then we say that 𝐾 is naturally ordered. Given two 𝐾-relations 𝑅1, 𝑅2
we say that 𝑅1 ⊆𝐾 𝑅2 iff ∀𝑡 .𝑅1 (𝑡) ≤𝐾 𝑅2 (𝑡).

We now define a consistent query w.r.t. an abstracted example.

Intuitively, a query 𝑄 is consistent w.r.t. 𝐸𝑥 if there exists a con-

cretization of 𝐸𝑥 for which 𝑄 generates the output tuples when

given the provenance, and the provenance generated by𝑄 matches

the one specified in the concretization.

Definition 3.9 (consistent qery). Given an abstracted 𝐾-
example 𝐸𝑥 and a CQ 𝑄 we say that 𝑄 is consistent with respect to
the example 𝐸𝑥 if there exists (𝐼 ,𝑂) ∈ 𝐶 (𝐸𝑥) such that 𝑂 ⊆𝐾 𝑄 (𝐼).

To define privacy, we use the concept of connected inclusion-
minimal queries (CIM queries). Intuitively, we define the privacy

criterion by the number of the most ‘focused’ queries. We draw on

previous works in the field of query-by-example [39] that looks for

connected queries and on [24] that looks for minimality in terms

of inclusion. Recall that the join graph for a CQ is defined by the

set of relations in its body {𝑅1, . . . , 𝑅𝑚} with an edge (𝑅𝑖 , 𝑅 𝑗) iff 𝑅𝑖
and 𝑅 𝑗 share at least one variable. We say that a query is connected

if its join graph is connected.

Definition 3.10 (CIM qery). A consistent query 𝑄 with respect
to a given abstracted 𝐾-example 𝐸𝑥 is a CIM query if it is connected
and for every query𝑄 ′ such that𝑄 ′ ⊊𝐾 𝑄 , (i.e., for every 𝐾-database
𝐷 it holds that𝑄 ′(𝐷) ⊆𝐾 𝑄 (𝐷), but not vice-versa),𝑄 ′ is not consis-
tent with respect to 𝐸𝑥 . Namely, ∀𝐸𝑥 ∈ 𝐶 (𝐸𝑥), 𝑄 ′ is not a consistent
query of 𝐸𝑥 .

Example 3.11. Consider the abstracted 𝐾-example 𝐸𝑥𝑎𝑏𝑠3 in Fig-
ure 5 and its concretization set given in Figure 6. There is only one
CIM query w.r.t. 𝐸𝑥𝑎𝑏𝑠3 which is 𝑄𝑟𝑒𝑎𝑙 (shown in Table 1) since it is
consistent w.r.t. the concretization 𝑐2, connected and minimal w.r.t. all
other consistent connected queries. Now consider the query 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑙
(shown in Table 1). It is consistent w.r.t. the concretization 𝑐3 and con-
nected. However, 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑙 is not CIM since 𝑄𝑟𝑒𝑎𝑙 ⊆ 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑙 (both
queries have the same structure but𝑄𝑟𝑒𝑎𝑙 contains an extra constant).

Definition 3.10 may consider trivial queries as CIM if we allow

for union. For example, in 𝐸𝑥𝑎𝑏𝑠3 in Figure 5, the concretization

𝑐1 in Figure 6 leads to the trivial CIM query 𝑄 = 𝑞1 ∪ 𝑞2 where
𝑞1 (1) : −𝑝1, ℎ1, ℎ6 and 𝑞2 (1) : −𝑝2, ℎ2, 𝑖2. Naturally, these types

of UCQs do not generalize the 𝐾-example and therefore are not

likely queries. In Section 4, we discuss a version of our solution

that disqualifies such trivial queries.

Privacy of an abstracted 𝐾-example. We are now ready to

define the privacy of a 𝐾-example. Our definition is similar in spirit

to the 𝑘-anonymity criterion in data privacy [49].

Definition 3.12 (Privacy). The privacy of an abstracted 𝐾-
example 𝐸𝑥 is the number of unique CIM queries w.r.t. 𝐸𝑥 .

𝐶 (𝐸𝑥𝑎𝑏𝑠3) =

𝑐
1
=

Output Provenance

1 𝑝1 · ℎ1 · ℎ6
2 𝑝2 · ℎ2 · 𝑖2

𝑐
2
=

Output Provenance

1 𝑝1 · ℎ1 · 𝑖1
2 𝑝2 · ℎ2 · 𝑖2

𝑐
3
=

Output Provenance

1 𝑝1 · ℎ1 · 𝑖4
2 𝑝2 · ℎ2 · 𝑖2

𝑐
4
=

Output Provenance

1 𝑝1 · ℎ1 · 𝑖6
2 𝑝2 · ℎ2 · 𝑖2

Figure 6: Concretization Set of 𝐸𝑥𝑎𝑏𝑠3 (from Figure 5)

Table 2: Some of the consistent queries w.r.t. 𝐸𝑥𝑎𝑏𝑠1 from Fig-
ure 5. There is a total of 14 consistent queries. From those, 3
are connected (labeled ‘con’), and from those 2 are CIM (la-
beled ‘con, min’). This shows that the privacy of 𝐸𝑥𝑎𝑏𝑠1 is 2

Class Query
con, min Q(a) :- Person(a,b,c), Hobbies(a,‘Dance’,d), Interests(a,‘Music’,e)

Q(a) :- Person(a,p,q), Hobbies(r,s,t), Interests(u,v,w)

Q(a) :- Person(a,b,c), Hobbies(d,‘Dance’,e), Interests(a,‘Music’,f)

con Q(a) :- Person(a,b,c), Hobbies(a,d,e), Interests(a,‘Music’,f)

con, min Q(a) :- Person(a,b,c), Hobbies(a,‘Trips’,d), Interests(a,‘Music’,e)

Q(a) :- Person(a,b,c), Interests(d,‘Music’,e), Interests(a,‘Music’,f)

As with 𝑘-anonymity, a higher number of unique CIM queries

w.r.t. an abstracted 𝐾-example indicates that this abstracted 𝐾-

example is more private. Even an abstracted 𝐾-example can reveal

some information about the query structure. In particular, the tables

participating in the query and possibly also the join structure can

be inferred from the combination of the schema and the 𝐾-example.

Example 3.13. Reconsider the abstracted 𝐾-example 𝐸𝑥𝑎𝑏𝑠1 pre-
sented in Figure 5. We now detail the CIM queries w.r.t. 𝐸𝑥𝑎𝑏𝑠1. First,
we note that the consistent queries w.r.t. 𝐸𝑥𝑎𝑏𝑠1 are depicted in Table 2.
We choose only the queries that are connected (the queries marked
by ‘con’). From these, we choose only the queries that are inclusion-
minimal w.r.t. 𝐸𝑥𝑎𝑏𝑠1. Those are the queries marked with ‘min’ as
well. Therefore, the CIM queries are annotated with ‘con, min’. There
are only 2 queries that fulfill these terms, 𝑄𝑟𝑒𝑎𝑙 and 𝑄 𝑓 𝑎𝑙𝑠𝑒1 (shown
in Table 1). Thus, the privacy of 𝐸𝑥𝑎𝑏𝑠1 is 2.

Note that in Example 3.13, all disconnected queries are missing

the logic expressed by the connected queries.

3.4 Problem Definition
We are now ready to define the problem of provenance abstraction.

In short, given a 𝐾-example and a privacy threshold, we want to

find an abstraction that satisfies this threshold but also minimizes

the loss of information.

Definition 3.14. [Problem Definition] Given an abstraction tree
𝑇 that is compatible with a 𝐾-example 𝐸𝑥 and 𝑘 ∈ N a privacy
threshold, our goal is to find an abstraction function𝐴𝑇 where𝐴𝑇 (𝐸𝑥)
has privacy ≥ 𝑘 , and 𝐴𝑇 minimizes 𝐴𝑇 (𝐸𝑥)’s loss of information out
of all the abstraction functions that guarantee privacy ≥ 𝑘 . We call
this abstraction an optimal abstraction.

Example 3.15. Reconsider the database depicted in Figure 1, the
query 𝑄𝑟𝑒𝑎𝑙 shown in Table 1, its output 𝐸𝑥𝑟𝑒𝑎𝑙 given in Figure 2a
and the abstraction tree 𝑇 presented in Figure 3. Assume that the
privacy threshold is 2 (i.e., we want our privacy to be at least 2) and
the loss of information is entropy with discrete uniform distribution.
We can use the abstraction function 𝐴2

𝑇
(detailed in Figure 4) so that

𝐴2

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) yields 𝐸𝑥𝑎𝑏𝑠2 (depicted in Figure 5). Since the queries

𝑄𝑟𝑒𝑎𝑙 and𝑄 𝑓 𝑎𝑙𝑠𝑒2 (shown in Table 1) are CIMw.r.t. 𝐸𝑥𝑎𝑏𝑠2, its privacy

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

383

is 2. In addition, ln |𝐶 (𝐸𝑥𝑎𝑏𝑠2) | = ln(5 · 4) = ln 20 ≈ 2.996, thus the
loss of information incurred by𝐴2

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) is 2.996. On the other hand,

we can use the abstraction function 𝐴1

𝑇
(detailed in Figure 4) so that

𝐴1

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) yields 𝐸𝑥𝑎𝑏𝑠1 (depicted in Figure 5). In Example 3.13 we

have seen that the privacy of 𝐸𝑥𝑎𝑏𝑠1 is 2. In addition, ln |𝐶 (𝐸𝑥𝑎𝑏𝑠1) | =
ln(5 · 3) = ln 15 ≈ 2.708, thus the loss of information incurred by
𝐴1

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) is 2.708. Since the loss of information of 𝐴1

𝑇
is smaller

than all possible abstraction functions that guarantee privacy ≥ 2 (in
particular, 𝐴2

𝑇
), it is an optimal abstraction.

Aggregate queries. A model for provenance for aggregation

queries was defined in [1]. In a nutshell, the aggregation result is

represented as a semimodule, that couples, using a tensor product,

values from the aggregate domain and the tuple annotations. For

example, consider an aggregate query with a similar structure to

that of 𝑄𝑟𝑒𝑎𝑙 (shown in Table 1), that performs a MAX aggregation

on the age attribute, i.e., instead of the people ids it returns the

maximal age of all people that like dancing and music. In this case

the resulting aggregate value would be (𝑝1 · ℎ1 · 𝑖1) ⊗ 27 +𝑀𝐴𝑋
(𝑝2 · ℎ2 · 𝑖2) ⊗ 31. Our model can support queries with aggregation

over the head variables, where abstraction functions operate on the

tuple’s annotation part in the semimodule. For instance, the result of

applying 𝐴1

𝑇
(shown in Figure 4) on the aforementioned aggregate

result is (𝑝1 · 𝐹𝑎𝑐𝑒𝑏𝑜𝑜𝑘 · 𝑖1) ⊗ 27 +𝑀𝐴𝑋 (𝑝2 · 𝐿𝑖𝑛𝑘𝑒𝑑𝐼𝑛 · 𝑖2) ⊗ 31.

4 HARDNESS AND SOLUTION
We first note that the optimal abstraction problem is intractable.

To this end we define the decision problem version of the optimal

abstraction: given an abstraction tree compatible with a 𝐾-example

and integers 𝑘, 𝑙 , determine whether there is an abstraction function

that gives a privacy of at least 𝑘 with at most 𝑙 loss of information.

This decision problem is NP-hard in the size of the intersection of

the provenance variables with the leaves of the abstraction tree.

Proposition 4.1. The decision problem version of the optimal
abstraction is NP-hard.

We have defined the problem for general semirings and UCQs

(with aggregation). Now, we discuss the solution, starting from

N[𝑋] and CQs. At the end of this section we consider other versions
of the problem, where the provenance is given in a different model

and the query class is more general. As shown above, the problem

is intractable, and our algorithms incur exponential time in the

worst case – yet we design heuristics that significantly improve the

performance in practice. We first give a high-level description of

our solution and then introduce our algorithms.

4.1 High Level Description
The brute force approach for solving the problem would go over all

possible abstractions, compute the privacy and the loss of informa-

tion of each and return the one with minimal loss of information

among the ones that meet the privacy threshold. We next overview

of how each of these components may be improved. The observed

improvement over the brute force solution is reported in Section 5.2.

Efficiently computing privacy. The privacy computation is

the most time consuming part of the solution (see Section 4.2).

We next give an overview of how the privacy induced by a given

abstraction may be efficiently computed.

(1) Computing privacy row by row. Consistency with a𝐾-example is

monotone in the sense that each consistent querymust be consistent

with each subset of the rows in 𝐾-example. For every abstracted

𝐾-example 𝐸𝑥 , we first check whether the 𝐾-example containing

only the first two rows of 𝐸𝑥 has at least 𝑘 CIM queries w.r.t. it,

where 𝑘 is the privacy threshold. We store only concretizations of

𝐸𝑥 that admit consistent connected queries. Then, we add the next

row of 𝐸𝑥 to the stored concretizations and repeat these steps.

(2) Concretizations connectivity. We say that a 𝐾-example 𝐸𝑥 is

connected if every provenance monomial in 𝐸𝑥 defines a connected

graph where the nodes are the tuples and there is an edge be-

tween two tuples if they share a constant (e.g., 𝑅(1, 2), 𝑅(2, 3) are
connected). Observe that a connected consistent query cannot be

obtained from a disconnected 𝐾-example; therefore, disconnected

concretizations can be filtered out.

(3) Caching information about concretizations and queries. Given
two abstractions 𝐸𝑥 , 𝐸𝑥

′
, it is common that𝐶 (𝐸𝑥)∩𝐶 (𝐸𝑥 ′) contains

multiple shared concretizations. Therefore, we use caching to store

the consistent connected queries w.r.t. each concretization, to avoid

repetitive computations (we do not store the CIM queries since

the minimality of a query is measured w.r.t. the concretization set,

which varies between different abstractions). Additionally, for each

concretization, we store whether it is connected or not.

Efficiently finding an optimal abstraction. We use the fol-

lowing components to improve the näive iteration over all abstrac-

tions. In Section 5.2, we will show that these components have

improved performance by a factor of over 500×.
(1) Sorting abstractions. When we iterate over all the abstractions,

we sort them in increasing order according to the number of tree

edges they use, prioritizing abstractions with small loss of infor-

mation. In this manner, abstractions that use fewer edges of the

abstraction tree appear first (these are the easiest to compute pri-

vacy for since they have fewer concretizations). Practically, such

abstractions often meet the privacy threshold.

(2) Prioritizing loss of information over privacy computation. Unlike
the loss of information that can be quickly and efficiently computed,

computing the privacy of an abstracted𝐾-example is a complex and

pricey procedure (see Section 4.2). Therefore, given an abstracted

𝐾-example, we first compute the loss of information for each ab-

straction and only then compute the privacy.

4.2 Algorithm Details
We next detail the implementation of the ideas we have described.

Privacy computation. We use the following components:

(1) Finding consistent queries. To find all consistent queries w.r.t. a

concretization we recall the algorithm 𝐹𝑖𝑛𝑑𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑄𝑢𝑒𝑟𝑦 from

[24] that finds one consistent query for a given 𝐾-example by mod-

eling the two provenance monomials of the first two rows in the

𝐾-example as a bipartite graph and finding partial matchings that

‘cover’ the output attributes. The algorithm returns the first con-

sistent query that is generated by such a matching. We adjust this

algorithm to output all the consistent queries from all matchings

instead of returning the first one we find. We then minimize each

query using the lattice algorithm described in the paper.

(2) Finding minimal queries. Given a set of queries 𝑄 , 𝑞 ∈ 𝑄 is

minimal if there is no query 𝑞′ ∈ 𝑄 such that 𝑞′ ⊊ 𝑞. We iterate

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

384

over all the queries 𝑞 ∈ 𝑄 , and for every 𝑞′ ∈ 𝑄,𝑞′ ≠ 𝑞 we check
whether𝑞′ ⊊ 𝑞 using the procedure𝑄𝑢𝑒𝑟𝑦𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 that checks
query containment (adapted from [15]).

Algorithm 1 computes the privacy of a given abstracted𝐾-example

𝐸𝑥 . The input is an abstracted 𝐾-example 𝐸𝑥 with 𝑛 rows, an ab-

straction tree 𝑇 and the privacy threshold 𝑘 . The output is the pri-

vacy guaranteed by 𝐸𝑥 , or −1 if the privacy is smaller than 𝑘 . The

algorithm initializes a set of good concretizations 𝐺𝑜𝑜𝑑𝐶𝑜𝑛𝑐 (con-

cretizations that create consistent connected queries, as described

in the ‘Computing privacy row by row’ component in Section 4.1)

with the first row of 𝐸𝑥 (line 1). Then, it iterates over the rows in 𝐸𝑥

(lines 2–22), and for each row preforms the following operations.

First, it collects the concretization sets of each abstracted𝐾-example

in 𝐺𝑜𝑜𝑑𝐶𝑜𝑛𝑐 combined with the current row from 𝐸𝑥 (lines 3–5).

Second, it removes all the disconnected concretizations (line 6)

while for each concretization it uses caching to store whether it is

connected or not, to avoid redundant computations. Third, it col-

lects all consistent queries w.r.t. every connected concretization and

adds them to a set 𝑄𝑐𝑜𝑛𝑠 and to a map 𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝑇𝑜𝐶𝑜𝑛𝑐 that stores,

for each concretization, the queries that were created from it (lines

7–12). Then, it removes all the disconnected queries from 𝑄𝑐𝑜𝑛𝑠
(line 13) and also uses caching to store whether it is connected

or not. After that, it checks whether the number of connected

queries is lower than our privacy threshold, and if so it returns −1
as the privacy does not satisfy the threshold (lines 14–15). Then,

the algorithm re-sets the good concretization set𝐺𝑜𝑜𝑑𝐶𝑜𝑛𝑐 with all

the concretizations that create consistent connected queries using

𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝑇𝑜𝐶𝑜𝑛𝑐 (lines 16–19). These concretizations will continue

to the next iteration. Finally, the algorithm selects only minimal

queries (lines 20–22) and checks again whether their number sat-

isfies the privacy threshold (line 21). After the algorithm iterates

over all rows, it returns the number of CIM queries (line 23).

Example 4.2. Consider the 𝐾-example 𝐸𝑥𝑟𝑒𝑎𝑙 , the tree 𝑇 , the
abstraction function 𝐴3

𝑇
, and the abstracted 𝐾-example 𝐸𝑥𝑎𝑏𝑠3 =

𝐴3

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙) (depicted in Figures 2a, 3, 4, and 5, respectively). Assume

our privacy threshold is 2 (i.e., we want our privacy to be at least 2).
First, the algorithm generates the concretization set𝐶 (𝐸𝑥𝑎𝑏𝑠3) (shown
in Figure 6) and removes the disconnected concretizations (which are
𝑐1 and 𝑐4). For each of the remaining concretization, the algorithm
finds the consistent queries and amongst these, finds the CIM queries.
As we saw in Example 3.11, after removing the disconnected queries
we are left with 𝑄𝑟𝑒𝑎𝑙 and 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑙 (shown in Table 1) and since
𝑄𝑟𝑒𝑎𝑙 ⊆ 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑙 there is only one CIM query which is 𝑄𝑟𝑒𝑎𝑙 so the
algorithm will return −1.

Loss of information computation. The loss of information

can be easily computed given the abstracted 𝐾-example 𝐸𝑥 and the

abstraction tree. If we use entropy with discrete uniform distribu-

tion, then the loss of information is equal to ln(|𝐶 (𝐸𝑥) |), i.e., the
size of the concretization set. For other distributions, we can find

the concretization set with the abstraction tree and calculate the

entropy using the given distribution.

Optimal abstraction algorithm. Given a 𝐾-example, an ab-

straction tree and a privacy threshold, Algorithm 2 finds the optimal

abstraction which guarantees the threshold with minimal loss of

Algorithm 1: Compute Privacy

input :Abstracted K−𝑒𝑥𝑎𝑚𝑝𝑙𝑒 𝐸𝑥 , abstraction tree𝑇 , privacy threshold 𝑘

output :The privacy of 𝐸𝑥 if it’s at least 𝑘 or −1 otherwise
Let 𝐸𝑥𝑖 be the 𝑖th row of 𝐸𝑥 and 𝑛 be the number of rows of 𝐸𝑥 ;

1 𝐺𝑜𝑜𝑑𝐶𝑜𝑛𝑐 ← {𝐸𝑥1 };
2 for 𝑖 ∈ {2, . . . , 𝑛} do
3 𝐶 ← ∅;
4 for 𝑔𝑐 ∈ 𝐺𝑜𝑜𝑑𝐶𝑜𝑛𝑐 do

𝑔𝑐 + 𝐸𝑥𝑖 denotes appending the 𝑖’th row of 𝐸𝑥 to 𝑔𝑐 ;

5 𝐶 ← 𝐶 ∪𝐺𝑒𝑡𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑆𝑒𝑡 (𝑔𝑐 + 𝐸𝑥𝑖 ,𝑇) ;
6 𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡 ← 𝑅𝑒𝑚𝑜𝑣𝑒𝐷𝑖𝑠𝑐𝑜𝑛𝑛𝑐𝑡𝑒𝑑 (𝐶) ;
7 𝑄𝑐𝑜𝑛𝑠 ← ∅;𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝑇𝑜𝐶𝑜𝑛𝑐 ← (∅, ∅) ;
8 for 𝑐 ∈ 𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡 do
9 𝑄𝑐𝑢𝑟 ← 𝐺𝑒𝑡𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡𝑠𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (𝑐) ;

10 𝑄𝑐𝑜𝑛𝑠 ← 𝑄𝑐𝑜𝑛𝑠 ∪𝑄𝑐𝑢𝑟 ;
11 for 𝑞 ∈ 𝑄𝑐𝑢𝑟 do
12 𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝑇𝑜𝐶𝑜𝑛𝑐 ← 𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝑇𝑜𝐶𝑜𝑛𝑐 ∪ (𝑞, 𝑐) ;

13 𝑄𝑐𝑜𝑛𝑛 ← 𝐺𝑒𝑡𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (𝑄𝑐𝑜𝑛𝑠) ;
14 if |𝑄𝑐𝑜𝑛𝑛 | < 𝑘 then
15 return −1;
16 𝐺𝑜𝑜𝑑𝐶𝑜𝑛𝑐 ← ∅;
17 for 𝑞 ∈ 𝑄𝑐𝑜𝑛𝑛 do
18 for 𝑐 ∈ 𝑄𝑢𝑒𝑟𝑖𝑒𝑠𝑇𝑜𝐶𝑜𝑛𝑐 (𝑞) do
19 𝐺𝑜𝑜𝑑𝐶𝑜𝑛𝑐 ← 𝐺𝑜𝑜𝑑𝐶𝑜𝑛𝑐 ∪ {𝑐 };

20 𝑄𝑐𝑖𝑚 ← 𝐺𝑒𝑡𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (𝑄𝑐𝑜𝑛𝑛) ;
21 if |𝑄𝑐𝑖𝑚 | < 𝑘 then
22 return −1;

23 return |𝑄𝑐𝑖𝑚 |;

information. First, the algorithm creates a set of all possible abstrac-

tion (line 1) and sorts it in increasing order by the number of edges

in the abstraction tree used by each of the abstractions (ties are

broken by their loss of information, line 2). Then it initializes the

optimal abstraction to be 𝑛𝑢𝑙𝑙 and the optimal loss of information

to be∞ (line 3). For each abstraction, the algorithm first computes

the loss of information (line 5). If the loss of information is lower

than the optimal loss observed, it computes the privacy (line 7), oth-

erwise, it continues to the next abstraction. If the computed privacy

meets the privacy threshold, the algorithm updates the optimal

abstraction to be the current one, and updates the current optimal

loss of information (lines 8–9). Finally, it returns the abstraction

that meets the privacy threshold and incurred the minimum loss of

information (or ∅ if no abstraction has been found).

Algorithm 2: Find Optimal Abstraction

input :𝐾 -example 𝐸𝑥 , abstraction tree𝑇 , privacy threshold 𝑘

output :Optimal abstraction

1 𝐴← 𝐴𝑙𝑙𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐸𝑥,𝑇) ;
2 𝐴𝑠𝑜𝑟𝑡 ← 𝑆𝑜𝑟𝑡𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐴,𝑇) ;
3 𝑎𝑏𝑒𝑠𝑡 ← ∅; 𝑙𝑏𝑒𝑠𝑡 ←∞;
4 for 𝑎 ∈ 𝐴𝑠𝑜𝑟𝑡 do
5 𝑙 ← 𝐺𝑒𝑡𝐿𝑜𝑠𝑠𝑂𝑓 𝐼𝑛𝑓 𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 (𝑎) ;
6 if 𝑙 < 𝑙𝑏𝑒𝑠𝑡 then
7 𝑝 ← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑃𝑟𝑖𝑣𝑎𝑐𝑦 (𝑎) ;
8 if 𝑝 ≥ 𝑘 then
9 𝑎𝑏𝑒𝑠𝑡 ← 𝑎; 𝑙𝑏𝑒𝑠𝑡 ← 𝑙 ;

10 return 𝑎𝑏𝑒𝑠𝑡 ;

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

385

Example 4.3. Reconsider the 𝐾-example 𝐸𝑥𝑟𝑒𝑎𝑙 and the abstrac-
tion tree 𝑇 (shown in Figures 2a and 3 resp.). Assume that the pri-
vacy threshold is 2 and the loss of information is entropy with dis-
crete uniform distribution. First, the algorithm creates a set of all
possible abstracted 𝐾-examples of 𝐸𝑥𝑟𝑒𝑎𝑙 . Among these we have
𝐸𝑥𝑎𝑏𝑠1 and 𝐸𝑥𝑎𝑏𝑠3 (depicted in Figure 5). The corresponding abstrac-
tion functions are 𝐴1

𝑇
and 𝐴3

𝑇
(shown in Figure 4). The algorithm

starts iterating all abstractions until it gets to 𝐸𝑥𝑎𝑏𝑠3 = 𝐴3

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙),

which does not meet the threshold (as shown in Example 4.2). Then,
the algorithm gets to 𝐸𝑥𝑎𝑏𝑠1 = 𝐴1

𝑇
(𝐸𝑥𝑟𝑒𝑎𝑙). Its privacy is 2 (see

Example 3.13), satisfying the threshold. The loss of information is
ln |𝐶 (𝐸𝑥𝑎𝑏𝑠1) | = ln(5 · 3) = ln 15 ≈ 2.708 (Proposition 3.5). Since
this is the first abstraction that meets the threshold, we keep it as
the current optimal one. The algorithm continues to iterate over all
other abstractions for which the loss of information is smaller than
the current optimal one. Since all of them do not satisfy the privacy
threshold, it returns 𝐸𝑥𝑎𝑏𝑠1 as the optimal abstraction.

Complexity. Given a 𝐾-example 𝐸𝑥 and an abstraction tree 𝑇 ,

the complexity of Algorithm 2 for finding the optimal abstraction

is 𝑂 ((ℎ𝑙)𝑛𝑞) where ℎ is the height of 𝑇 , 𝑙 = |𝐿𝑇 | is the number of

leaves in𝑇 , 𝑛 = |𝑉𝑎𝑟 (𝐸𝑥)∩𝐿𝑇 | is the number of variables in 𝐸𝑥 that

appears in𝑇 and 𝑞 is an exponential expression in the arity (all con-

sidered queries have the same arity) which involves the consistency

checks [24], connectivity check and containment checks [11]. First,

the number of abstractions is𝑂 (ℎ𝑛) since there are 𝑛 variables that

can be abstracted, and for each one of them we have ℎ options of

abstracted values. Thus, for each abstraction we compute the con-

cretization set which is of size 𝑂 (𝑙𝑛) (since |𝐶 (𝐴𝑇 (𝐸𝑥)) | ≤ |𝐿𝑇 |𝑛
from Proposition 3.5) and check for consistency, connectivity and

containment in 𝑂 (𝑞). Our experimental evaluation that follows

shows the practical efficiency of our solution.

Table 3: Privacy computation for the semirings (or semimod-
ules) from [1, 33] and different query classes. The approach
we have detailed so far is designed for the scenario given
in the gray cell and the modifications needed to adjust it to
the other scenarios are given in the corresponding cells. The
𝐿𝑖𝑛(𝑋) semiring is discussed in the text

N[𝑋], B[𝑋] 𝑇𝑟𝑖𝑜 (𝑋) , 𝑃𝑜𝑠𝐵𝑜𝑜𝑙 (𝑋) ,𝑊ℎ𝑦 (𝑋)
CQ Alg. 1 Change line 9 to Alg. 2 in [24]

UCQ, AGG Change lines 13 and 20 Change lines 9, 13 and 20

Extending the solution. Table 3 summarizes the augmen-

tations needed for Algorithm 1 when the provenance in the 𝐾-

example is given in different semirings (table columns) and the

query is permitted to be CQ, UCQ or aggregate query as specified

in Section 2.1 (table rows).

Gray cell. First, for the N[𝑋] and B[𝑋] semirings, Algorithm 1

does not need to be modified for CQs, as the B[𝑋] semiring simply

drops coefficients from the polynomials and coefficients do not

have an impact on the algorithm.

Orange cell. For UCQs (and aggregate queries), line 13 needs to

be adjusted to account for the definition of disconnected UCQ (a

UCQ containing a disconnected CQ). Moreover, in line 20 we may

get CIM queries that are trivial, i.e., the simple union of the tuples

that participate in the provenance of a concretization is a CIM

query. Therefore, we can augment this procedure by eliminating

such trivial queries by, e.g., changing Definition 3.10 that every

CIM query has to have at least one variable.

Red cell. The semirings 𝑇𝑟𝑖𝑜 (𝑋), 𝑃𝑜𝑠𝐵𝑜𝑜𝑙 (𝑋)and𝑊ℎ𝑦 (𝑋) drop
coefficients as well as powers and even monomials subsumed by

other monomials (𝑃𝑜𝑠𝐵𝑜𝑜𝑙 (𝑋)). The procedure for finding consis-
tent queries in line 9, therefore, needs to be adjusted to Algorithm 2

from [24] that finds consistent queries when given the provenance

in these semirings. The algorithm accounts for the missing powers

by expanding the provenance as much as needed until a consis-

tent query is found. The algorithm proposed in [24] needs to be

augmented as specified in Bullet (1) at the beginning of Section 4.2.

Green cell. Similarly, for UCQs and aggregate queries, lines 9, 13,

and 20 have to change in the aforementioned manners.

The 𝐿𝑖𝑛(𝑋) semiring. For the 𝐿𝑖𝑛(𝑋) semiring, adapting our

solution is more challenging. This semiring incurs a significant

loss of information about the query structure [33], both due to the

nature of the semiring and due to the order relation in Definition 3.8.

For example, the provenance represented in the N[𝑋] semiring

2𝑎𝑏2 is represented as {𝑎, 𝑏}. Furthermore, the order relation is

translated to set containment, and thus, the provenance shown in

the 𝐾-example can be any subset of the original set, i.e., the empty

subset is also valid as provenance. If only part of the provenance

set is given (i.e., there are missing tuples in the provenance set), we

may employ an approach that ‘completes’ the provenance in the

most reasonable way for every concretization [30] and then apply

our solution as a subsequent step. If no provenance is given, we

may be able to utilize methods from the field of query-by-example

and query reverse-engineering [39, 47, 51, 53, 54] to find the query

structure strictly from the output, such as column mappings and

candidate query generation. This will be the subject of future work.

The dual problem. The dual problem is defined as searching

for the optimal abstraction whose loss of information does not

exceed a certain threshold 𝑙𝑚𝑎𝑥 . Algorithm 2 can be adjusted to

solve this problem using the following changes: (1) initializing

𝑝𝑏𝑒𝑠𝑡 ← 0 in line 3 (𝑝𝑏𝑒𝑠𝑡 will store the current optimal privacy),

(2) changing the condition in line 6 to be 𝑙 < 𝑚𝑖𝑛(𝑙𝑏𝑒𝑠𝑡 , 𝑙𝑚𝑎𝑥) (this
will limit the abstraction we scan to those which do not exceed the

given threshold 𝑙𝑚𝑎𝑥), (3) changing the condition in line 8 to be

𝑝 ≥ 𝑝𝑏𝑒𝑠𝑡 (this will optimize the privacy of the output abstraction)

and (4) adding 𝑝𝑏𝑒𝑠𝑡 ← 𝑝 to line 9 (this will update the current

best privacy for the next abstractions we scan). With those changes,

the algorithm terminates if the loss of information exceeds 𝑙𝑚𝑎𝑥 .

This reduces the number of abstractions considered, thus the dual

problem is more efficiently solvable.

Constructing abstraction trees. Domain experts who know

the database structure may be able to phrase rules that place an-

notations of similar tuples in proximity in the tree. For example,

tuples containing the same values in the same attributes (e.g., Fig-

ure 3), or are included in the same relation, etc. Another possible

manner of constructing abstraction trees is based on ontologies
that encode abstractions for the different tuples by grouping tuples

with similar meaning. Existing methods for identifying semantic

relationships between tuples may be used [37, 40]. To further hone

the constructed tree in terms of height and size, users could input

the relevant queries and database to our system and try to adjust

those parameters so that the system incurs the fastest runtime (see

Figures 10 and 12 in Section 5). The height can be adjusted, e.g., by

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

386

adding or removing sub-categories in the ontology. The size can

be modified by adding more tuples from the database to the tree.

If the tree contains more tuple annotations, more abstractions are

possible, which affects the possibility of finding an abstraction that

meets the privacy threshold using less edges in the tree.

5 EXPERIMENTS
We next detail the settings of our experimental study and its results.

We further show end-to-end use cases of our framework.

The algorithms were implemented in Java 13 using the TreeNode

interface implementation to represent the abstraction trees. All

experiments were performed on Mac OS 10.15, 64-bit, with 16GB

of RAM and Intel Quad-Core i7 2.2 GHz processor.

5.1 Settings and Summary of the Results
We next review the settings and the summary of our experiments.

Settings. We study the scalability of our solution in terms of

runtimes and the size of the optimal abstraction, i.e., the output

of the algorithm (we measure the size as the number of edges in

the abstraction tree that were used to get the optimal abstraction).

For runtime experiments and the size of optimal abstraction exper-

iments, we use the settings shown in Table 4. To our knowledge,

there is no comparable solution in previous work. We thus use

the brute force approach as a baseline, studying the effects of each

of our algorithm components described in Section 4.1. We have

used the TPC-H dataset [5] which consists of a suite of business ori-

ented queries and the IMDBmovies dataset [38]. We have randomly

sampled a database of 1GB for all experiments. Our basic settings

is a privacy threshold of 5; 5-levels abstraction tree with 10000

leaves (10244 nodes); 2 rows in 𝐾-example; and discrete uniform

distribution for the loss of information measure.

Abstraction trees. The TPC-H abstraction tree consists of a sin-

gle relation ‘lineitem’, randomly divided into subcategories evenly

throughout the tree. The IMDB abstraction tree was created as

follows: (1) Directors and actors were categorized by their year

of birth, which were further categorized by ranges of years. (2)

Tables that connect actors and directors to movies were categorized

similarly. (3) Genres were categorized by the genre type. (4) Movies

were categorized by their released year, which were further catego-

rized by ranges. (5) Each one of the previous was categorized under

a main category and all of those were categorized under the root.

Queries. We have used the TPC-H queries whose details appear

in Table 5.We have adapted those queries to our setting, i.e., we have

converted them to CQs by dropping aggregation and arithmetics.

The queries are relatively complex (e.g., Q21 includes a triple self-

join, i.e., a relation name occurring in 3 atoms). We also use the

following IMDB queries: (Q1) All the actors starring in a movie from

1995, (Q2) All the actors who starred in a drama movie directed

by an american director, (Q3) All the actors which have a bacon

number of 1 (actors who act in a movie with Kevin Bacon), (Q4)

All the directors which created an action movie and a comedy

movie, (Q5) All the comedy movies starred by an actor born in 1978,

(Q6) All the directors who directed a movie starring Tom Cruise,

and (Q7) All the actors who act in at least two action movies. All

experiments were performed with all the queries. However, to avoid

Table 4: Scalability experiments settings for Figures 7–15
Figures

Privacy
threshold

Abstraction
tree size

Abstraction
tree height

rows in
𝐾-example

7, 8, 9 varying 10244 5 2

10, 11 5 varying 5 2

12, 13 5 10244 varying 2

14 5 10244 5 2

15 5 10244 5 varying

Table 5: TPC-H and IMDB queries for the experiments
TPCH Query # Atoms # Joins

Q3 3 2

Q4 2 1

Q5 7 6

Q7, Q9 & Q21 6 5

Q10 4 3

IMDB Query # Atoms # Joins
Q1 3 2

Q2 6 5

Q3 & Q6 5 4

Q4 & Q7 7 6

Q5 4 3

visual overloading in graphs and since the results of queries TPCH-

Q5, TPCH-Q9, IMDB-Q3 and IMDB-Q4 were very similar to the

results of queries TPCH-Q3, TPCH-Q7, IMDB-Q6 and IMDB-Q7

respectively, we omit their curves from the graphs.

Summary of the results.
(1) Our solution scales well with the first three parameters in Ta-

ble 4, due to the components presented in Section 4.1.

(2) An increase in the number of rows in the 𝐾-example causes

a significant runtime increase compared to the other parameters

since Algorithm 2 often has to iterate and analyze all possible

abstractions, as in the brute force approach.

(3) The tree height that yields minimum runtime for finding an

optimal abstraction varies according to the query structure, though

the number of required tree edges used steadily increases.

(4) As the size of the tree increases, the time for finding the optimal

abstractions also increases, however, the number of required tree

edges used for the abstraction decreases.

(5) Our solution is not sensitive to the loss of information distribu-

tion used, i.e., changing this parameter will not significantly change

the runtime. However, the optimal abstraction may change since

the distributions has changed, so another abstraction can now incur

a smaller loss of information.

(6) The effect of the components described in Section 4.1 was dra-

matic in improving the scalability of our solution.

(7) Compared to a provenance compression approach that also

utilizes abstraction trees [25], our solution is able to output abstrac-

tions with a significantly lower loss of information.

(8) We conducted a comprehensive user study, showing that users

are unable to infer the original query from the abstracted𝐾-example,

while still being able to use the provenance to answer hypothetical

questions about the data.

5.2 Results
We next detail our scalability results for the different settings.

Privacy threshold. For this experiment we have increased the

privacy threshold while fixing the other parameters (first row in

Table 4). There are no strong and clear criteria on how to choose

the privacy threshold exactly. For example, in the healthcare world

when medical data is shared with 𝑘-anonymity property with a

small number of people (typically for research purposes), 𝑘 is often

chosen between 5 and 15. Thus, we have increased the privacy

threshold from 2 to 20. For privacy thresholds larger than 20, we

noticed that the optimal abstraction returned had a significantly

larger privacy than requested. For example, for a privacy threshold

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

387

of 23, in 90% of the runs the algorithm returned an optimal abstrac-

tion with at least 2× privacy than requested (i.e., the number of

CIM queries of the optimal abstraction was at least 2× larger than

the threshold). We have performed the following experiments:

(a) Runtime. The results are shown in Figure 7 and indicate that

our solution remains scalable even for a large privacy threshold.

(b) Optimal abstraction size. We use ‘Optimal abstraction size’ to

represent the number of abstraction tree edges used in the optimal

abstraction. The results are shown in Figure 8 and indicate that we

do not need a much larger abstraction to get larger privacy. We can

see here that for TPCH-Q21 whose runtime was the slowest, we

need fewer edges than for the other queries.

(c) Loss of information. We study the loss of information as a func-

tion of varying privacy threshold. The results are shown in Figure 9

and indicate that the loss of information increases as privacy in-

creases, as expected.

Figure 7: Runtime for varying number of privacy thresholds

Figure 8: Optimal abstraction size for varying number of pri-
vacy thresholds

Figure 9: Loss of information for varying privacy thresholds

Abstraction tree size. For this experiment we have increased

the number of leaves in the tree from 10K to 810K. We have per-

formed the following experiments:

(a) Runtime. The results are shown in Figure 10. Our solution

remains scalable even when the size of the abstraction tree nears

the size of the data. We observed a similar trend when the tree size

reached the data size. TPC-H queries Q3, Q5 and Q10 were faster

than the rest since they have one ‘lineitem’ atomwhich is connected

to the rest of the query by a single attribute, as opposed to the other

queries. Hence, there are fewer restrictions on these queries in

terms of connectivity, making it easier to find CIM queries.

(b) Optimal abstraction size. The results are shown in Figure 11

and indicate that when the abstraction tree is larger, the optimal

abstraction requires fewer edges. The reason for this is that when

the abstraction tree is larger there are more concretizations for each

abstraction, and then the privacy can be larger for such abstractions.

Here we have not directly measured Loss of Information since it

depends on the tree structure which is varied here.

Figure 10: Runtime for varying abstraction tree size

Figure 11: Optimal abstraction size for varying tree size

Abstraction tree height. We next examined the abstraction

tree height. We have performed the following experiments:

(a) Runtime. The results are shown in Figure 12. Interestingly,

we noticed that every query has an optimal height for which the

runtimes are the fastest (e.g., for TPCH-Q7, the optimal height is 5).

Particularly, there is no trend of the sort “higher tree implies longer

runtime to find the optimal abstraction". Instead, the tree height

that yields the fastest runtime is dependent on the query structure.

(b) Optimal abstraction size. The results are shown in Figure 13

and indicate that the optimal abstraction size increases when the

tree height increases.

We have observed that different queries require traversing a dif-

ferent number of concretizations to achieve the desired privacy. If

the query is relatively simple (e.g., TPCH-Q4) it needs less and if

the query is relatively complicated (e.g., TPCH-Q21) it needs more.

On the one hand, if the tree is not sufficiently high, every abstrac-

tion has more concretizations than we need, so the runtime will be

slower. On the other hand, if the tree is too high, every abstraction

has fewer concretizations than we need, so we have to scan more

abstractions to find a solution and the runtime will also be slower.

Figure 12: Runtime for varying abstraction tree height

Figure 13: Optimal abstraction size for varying tree height

Number of query joins (query complexity). In this experi-

ment we used TPC-H queries Q5, Q7, Q9, Q21 and IMDB queries

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

388

Q2, Q4, Q7 (as this is the subset of queries with at least 6 joins)

and examined the change in runtime as we increase the number of

joins in each. We do so by starting with a version of the queries

with only 3 joins and adding an atom for each tick on the X axis.

The results (depicted in Figure 14) show that the runtime is not

significantly affected by the increase in the number of joins.

Figure 14: Runtime for varying number of joins

𝐾-example rows. We examine our scalability in terms of in-

creased the number of rows in the𝐾-example. The results (shown in

Figure 15) indicate that the number of rows is a determining factor

in the runtime of our algorithm. This is because a large number of

rows implies fewer CIM queries for each concretization (since each

row must be connected). Therefore, the algorithm was forced to

try all possible (exponentially many) abstractions, similarly to the

brute force approach, which significantly worsened the runtime.

In particular, for TPCH-Q21, the algorithm had to examine a large

number of abstractions since this query includes three joined atoms

with the ‘lineitem’ relation, where each of them can be abstracted.

Figure 15: Runtime for varying 𝐾-example rows

Loss of information distribution. We have conducted all of

the experiments for two loss of information distributions. The first

is entropy with discrete uniform distribution and the second is

entropy with random distribution (Section 3.2). We found that on

average, the runtimes are not affected by different distributions. As

the probabilities change, the optimal abstraction for one distribution

may not necessarily be the optimal for the other one. For example,

if there is another abstraction with the same privacy, it may now

have a smaller loss of information and will be the new optimal one.

Comparing to a different abstraction approach. The no-

tion of abstraction trees was presented in [25], where the goal of

the abstraction was reducing the provenance size. We used this

approach to construct an alternative algorithm for our problem.

Since the framework of [25] was not designed to achieve privacy,

we used it as a black-box, and executed it multiple times with a

decreasing target provenance size, until we met the desired privacy

threshold. We compared the loss of information incurred by our

algorithm to that of [25]. The results are shown in Figure 16. The

compression-based approach of [25] unnecessarily increases the

loss of information by approximately 2× to 3× to achieve the same

privacy as our approach.

Effect of each algorithm component. We now present the

effects on the execution time of the five algorithm components we

Figure 16: Loss of information for varying privacy thresh-
olds, for our approach and the approach from [25]

have detailed in Section 4.1, compared to a brute-force approach.

The effect of each component is measured as a standalone optimiza-

tion. Figure 17 shows the results for each component. Referring to

the names of the components in Section 4.1, ‘Sorting the abstrac-

tions’ and ‘Prioritizing loss of information over privacy computa-

tion’ have improved performance by a factor of over 500×. The
third component of ‘Computing privacy row by row’ has improved

performance by approximately 2× to 4× for a𝐾-example with three

rows. For a 𝐾-example with four rows, it improved performance

by approximately 10× to 100×. For 𝐾-example with more than five

rows we were unable to find a solution to the problem in a rea-

sonable time using the brute force approach, in contrast to our

approach. The fourth component, ‘Concretizations connectivity’,

has improved performance by approximately 1.5× to 1.8× when

we filtered out about 60% of the concretizations. The last compo-

nent, ‘Caching information about concretizations and queries’, has

improved performance by approximately 1.5× to 4×.

Figure 17: Effect of each of algorithm component from Sec-
tion 4.1 as compared to the brute force approach (brute force
execution time is marked by 100%)

User Study: We have conducted a user study, involving 12 users

with knowledge of databases. The users were randomly divided into

two groups of equal size: control group (Group A) and treatment

group (Group B). We used IMDB-Q3 (all the actors who played

in a movie with the actor Kevin Bacon), the IMDB abstraction

tree, 2 rows of output, and a privacy threshold of 2. Then, with

Algorithm 2 we found the optimal abstraction. Group A was given

the output with the original provenance while group B received

the output with the abstracted provenance and the abstraction tree.

The users were given two tasks: (1) Infer the underlying query from

the original (Group A)/abstracted (Group B) provenance and (2)

Answer 10 hypothetical questions regarding the effect of deleting

rows (e.g., regarding action movies) from the database on the query

result. The study results are summarized in Table 6.

For the first task, all members of group A and none of the mem-

bers of group B were able to identify the original query. For the

second task, the members of group A were able to answer on aver-

age 9.6 out of 10 questions correctly, while the members of group B

were able to answer on average 8.5 out of 10 questions. This shows

a reasonable loss of information. The breakdown of correct answers

is shown in Figure 18 and indicates the following conclusions. In

most cases, the abstracted provenance has provided enough infor-

mation to answer the question. For example, for question Q6, which

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

389

considers the effect of the removal of all comedy movies released af-

ter 1980, the abstracted provenance could be used to determine the

correct answer. This is because the abstracted value that replaced

the relevant tuple was “comedy movie released in 1990–2000”. In

some cases, there were a few mistakes due to misunderstandings or

lack of concentration. In contrast, naturally, there were cases where

the abstracted provenance was not detailed enough to answer the

question. For instance, question Q9, that refers to a case where

directors born before 1970 are removed from the database. The

abstracted provenance indicated that the output is related to a per-

son born between 1950 to 1960, but not to the person’s role in the

movie (actor or director), thus the members of group B were unable

to answer the question. Overall, our user study indicates that our

method was successful in hiding the original query and incurred a

reasonable loss of information in terms of using provenance.

Table 6: User Study Results Summary
Group A Group B

Number of group members that were

able to find the original query
6/6 (100%) 0/6 (0%)

Number of correct answers in

hypothetical questions (on average)
9.6/10 (96%) 8.5/10 (85%)

Figure 18: Breakdown of correct answers in hypothetical
questions of the user study

6 RELATEDWORK
We next review previous work in the fields of provenance and

privacy, highlighting our novelty.

There is a wealth of works on data provenance and its uses, in-

cluding relational algebra, XML query languages, Nested Relational

Calculus, and functional programs (see e.g., [8, 16, 28, 29, 31, 34,

45, 50] and a survey [36]). These works have generally focused

on provenance modeling, efficient tracking and storage, and algo-

rithms that use provenance for different applications. As such, they

are orthogonal to our work. Extending our solutions to additional

query and provenance formalisms proposed in these works is an

important challenge for future work.

The area of privacy and security in the context of provenance has

been explored by various works [2, 6, 17, 19–21, 43, 44, 52]. These

works have focused on privacy and security in different settings

than ours such as IoT [44], Blockchain [43] and workflows [19–21],

while our focus was the relational setting. The difference in the set-

ting is reflected in the provenance models (we focus on provenance

polynomials whereas, e.g., [19] focuses on workflow provenance in

the form of input-output relationship between modules). In turn,

the technical problems and solutions are inherently different.

A recent work on fine-grained provenance privacy [24] has fo-

cused on learning queries from 𝐾-examples where the provenance

is given in different semirings [33, 34]. It showed that reducing

the granularity of the provenance by using less detailed semirings

(which may be seen as an alternative to our approach of abstract-

ing provenance expressions) is inadequate for privacy purposes: it

does not introduce significant added difficulty when attempting to

reverse-engineer the underlying query.

In [19–21] the authors studied workflow privacy, with a privacy

criterion inspired by 𝑙-diversity [41] and 𝑘-anonymity [49]. This

model achieves privacy by obfuscating entire attributes of a rela-

tion that represents a workflow. In contrast, we do not focus on

black-box modules, but rather on detailed fine-grained provenance

obtained from queries. This makes the technical results of these

works inapplicable to our setting. The work of [17] has described an

abstract framework for provenance security and defines the notions

of the disclosure and obfuscation properties of provenance. Given

a query and two traces, the problem is then to determine whether

the output of the query is equal on these two traces, if they have

the same provenance view. A prominent difference from our model

is the assumption that the underlying query is known which makes

the problem definition and solution fundamentally different.

Previous work on abstracting provenance has primarily focused

on workflow provenance abstractions and graph abstractions [7,

10, 13, 14, 18, 25, 26], mainly for the purpose of reducing the prove-

nance size and/or optimizing its generation. Security Views [13] is

a framework for access control where users can specify the desired

security of the components of a scientific workflow. The frame-

work then omits the inaccessible components from the provenance

view. ZOOM [7] abstracts the provenance view by grouping mod-

els together allowing users to focus only on the relevant part of

the workflow, and ProPub [26] allows users to publish provenance

while anonymizing, abstracting, or hiding parts of the provenance

graph. Here again, the models and problems that are studied in

these works significantly differ from those of the present work.

Query reverse-engineering from output examples [39, 47, 51, 53,

54] attempts to assist users who lost access to the original query

or want to automatically infer a query based on output examples.

Such systems may be of use in the computation of privacy when

the provenance is given in the 𝐿𝑖𝑛(𝑋) semiring, as mentioned in

Section 4. This is an intriguing subject of future work.

7 CONCLUSION AND LIMITATIONS
We have proposed in this paper a novel framework for striking a bal-

ance between utility and privacy when releasing data provenance.

The framework is based on obfuscating provenance by identify-

ing annotations appearing in it, thereby hiding to some extent the

query whose execution has yielded the provenance. This kind of

obfuscation may be done in many ways, and we aim at choosing

the optimal one. The resulting problem is NP-hard, yet we have

provided practically effective heuristics.

There are many important directions for future work. First, our

work assumes an abstraction tree as input, whichmay not be readily

given. (Semi-)automatic inference of abstraction trees, as briefly

discussed in the paper, is an important problem. Second, our loss-

of-information model relies on a probability distribution over the

leaves, and in our experiments, we have mostly assumed a uniform

distribution; we intend to study means for inferring probabilities,

as well as other weight-based models for loss of information.

Acknowledgements. This research was funded by the Euro-

pean Research Council (ERC) under the European Union’s Hori-

zon 2020 research and innovation programme (Grant agreement

No. 804302) and the Israeli Science Foundation (ISF) Grant No. 978/17.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

390

REFERENCES
[1] Yael Amsterdamer, Daniel Deutch, and Val Tannen. Provenance for aggregate

queries. In PODS, pages 153–164, 2011.
[2] Paul Anderson and James Cheney. Toward provenance-based security for config-

uration languages. In Umut A. Acar and Todd J. Green, editors, 4th Workshop on
the Theory and Practice of Provenance, TaPP, 2012.

[3] Bahareh Sadat Arab, Dieter Gawlick, Vasudha Krishnaswamy, Venkatesh Radhakr-

ishnan, and Boris Glavic. Reenactment for read-committed snapshot isolation.

In CIKM, pages 841–850, 2016.

[4] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen. Algorithms for provi-

sioning queries and analytics. In ICDT, volume 48, pages 18:1–18:18, 2016.

[5] TPC Benchmark. http://www.tpc.org/tpch.

[6] Elisa Bertino, Gabriel Ghinita, Murat Kantarcioglu, Dang Nguyen, Jae Park,

Ravi S. Sandhu, Salmin Sultana, Bhavani M. Thuraisingham, and Shouhuai Xu.

A roadmap for privacy-enhanced secure data provenance. J. Intell. Inf. Syst.,
43(3):481–501, 2014.

[7] Olivier Biton, Sarah Cohen Boulakia, Susan B. Davidson, and Carmem S. Hara.

Querying and managing provenance through user views in scientific workflows.

In ICDE, pages 1072–1081, 2008.
[8] P. Buneman, J. Cheney, and S. Vansummeren. On the expressiveness of implicit

provenance in query and update languages. ACM Trans. Database Syst., pages
28:1–28:47, 2008.

[9] P. Buneman, S. Khanna, and W.C. Tan. Why and where: A characterization of

data provenance. In ICDT, pages 316–330, 2001.
[10] Tyrone Cadenhead, Vaibhav Khadilkar, Murat Kantarcioglu, and Bhavani M.

Thuraisingham. Transforming provenance using redaction. In SACMAT, pages
93–102, 2011.

[11] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries

in relational data bases. In STOC, pages 77–90, 1977.
[12] Adriane Chapman and H. V. Jagadish. Why not? In SIGMOD, pages 523–534,

2009.

[13] Artem Chebotko, Seunghan Chang, Shiyong Lu, Farshad Fotouhi, and Ping Yang.

Scientific workflow provenance querying with security views. InWAIM, pages

349–356, 2008.

[14] Artem Chebotko, Shiyong Lu, Seunghan Chang, Farshad Fotouhi, and Ping Yang.

Secure abstraction views for scientific workflow provenance querying. IEEE
Trans. Serv. Comput., 3(4):322–337, 2010.

[15] Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revis-

ited. Theoretical Computer Science, 239(2):211 – 229, 2000.

[16] J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in databases: Why, how, and

where. Foundations and Trends in Databases, pages 379–474, 2009.
[17] James Cheney. A formal framework for provenance security. In CSF, pages

281–293, 2011.

[18] James Cheney and Roly Perera. An analytical survey of provenance sanitization.

In IPAW, volume 8628, pages 113–126, 2014.

[19] Susan B. Davidson, Sanjeev Khanna, TovaMilo, Debmalya Panigrahi, and Sudeepa

Roy. Provenance views for module privacy. In PODS, pages 175–186, 2011.
[20] Susan B. Davidson, Sanjeev Khanna, Sudeepa Roy, Julia Stoyanovich, Val Tannen,

and Yi Chen. On provenance and privacy. In ICDT, pages 3–10, 2011.
[21] Susan B. Davidson, Sanjeev Khanna, Val Tannen, Sudeepa Roy, Yi Chen, Tova

Milo, and Julia Stoyanovich. Enabling privacy in provenance-aware workflow

systems. In CIDR, pages 215–218, 2011.
[22] Daniel Deutch, Ariel Frankenthal, Amir Gilad, and Yuval Moskovitch. On op-

timizing the trade-off between privacy and utility in data provenance. CoRR,
abs/2103.00288, 2021.

[23] Daniel Deutch, Nave Frost, and Amir Gilad. Explaining natural language query

results. VLDB J., 29(1):485–508, 2020.
[24] Daniel Deutch and Amir Gilad. Reverse-engineering conjunctive queries from

provenance examples. In EDBT, pages 277–288, 2019.
[25] Daniel Deutch, Yuval Moskovitch, and Noam Rinetzky. Hypothetical reasoning

via provenance abstraction. In SIGMOD, pages 537–554, 2019.
[26] Saumen C. Dey, Daniel Zinn, and Bertram Ludäscher. Propub: Towards a declar-

ative approach for publishing customized, policy-aware provenance. In SSDBM,

volume 6809, pages 225–243, 2011.

[27] Facebook. Understand why you’re seeing certain ads and how you can adjust

your ad experience. https://about.fb.com/news/2019/07/understand-why-youre-

seeing-ads/.

[28] R. Fink, L. Han, and D. Olteanu. Aggregation in probabilistic databases via

knowledge compilation. PVLDB, 5(5):490–501, 2012.
[29] F. Geerts and A. Poggi. On database query languages for k-relations. J. Applied

Logic, pages 173–185, 2010.
[30] Amir Gilad and Yuval Moskovitch. Towards inferring queries from simple and

partial provenance examples. In CIKM, pages 3273–3276, 2020.

[31] B. Glavic, J. Siddique, P. Andritsos, and R. J. Miller. Provenance for data mining.

In TaPP, 2013.
[32] Google. Why you’re seeing an ad. https://support.google.com/accounts/answer/1634057.

[33] T. J. Green. Containment of conjunctive queries on annotated relations. In ICDT,
pages 296–309, 2009.

[34] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,
pages 31–40, 2007.

[35] Big Data UN Global Working Group. Un handbook on privacy-preserving com-

putation techniques. http://publications.officialstatistics.org/handbooks/privacy-

preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-

Preserving%20Techniques.pdf, 2019.

[36] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. A survey on

provenance: What for? what form? what from? VLDB J., 26(6):881–906, 2017.
[37] Bouchra El Idrissi, Salah Baïna, and Karim Baïna. Ontology learning from re-

lational database: How to label the relationships between concepts? In BDAS,
volume 521, pages 235–244, 2015.

[38] IMDB. https://www.imdb.com/interfaces.

[39] Dmitri V. Kalashnikov, Laks V. S. Lakshmanan, and Divesh Srivastava. Fastqre:

Fast query reverse engineering. In SIGMOD, pages 337–350, 2018.
[40] Man Li, Xiao-Yong Du, and Shan Wang. Learning ontology from relational

database. In 2005 International Conference on Machine Learning and Cybernetics,
volume 6, pages 3410–3415. IEEE, 2005.

[41] Ashwin Machanavajjhala, Johannes Gehrke, Daniel Kifer, and Muthuramakrish-

nan Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. In ICDE,
page 24, 2006.

[42] Fabio Ricciato, Albrecht Wirthmann, Kostas Giannakouris, Michail Skaliotis, et al.

Trusted smart statistics: Motivations and principles. Statistical Journal of the
IAOS, (Preprint):1–15, 2019.

[43] Pingcheng Ruan, Gang Chen, Anh Dinh, Qian Lin, Beng Chin Ooi, and Meihui

Zhang. Fine-grained, secure and efficient data provenance for blockchain. Proc.
VLDB Endow., 12(9):975–988, 2019.

[44] Jose Luis Canovas Sanchez, Jorge Bernal Bernabé, and Antonio F. Skarmeta.

Towards privacy preserving data provenance for the internet of things. InWF-
IoT, pages 41–46, 2018.

[45] Anish Das Sarma, Martin Theobald, and Jennifer Widom. Exploiting lineage for

confidence computation in uncertain and probabilistic databases. In ICDE, pages
1023–1032, 2008.

[46] Claude E Shannon. A mathematical theory of communication. The Bell system
technical journal, 27(3):379–423, 1948.

[47] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev Novik.

Discovering queries based on example tuples. In SIGMOD, pages 493–504, 2014.
[48] European Data Protection Supervisor. Preliminary opinion on privacy by de-

sign. https://edps.europa.eu/sites/edp/files/publication/18-05-31_preliminary_

opinion_on_privacy_by_design_en_0.pdf, 2018.

[49] Latanya Sweeney. K-anonymity: A model for protecting privacy. Int. J. Uncertain.
Fuzziness Knowl.-Based Syst., 10(5):557–570, 2002.

[50] Wang Chiew Tan. Containment of relational queries with annotation propagation.

In DBPL, pages 37–53, 2003.
[51] Wei Chit Tan, Meihui Zhang, Hazem Elmeleegy, and Divesh Srivastava. Reverse

engineering aggregation queries. Proc. VLDB Endow., 10(11):1394–1405, 2017.
[52] Yu Shyang Tan, Ryan K. L. Ko, and GeoffHolmes. Security and data accountability

in distributed systems: A provenance survey. In HPCC/EUC, pages 1571–1578,
2013.

[53] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. Query reverse

engineering. The VLDB Journal, 23(5):721–746, 2014.
[54] Meihui Zhang, Hazem Elmeleegy, Cecilia M. Procopiuc, and Divesh Srivastava.

Reverse engineering complex join queries. In SIGMOD, pages 809–820, 2014.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

391

http://www.tpc.org/tpch
http://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
http://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
http://publications.officialstatistics.org/handbooks/privacy-preserving-techniques-handbook/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://www.imdb.com/interfaces
https://edps.europa.eu/sites/edp/files/publication/18-05-31_preliminary_opinion_on_privacy_by_design_en_0.pdf
https://edps.europa.eu/sites/edp/files/publication/18-05-31_preliminary_opinion_on_privacy_by_design_en_0.pdf

	Abstract
	1 introduction
	2 Preliminaries
	2.1 Query Language and Provenance
	2.2 Provenance Abstraction Tree

	3 model
	3.1 Abstractions and Concretizations
	3.2 Loss of Information
	3.3 Privacy
	3.4 Problem Definition

	4 Hardness and Solution
	4.1 High Level Description
	4.2 Algorithm Details

	5 Experiments
	5.1 Settings and Summary of the Results
	5.2 Results

	6 related work
	7 Conclusion and Limitations
	References

