
Synthesizing Linked Data Under
Cardinality and Integrity Constraints

Amir Gilad
∗

Duke University

agilad@cs.duke.edu

Shweta Patwa
∗

Duke University

sjpatwa@cs.duke.edu

Ashwin Machanavajjhala

Duke University

ashwin@cs.duke.edu

ABSTRACT
The generation of synthetic data is useful in multiple aspects, from

testing applications to benchmarking to privacy preservation. Gen-

erating the links between relations, subject to cardinality constraints
(CCs) and integrity constraints (ICs) is an important aspect of this

problem. Given instances of two relations, where one has a foreign

key dependence on the other and is missing its foreign key (𝐹𝐾)

values, and two types of constraints: (1) CCs that apply to the join

view and (2) ICs that apply to the table with missing 𝐹𝐾 values, our

goal is to impute the missing 𝐹𝐾 values such that the constraints

are satisfied. We provide a novel framework for the problem based

on declarative CCs and ICs. We further show that the problem is

NP-hard and propose a novel two-phase solution that guarantees

the satisfaction of the ICs. Phase I yields an intermediate solution

accounting for the CCs alone, and relies on a hybrid approach

based on CC types. For one type, the problem is modeled as an

Integer Linear Program. For the others, we describe an efficient

and accurate solution. We then combine the two solutions. Phase II

augments this solution by incorporating the ICs and uses a coloring

of the conflict hypergraph to infer the values of the 𝐹𝐾 column.

Our extensive experimental study shows that our solution scales

well when the data and number of constraints increases. We further

show that our solution maintains low error rates for the CCs.

ACM Reference Format:
Amir Gilad, Shweta Patwa, andAshwinMachanavajjhala. 2021. Synthesizing

Linked Data Under Cardinality and Integrity Constraints. In Proceedings
of the 2021 International Conference on Management of Data (SIGMOD ’21),
June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3448016.3457242

1 INTRODUCTION
In recent years, we have witnessed an increase in data-centric ap-

plications that call for efficient testing over reliable databases with

certain desired qualities [11, 32]. Existing benchmarks such as TPC-

H [41, 52] may not possess the desired characteristics for testing

a specific application as they may not have the needed statistical

qualities or the correct Integrity Constraints (ICs). The field of data
generation [5, 9, 19, 22, 25, 35, 42, 44] has proven effective in this

∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00

https://doi.org/10.1145/3448016.3457242

respect. Two prominent challenges in this field are: (1) the gener-

ation of links between different tables, i.e., aligning foreign keys

with primary keys based on Cardinality Constraints (CCs) [5], and

(2) ensuring that the data will satisfy a set of expected ICs [48].

In particular, when the real data is sensitive and access to it

is heavily regulated, users often need to wait months or years to

get access to the real data before they can even start writing data

analysis programs. One solution is to generate realistic synthetic

data that satisfies some CCs and ICs so that users can: (a) start

writing code to analyse the data, (b) test it locally, and (c) evaluate

whether access to the data would be useful for their purposes even

before they get access to the real data. However, current methods

for generating synthetic data under privacy constraints (especially

state-of-the-art standards like differential privacy [17]) do not han-

dle data with a combination of CCs or statistical constraints and

ICs. Most, (e.g., [24, 47, 56]), only handle statistical constraints.

Furthermore, there has been a lot of recent work on answering

count queries under differential privacy (e.g., Matrix mechanism

[30], HDMM [36]) and in particular over relational databases [28].

A key challenge when answering queries especially over relational

databases is that of consistency – are the answers outputted by a

differentially private algorithm consistent with some underlying

database? While there is work on using inference to enforce con-

sistency when all the count queries are over a single view of the

underlying database [23], these techniques do not extend to the

case when: (a) the underlying database is relational and query an-

swers are over several joined views of the relations, and (b) when

the underlying database needs to satisfy some ICs. One solution to

this problem is to find a database that is consistent with the query

answers and the ICs, and answer queries from it. While techniques

for finding such a consistent database are known for single tables

without ICs [7, 23, 29], no such techniques are known when there

are multiple tables in a relational database with ICs.

Moreover, DBMS testing and other applications may require

databases that conform to both CCs and ICs to make them more

realistic [5, 48]. For instance, consider a table with the attributes

𝐴 and 𝐵. A query grouping over attributes 𝐴 and 𝐵 could return

as many tuples as the cross product of the active domains of 𝐴

and 𝐵. However, if there is a Functional Dependency 𝐴→ 𝐵, then

the output size of the group-by query is only the maximum of the

active domains of the two attributes. Thus, the presence of ICs can

significantly impact the performance characteristics of queries.

In this paper, we investigate the problem of generating the links
between database tables based on a set of linear CCs and a set of ICs.

Formally, we consider two relations, 𝑅1 and 𝑅2, where 𝑅1 has a

foreign key dependence on 𝑅2 and is missing all values in its foreign

key column 𝐹𝐾 . The goal is to impute 𝐹𝐾 in 𝑅1 based on the given

CCs and ICs. Importantly, this problem and our solutions can be

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

619

https://doi.org/10.1145/3448016.3457242
https://doi.org/10.1145/3448016.3457242

Persons (rel. 𝑅1)
𝑝𝑖𝑑 𝐴𝑔𝑒 𝑅𝑒𝑙 𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 ℎ𝑖𝑑
1 75 𝑂𝑤𝑛𝑒𝑟 0 ?

2 75 𝑂𝑤𝑛𝑒𝑟 1 ?

3 25 𝑂𝑤𝑛𝑒𝑟 0 ?

4 25 𝑂𝑤𝑛𝑒𝑟 1 ?

5 24 𝑆𝑝𝑜𝑢𝑠𝑒 0 ?

6 10 𝐶ℎ𝑖𝑙𝑑 1 ?

7 10 𝐶ℎ𝑖𝑙𝑑 1 ?

8 30 𝑂𝑤𝑛𝑒𝑟 0 ?

9 30 𝑂𝑤𝑛𝑒𝑟 1 ?

Housing (rel. 𝑅2)
ℎ𝑖𝑑 𝐴𝑟𝑒𝑎

1 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

2 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

3 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

4 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

5 𝑁𝑌𝐶

6 𝑁𝑌𝐶

Figure 1: Database D with FK ℎ𝑖𝑑 missing from 𝑅1

𝐷𝐶𝑂,𝑂 : ∀𝑡1, 𝑡2 . ¬(𝑡1 .𝑅𝑒𝑙 = 𝑡2 .𝑅𝑒𝑙 = 𝑂𝑤𝑛𝑒𝑟 ∧ 𝑡1 .ℎ𝑖𝑑 = 𝑡2 .ℎ𝑖𝑑)
𝐷𝐶𝑂,𝑆,𝑙𝑜𝑤 : ∀𝑡1, 𝑡2 . ¬(𝑡1 .𝑅𝑒𝑙 = 𝑂𝑤𝑛𝑒𝑟 ∧ 𝑡2 .𝑅𝑒𝑙 = 𝑆𝑝𝑜𝑢𝑠𝑒∧

𝑡2 .𝐴𝑔𝑒 < 𝑡1 .𝐴𝑔𝑒 − 50 ∧ 𝑡1 .ℎ𝑖𝑑 = 𝑡2 .ℎ𝑖𝑑)
𝐷𝐶𝑂,𝑆,𝑢𝑝 : ∀𝑡1, 𝑡2 . ¬(𝑡1 .𝑅𝑒𝑙 = 𝑂𝑤𝑛𝑒𝑟 ∧ 𝑡2 .𝑅𝑒𝑙 = 𝑆𝑝𝑜𝑢𝑠𝑒∧

𝑡2 .𝐴𝑔𝑒 > 𝑡1 .𝐴𝑔𝑒 + 50 ∧ 𝑡1 .ℎ𝑖𝑑 = 𝑡2 .ℎ𝑖𝑑)
𝐷𝐶𝑂,𝐶,𝑙𝑜𝑤 : ∀𝑡1, 𝑡2 . ¬(𝑡1 .𝑅𝑒𝑙 = 𝑂𝑤𝑛𝑒𝑟 ∧ 𝑡1 .𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 1 ∧ 𝑡2 .𝑅𝑒𝑙 =

𝐶ℎ𝑖𝑙𝑑 ∧ 𝑡2 .𝐴𝑔𝑒 < 𝑡1 .𝐴𝑔𝑒 − 50 ∧ 𝑡1 .ℎ𝑖𝑑 = 𝑡2 .ℎ𝑖𝑑)
𝐷𝐶𝑂,𝐶,𝑢𝑝 : ∀𝑡1, 𝑡2 . ¬(𝑡1 .𝑅𝑒𝑙 = 𝑂𝑤𝑛𝑒𝑟 ∧ 𝑡1 .𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 1 ∧ 𝑡2 .𝑅𝑒𝑙 =

𝐶ℎ𝑖𝑙𝑑 ∧ 𝑡2 .𝐴𝑔𝑒 > 𝑡1 .𝐴𝑔𝑒 − 12 ∧ 𝑡1 .ℎ𝑖𝑑 = 𝑡2 .ℎ𝑖𝑑)

(a) Denial Constraints: 𝐷𝐶𝑂,𝑂 enforces that no two home-
owners can reside in the same home, 𝐷𝐶𝑂,𝑆,𝑙𝑜𝑤 and 𝐷𝐶𝑂,𝑆,𝑢𝑝
together specify the permissible age range of a spouse in any
home, and 𝐷𝐶𝑂,𝐶,𝑙𝑜𝑤 and 𝐷𝐶𝑂,𝐶,𝑢𝑝 give the age range for a
child living with a multi-lingual homeowner

𝐶𝐶1 : |𝜎𝑅𝑒𝑙=𝑂𝑤𝑛𝑒𝑟,𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜 (𝑅1 ⊲⊳ 𝑅2) | = 4

𝐶𝐶2 : |𝜎𝑅𝑒𝑙=𝑂𝑤𝑛𝑒𝑟,𝐴𝑟𝑒𝑎=𝑁𝑌𝐶 (𝑅1 ⊲⊳ 𝑅2) | = 2

𝐶𝐶3 : |𝜎𝐴𝑔𝑒≤24,𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜 (𝑅1 ⊲⊳ 𝑅2) | = 3

𝐶𝐶4 : |𝜎𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔=1,𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜 (𝑅1 ⊲⊳ 𝑅2) | = 4

(b) Cardinality Constraints:𝐶𝐶1 and𝐶𝐶2 give the number of
homeowners in Chicago and NYC, resp., 𝐶𝐶3 gives the num-
ber of people younger than 25 who live in Chicago, and 𝐶𝐶4
gives the number of multi-lingual individuals in Chicago.

Figure 2: Set of DCs and set of CCs

extended to relational databases with a snowflake schema [13], by

focusing on pairs of relations linked by foreign key joins.

Example 1.1. Consider the relations in Figure 1 based on the Cen-
sus database. 𝑅1 describes people through attributes such as age, re-
lationship to a household (e.g. owner or spouse), whether they speak
more than 1 language and a (missing) household id, whereas 𝑅2 shows
the area for each household. In addition, we are given the set of ICs
and CCs in Figures 2a and 2b, respectively. The goal is to impute
values in the ℎ𝑖𝑑 column in 𝑅1 so that the ICs and CCs are satisfied.

We believe that the problem we focus on is a key building block

for the general problem of synthesizing data consistent with CCs

and ICs for all three use-cases mentioned above. In particular, we

believe that one can use the wealth of existing literature to syn-

thesize individual relations consistent with CCs without the key

relationships and then use our technique to fill-in the foreign keys.

Our Contributions
We model the problem, give a theoretical analysis, and provide a

solution for the generation of foreign keys for existing database

relations while ensuring the satisfaction of a set of ICs and reducing

the error of a set of CCs. Next, we give our main contributions.

Model and Theoretical Results: We define the problem of C-

Extension whose input is a relation 𝑅1 with an unknown foreign

key dependence on a relation𝑅2, i.e., the 𝐹𝐾 column in𝑅1 is missing,

and a set of CCs and ICs. For the CCs, we define and use linear

CCs that apply to 𝑅1 ⊲⊳ 𝑅2, based on [5]. For the ICs, we define a

type of Denial Constraints (DCs) [14, 16], called Foreign Key DCs,

that applies to 𝑅1 and forbids tuples from having the same 𝐹𝐾

value under specified conditions. We then show that C-Extension

is NP-hard in data complexity. This result leads us to a two-phase

heuristic solution that still ensures the satisfaction of all DCs, while

tolerating possible errors in the CC counts.

Solution: Our solution can be split into two phases: (1) first phase

(Section 4) is designed for the completion of a view 𝑉𝐽 𝑜𝑖𝑛 based on

CCs, where 𝑉𝐽 𝑜𝑖𝑛 represents 𝑅1 ⊲⊳ 𝑅2 and is initialized with a copy

of𝑅1 (without the 𝐹𝐾 column) alongwith an empty column per non-

key column in 𝑅2 (due to foreign key dependence, |𝑅1 | = |𝑉𝐽 𝑜𝑖𝑛 |),
and (2) second phase (Section 5) uses the generated view 𝑉𝐽 𝑜𝑖𝑛 to

complete the 𝐹𝐾 column in 𝑅1 so that the DCs are satisfied.

Phase I:We provide a novel description of CC relationships that

allows for 𝑉𝐽 𝑜𝑖𝑛 to be completed efficiently and precisely under

specific conditions (presented in Section 3.1). We further devise

algorithms for this case and the general case:

• For the general case, we devise an algorithm that models the CCs

and the tuples in 𝑉𝐽 𝑜𝑖𝑛 as an Integer Linear Program (inspired

by [5]). From its solution, we greedily infer the values in 𝑉𝐽 𝑜𝑖𝑛
for the attributes that come from 𝑅2.

• For the special case, we devise a novel algorithm based on re-

lationships between the CCs. We show that if the CCs have

containment or disjointness relationships between them (defined

in Section 4.2), then we can find an exact completion of 𝑉𝐽 𝑜𝑖𝑛
without any errors, provided one exists.

Our approach is a hybrid of these two solutions that employs the

first solution for the subset of CCs that does not fit the special case,

and employs the second solution for the subset of CCs that does.

Another novelty in our solution exploits the fact that the all-way

marginals for 𝑅1, i.e., counts of tuples with different combinations

of values in 𝑅1’s non-key columns, have the same counts in 𝑉𝐽 𝑜𝑖𝑛 .

Thus, we augment the input set of CCs to improve accuracy.

Phase II: For the second phase, we employ the concept of a

conflict hypergraph [16] and use a novel algorithm based on hyper-

graph coloring. We model the tuples in 𝑅1 as vertices and connect

by an edge every set of tuples that will violate a DC if assigned the

same foreign key. Thus, colors represent the values that the foreign

keys can take in 𝑅1, and a proper coloring represents a mapping

of tuples to foreign keys that does not violate any DC. Due to the

previous stage that considered 𝑅1 ⊲⊳ 𝑅2, tuples in 𝑅1 have a certain

list of permitted colors. This version of the graph coloring problem

is called List Coloring [2] and is known to be NP-hard. To color the

graph, we use a greedy coloring algorithm that considers vertices

in descending order by degrees. The algorithm skips vertices whose

list of permitted colors is subsumed by the colors assigned to their

neighbors. We ensure a proper coloring by adding the least number

of new colors for the skipped vertices. Adding colors beyond the

permitted lists corresponds to artificially adding tuples in 𝑅2.

Experimental Evaluation We have implemented our solution

and performed a comprehensive set of experiments on a dataset de-

rived from the 2010 U.S. Decennial Census [45]. We have evaluated

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

620

our solution in terms of accuracy and scalability in various sce-

narios, several of which were used for comparison with a baseline

based on [5]. We further examined the runtime breakdown of our

approach, presenting the runtimes of phases I and II in our solution.

Our results indicate that our solution incurs relatively small error

for CCs and no error for DCs (as guaranteed by our theoretical

analysis). Moreover, our algorithms scale well for large data sizes,

and large and complex sets of CCs and DCs. For increasing data

scales, our approach was 17 times faster on average across different

cases than the baseline we compare to.

2 PRELIMINARIES AND MODEL
We now define the basic concepts used throughout the paper, and

the C-Extension problem.

Relations in a Database: Let 𝑅1 and 𝑅2 be relations over the

schema attributes (𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐹𝐾) and (𝐾2, 𝐵1, . . . , 𝐵𝑞), respec-
tively. An attribute 𝐴 𝑗 of 𝑅𝑖 may also be called a column and is

denoted by 𝑅𝑖 .𝐴 𝑗 . 𝑡 ∈ 𝑅𝑖 denotes a tuple in 𝑅𝑖 and 𝑡 .𝐴 𝑗 denotes the
cell of column 𝐴 𝑗 in tuple 𝑡 . The last column in 𝑅1 (𝐹𝐾) is a foreign

key column that gets its values from the key column 𝐾2 in 𝑅2. The

view𝑉𝐽 𝑜𝑖𝑛 = 𝑅1 ⊲⊳𝐹𝐾=𝐾2
𝑅2 denotes the join of the two relations. If

all values of a column 𝐴𝑖 are missing, it is called a missing column.

Example 2.1. Consider a database D with two relations 𝑅1 and
𝑅2 as shown in Figure 1. 𝑅1 .ℎ𝑖𝑑 is a missing column. The first row in
𝑅1 says that 𝑡1 .𝐴𝑔𝑒 is 75, 𝑡1 .𝑅𝑒𝑙 is Owner and 𝑡1 .𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 is 0.

Foreign Key Denial Constraints: DCs [14] are a general form of

constraints that can be written as a negated First Order Logic state-

ment. DCs can express several types of integrity constraints like

functional dependencies and conditional functional dependencies

[10]. In this paper, we restrict our attention to DCs that contain a

condition of the form 𝑡1 .𝐹𝐾 = . . . = 𝑡𝑘 .𝐹𝐾 .

Definition 2.2 (Foreign Key DC). A Foreign Key DC on a rela-
tion 𝑅(𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐹𝐾) is defined as the following FOL statement:

∀𝑡1, 𝑡2, . . . , 𝑡𝑘 . ¬(𝑝1 ∧ . . . ∧ 𝑝𝑛)

where 𝑝𝑞 = 𝑡𝑖 .𝐴𝑙 ◦ 𝑡 𝑗 .𝐴𝑙 or 𝑝𝑞 = 𝑡𝑖 .𝐴𝑙 ◦ 𝑐 , for 𝑡𝑖 , 𝑡 𝑗 ∈ 𝑅, 𝑝 ≥ 2, ◦ ∈
{=, <, >,≠}, 𝑐 and 𝑘 are constants, and 𝑝𝑛 = (𝑡1 .𝐹𝐾 = . . . = 𝑡𝑘 .𝐹𝐾).

We use the terms Foreign Key DC and DC interchangeably.

Example 2.3. 𝐷𝐶𝑂,𝑂 (Figure 2a), which states that two homeown-
ers cannot be in the same home, can be formulated as follows:

∀𝑡1, 𝑡2 ∈ 𝑅1 . ¬(𝑡1 .𝑅𝑒𝑙 = 𝑡2 .𝑅𝑒𝑙 = 𝑂𝑤𝑛𝑒𝑟 ∧ 𝑡1 .ℎ𝑖𝑑 = 𝑡2 .ℎ𝑖𝑑)

Note that the restriction to Foreign Key DCs means that all constraints
are on people that are in the same household.

Linear Cardinality Constraints: CCs form the second class of

constraints that allows for the specification of the number of tuples

that should posses a certain set of attribute values, which can be

expressed as a selection condition. As standard in previous work

[5, 37], we restrict our attention to linear CCs.

Definition 2.4 (Linear CC, adapted from [5]). A linear CC
over a databaseD consisting of relations 𝑅1 (𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐹𝐾) and
𝑅2 (𝐾2, 𝐵1, . . . , 𝐵𝑞) is defined as follows:

|𝜎𝜑 (𝑅1 ⊲⊳𝐹𝐾=𝐾2
𝑅2) | = 𝑘

where 𝜑 is a Boolean selection predicate over a subset of (non-key)
attributes in D, and 𝑘 ∈ N.

In the rest of the paper, we only refer to conjunctive selection

predicates with conjuncts of the form 𝐴𝑖 ◦ 𝑐 , where ◦ ∈ {=, <, >, ≤
, ≥} and 𝑐 is in the domain of column 𝐴𝑖 , though our algorithms

can be extended to conditions that contain disjunction as well.

Example 2.5. 𝐶𝐶1 (Figure 2b), which states that the number of
homeowners (𝑅𝑒𝑙 = Owner) living in 𝐴𝑟𝑒𝑎 = 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 must equal 4,
can be written as: |𝜎𝑅𝑒𝑙=𝑂𝑤𝑛𝑒𝑟,𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜 𝑅1 ⊲⊳ 𝑅2 | = 4.

We denote by 𝑅 ⊨ 𝜎 the fact that relation 𝑅 meets constraint 𝜎 .

Problem Definition: We now formally define the C-Extension

problem and discuss its intractability.

Definition 2.6 (C-Extension). Let 𝑅1 (𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐹𝐾) and
𝑅2 (𝐾2, 𝐵1, . . . , 𝐵𝑞) be two relations, where 𝑅1 .𝐹𝐾 is a foreign key
mapped from 𝑅2 .𝐾2 and is empty . Let 𝑆𝐷𝐶 denote the set of DCs
over 𝑅1 and let 𝑆𝐶𝐶 denote the set of linear CCs over the foreign key
join between 𝑅1 and 𝑅2. C-Extension is the problem of completing all
the values in 𝑅1 .𝐹𝐾 to create 𝑅1 so that (1) ∀𝜎 ∈ 𝑆𝐷𝐶 , 𝑅1 ⊨ 𝜎 , (2)
∀𝜎 ∈ 𝑆𝐶𝐶 , 𝑅1 ⊲⊳𝐹𝐾=𝐾2

𝑅2 ⊨ 𝜎 .

Example 2.7. Reconsider relations 𝑅1 and 𝑅2 in Figure 1, and DCs
and CCs in Figure 2. A solution 𝑅1 for the C-Extension problem as
defined by these relations and constraints is shown in Figure 3.

Persons (rel. 𝑅1)
𝑝𝑖𝑑 𝐴𝑔𝑒 𝑅𝑒𝑙 𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 ℎ𝑖𝑑
1 75 𝑂𝑤𝑛𝑒𝑟 0 2

2 75 𝑂𝑤𝑛𝑒𝑟 1 1

3 25 𝑂𝑤𝑛𝑒𝑟 0 3

4 25 𝑂𝑤𝑛𝑒𝑟 1 4

5 24 𝑆𝑝𝑜𝑢𝑠𝑒 0 2

6 10 𝐶ℎ𝑖𝑙𝑑 1 2

7 10 𝐶ℎ𝑖𝑙𝑑 1 2

8 30 𝑂𝑤𝑛𝑒𝑟 0 5

9 30 𝑂𝑤𝑛𝑒𝑟 1 6

Figure 3: Relation 𝑅1 from Figure 1 with FK ℎ𝑖𝑑 filled-in to
satisfy DCs and CCs given in Figure 2

The decision version of C-Extension is given by the same setting

as in Definition 2.6. The output is 1 if there exists a completion of

𝑅1 .𝐹𝐾 such that all DCs and CCs are satisfied, and 0 otherwise.

Proposition 2.8. The decision problem version of C-Extension is
NP-hard in data complexity.

Proof Sketch. We describe a reduction from NAE-3SAT to C-

Extension. In the NAE-3SAT problem, we are given a 3-CNF formula

𝜑 and askedwhether there is a satisfying assignment to𝜑 with every

clause having at least one literal with the value False. Given a 3-CNF

formula 𝜑 = 𝐶1 ∧ . . . ∧𝐶𝑛 , where 𝑥1, . . . , 𝑥𝑚 are the propositional

variables in 𝜑 , construct a relation 𝑅1 (𝑉𝑎𝑟, 𝛼,𝐶𝑙𝑠,𝐶ℎ𝑜𝑠𝑒𝑛), where
𝐶ℎ𝑜𝑠𝑒𝑛 is missing all values, and 𝑉𝑎𝑟, 𝛼,𝐶𝑙𝑠 columns take values:

(1) (𝑥𝑖 , 1,𝐶 𝑗 , ?) if making 𝑥𝑖 True makes 𝐶 𝑗 True
(2) (𝑥𝑖 , 0,𝐶 𝑗 , ?) if making 𝑥𝑖 False makes 𝐶 𝑗 True
We define 𝑆𝐷𝐶 to be the set with the following two DCs:

(1) ∀𝑡1, 𝑡2 . ¬(𝑡1 .𝑉𝑎𝑟=𝑡2 .𝑉𝑎𝑟 ∧ 𝑡1 .𝛼 ≠ 𝑡2 .𝛼 ∧ 𝑡1 .𝐶ℎ𝑜𝑠𝑒𝑛=𝑡2 .𝐶ℎ𝑜𝑠𝑒𝑛)
(2) ∀𝑡1, 𝑡2, 𝑡3 .¬(𝑡1 .𝐶𝑙𝑠=𝑡2 .𝐶𝑙𝑠=𝑡3 .𝐶𝑙𝑠∧𝑡1 .𝐶ℎ𝑜𝑠𝑒𝑛=𝑡2 .𝐶ℎ𝑜𝑠𝑒𝑛= 𝑡3 .𝐶ℎ𝑜𝑠𝑒𝑛)
CCs are not needed in the reduction. The goal is to complete the

missing column 𝐶ℎ𝑜𝑠𝑒𝑛 in 𝑅1. We define 𝑅2 as containing two

columns: a primary key column 𝐶ℎ𝑜𝑠𝑒𝑛, and another column 𝐸. 𝑅2
contains the tuples (0, 𝑎) and (1, 𝑏), i.e., the domain for 𝐶ℎ𝑜𝑠𝑒𝑛 is

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

621

{0, 1}. Intuitively, 𝐶ℎ𝑜𝑠𝑒𝑛 encodes the satisfying assignment for 𝜑

by assigning values to each tuple, where 𝑡 .𝐶ℎ𝑜𝑠𝑒𝑛=1 iff the assign-

ment should be 𝑡 .𝑉𝑎𝑟=𝑡 .𝛼 . □

The full proofs are detailed in the full version [21].

3 SOLUTION OVERVIEW
Our solution proceeds in two phases as seen in Figure 4. In phase

I, we consider the view 𝑉𝐽 𝑜𝑖𝑛 representing the join of the two

relations 𝑅1 and 𝑅2, where 𝑅1 has a foreign key dependence on

𝑅2, and initialize it with (non 𝐹𝐾) columns from 𝑅1 and an empty

column per non-key column from 𝑅2. We infer these values based

on the CCs by a hybrid approach that uses both ILP [5] and a more

efficient and accurate procedure for special cases. In phase II, we

impute 𝑅1 .𝐹𝐾 by modeling the problem as a conflict hypergraph

using the DCs, and coloring it based on the inferred values in𝑉𝐽 𝑜𝑖𝑛 .

Figure 4: Solution Overview

3.1 Overview of the First Phase
Due to the foreign key dependence (Definition 2.6), we define𝑉𝐽 𝑜𝑖𝑛
over the columns𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐵1, . . . , 𝐵𝑞 such that 𝑡 ∈ 𝑅1 implies

that there is a single 𝑡 ′ ∈ 𝑉𝐽 𝑜𝑖𝑛 with 𝑡 .𝐾1=𝑡
′.𝐾1 and ∀1 ≤ 𝑖 ≤

𝑝. 𝑡 .𝐴𝑖 = 𝑡
′.𝐴𝑖 with additional 𝐵1, . . . , 𝐵𝑞 entries that are initially

all empty because 𝐹𝐾 is missing in 𝑅1. Therefore, |𝑉𝐽 𝑜𝑖𝑛 | = |𝑅1 |.
Our goal is to complete these columns based on the CCs.

Example 3.1. Reconsider 𝑅1 and 𝑅2 shown in Figure 1 and the
CCs in Figure 2b. The join view 𝑉𝐽 𝑜𝑖𝑛 is 𝑅1 as it appears in Figure 1
(without ℎ𝑖𝑑) with an empty Area column (as this is the schema of
𝑅1 ⊲⊳ 𝑅2). Due to the foreign key dependency, we have |𝑉𝐽 𝑜𝑖𝑛 | = |𝑅1 |,
and 𝑉𝐽 𝑜𝑖𝑛 contains a tuple for each 𝑅1 tuple with the same values as
in 𝑅1 and an empty 𝐴𝑟𝑒𝑎 value. The reason is that the 𝐹𝐾 values are
missing in 𝑅1. Our goal is to fill-in𝑉𝐽 𝑜𝑖𝑛 so that the CCs are satisfied.

We give a short description of our solution for completing 𝑉𝐽 𝑜𝑖𝑛 .

Solution as an ILP (Section 4.1, green box in Figure 4): Given
a set of CCs on 𝑉𝐽 𝑜𝑖𝑛 , we model the problem of completing the

missing columns as a system of linear equations with variables

accounting for counts of different tuples needed in 𝑉𝐽 𝑜𝑖𝑛 to satisfy

the CCs. Thus, the variables must take non-negative integer values.

We artificially add to 𝑆𝐶𝐶 all-way marginals (using the idea of

intervalization from [5] that is explained in Section 4) from 𝑅1 to

enhance the accuracy of the solution. For example, based on CCs

given in Example 1.1, |𝜎𝐴𝑔𝑒≤24,𝑅𝑒𝑙=𝑆𝑝𝑜𝑢𝑠𝑒,𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔=0 | = 1 gets

added to 𝑆𝐶𝐶 . We then assign 𝐵1, . . . , 𝐵𝑞 values to the tuples in

𝑉𝐽 𝑜𝑖𝑛 based on the solution returned by an ILP solver.

Using CC Relationships for Special Cases (Section 4.2, blue
box in Figure 4): We give a novel description of the relationships

between CCs based on their selection conditions, defining CC con-

tainment, disjointness and intersection. In the case where there

are no intersecting CCs and no disjunctions, we give an algorithm

to complete 𝑉𝐽 𝑜𝑖𝑛 that models the containment and disjointness

of CCs as a Hasse diagram [53] that it recurses on bottom-up to

fill-in 𝑉𝐽 𝑜𝑖𝑛 . Any leftover 𝑉𝐽 𝑜𝑖𝑛 tuples without 𝐵1, . . . , 𝐵𝑞 values

are randomly assigned a combination that cannot cause a new con-

tribution towards the target count of any CC. However, if no such

combinations are available, then the leftover 𝑉𝐽 𝑜𝑖𝑛 tuples cannot

be completed. We refer to these as invalid tuples.

Hybrid Approach (Section 4.3): In the absence of intersecting

CCs, the solution decomposes cleanly as seen above. This motivates

the hybrid approach that combines ideas from both cases to achieve

better runtime and accuracy when some CCs intersect. We start by

labeling each pair of CCs as disjoint, contained or intersecting. For

all CCs that do not intersect or contain any intersecting CCs, we

use the approach from Section 4.2, and for the rest, we use the ILP

approach from Section 4.1. Lastly, as seen above in the special case,

we may end up with some invalid tuples.

3.2 Overview of the Second Phase
After filling-in the columns of𝑉𝐽 𝑜𝑖𝑛 that originate in 𝑅2 (𝐵1 . . . , 𝐵𝑞),

we turn to reverse-engineering 𝑅1 from 𝑉𝐽 𝑜𝑖𝑛 . This phase uses

conflict hypergraphs [16] to represent possible DC violations.

Conflict Hypergraph (Section 5.1, red box in Figure 4): We

use the notion of conflict hypergraph for the tuples of 𝑅1 based on

the DCs. Given a DC, we construct an edge for all the sets of tuples

that cannot get the same foreign key value due to that DC.

Example 3.2. Consider the relation 𝑅1 depicted in Figure 1 and
the first DC in Figure 2a. Suppose the first two tuples are assigned the
same 𝐴𝑟𝑒𝑎 value in𝑉𝐽 𝑜𝑖𝑛 . Thus, the conflict hypergraph will have an
edge containing the tuples with 𝑝𝑖𝑑 = 1 and 𝑝𝑖𝑑 = 2 since they are
both owners and cannot be in the same household (the ℎ𝑖𝑑 value). The
conflict hypergraph of our running example is depicted in Figure 7.

List Coloring (Section 5.1, orange box in Figure 4): Proper col-
oring of the hypergraph ensures that there must be at least two

vertices in each edge with distinct colors. Thus, modeling each 𝐹𝐾

value as a color and each tuple as a vertex allows us to prove that a

proper coloring results in an assignment of 𝐹𝐾 values that satisfies

the DCs. The values in 𝑉𝐽 𝑜𝑖𝑛 filled-in by the previous phase induce

a list of possible 𝐹𝐾 values, and thus colors, for 𝑅1 tuples. Finding

a proper coloring such that each vertex assumes a color from its

predefined list is called List Coloring [2] and is NP-hard. We thus

propose a greedy coloring algorithm based on vertex degree.

Algorithm for Satisfying the DCs (Section 5.2): The size of

the conflict hypergraph can be very large and thus may cause a

significant slowdown in practice. Therefore, we partition 𝑅1 into

smaller sets with the same 𝐵1 . . . , 𝐵𝑞 values and construct a conflict

hypergraph for each set separately. For each non-invalid tuple,

𝑉𝐽 𝑜𝑖𝑛 contains 𝐵1 . . . , 𝐵𝑞 values, so we can use our greedy coloring

algorithm to find a coloring for them. We color invalid tuples at the

end using all 𝐹𝐾 values as candidates. This phase may result in the

addition of extra tuples to 𝑅2 (the second output in Figure 4).

4 FIRST PHASE: SOLVING CCS
In this section, we focus on the first phase. Given two relations

𝑅1 (𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐹𝐾) and 𝑅2 (𝐾2, 𝐵1, . . . , 𝐵𝑞), we wish to satisfy a

set 𝑆𝐶𝐶 of CCs over the join view 𝑉𝐽 𝑜𝑖𝑛 = 𝑅1 ⊲⊳𝐹𝐾=𝐾2
𝑅2.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

622

4.1 Solution as an ILP
We give a two-part solution in Algorithm 1 where we: (1) model

the CCs as a system of linear equations and solve it using an ILP

solver, and (2) greedily fill-in 𝐵1, . . . , 𝐵𝑞 values for each tuple in

𝑉𝐽 𝑜𝑖𝑛 . The first part (lines 3–15) is inspired by [5]. Each variable

represents the number of tuples with a specific combination of

𝐴1, . . . , 𝐴𝑝 , 𝐵1, . . . , 𝐵𝑞 values in𝑉𝐽 𝑜𝑖𝑛 . Each CC iswritten as a sum of

the variables whose associated tuples satisfy its selection condition.

We now introduce the notion of intervalization [5].

Intervalization: Creating a variable for every combination of val-

ues in the cross product of the full domains of all the 𝑝 +𝑞 (non-key)
columns in 𝑉𝐽 𝑜𝑖𝑛 would give a very large ILP. We augment the no-

tion of intervalization [5] so that it will not only assist in reducing

the number of variables based on the intervals of values in 𝑆𝐶𝐶 , but

also use only the combinations of 𝐴1, . . . , 𝐴𝑝 values already in 𝑅1.

We call this binning the distinct (𝐴1, . . . , 𝐴𝑝) values in 𝑅1.
In the system of equations 𝐴𝑥 = 𝑏, row 𝑟𝑖 (in 𝐴) corresponds to

𝐶𝐶𝑖 and row 𝑏𝑖 (in 𝑏) stores𝐶𝐶𝑖 ’s target count. We create the vector

𝑥 of variables by putting bins with the same 𝐵1, . . . , 𝐵𝑞 values as

contiguous elements (see Example 4.1). Since input CCs are linear,

each element in 𝐴 is 0 or 1. The goal is to solve for an 𝑥 with non-

negative integer entries (line 15). Such a solution can be obtained if

there exists a solution to C-Extension where 𝑅1 ⊲⊳𝐹𝐾=𝐾2
𝑅2 satisfies

𝑆𝐶𝐶 . In the second part (lines 17–19), we fill-in the 𝐵1, . . . , 𝐵𝑞 values

greedily. For each assignment 𝑥𝑖 = 𝑣𝑖 , we find at most 𝑣𝑖 tuples (with

empty 𝐵1, . . . , 𝐵𝑞 cells) in𝑉𝐽 𝑜𝑖𝑛 that satisfy 𝑥𝑖 ’s selection condition

on 𝑅1, and fill-in their 𝐵1, . . . , 𝐵𝑞 values as encoded by 𝑥𝑖 .

Example 4.1. Reconsider relations 𝑅1 and 𝑅2 in Figure 1, CCs in
Figure 2b and 𝑉𝐽 𝑜𝑖𝑛 described in Example 3.1. Intervalization splits
𝐴𝑔𝑒 into [0, 24] and [25, 114] due to 𝐶𝐶3 (all other columns are
categorical). Even though𝑅1 contains multiple tuples for multi-lingual
homeowners with age greater than 24, it suffices to look at those
with 𝐴𝑔𝑒 in [0, 24] and [25, 114]. Importantly, for the given instance,
we only need to keep track of the following tuple types: (1) 𝐴𝑔𝑒 ∈
[25, 114], 𝑅𝑒𝑙 = Owner, 𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 0, (2) 𝐴𝑔𝑒 ∈ [0, 24], 𝑅𝑒𝑙 =

Spouse,𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 0, (3) 𝐴𝑔𝑒 ∈ [0, 24], 𝑅𝑒𝑙 = Child,𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 =

1, and (4) 𝐴𝑔𝑒 ∈ [25, 114], 𝑅𝑒𝑙 = Owner,𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 1. Here, vector
𝑥 uses a copy of these four bins with 𝐴𝑟𝑒𝑎 = Chicago in 𝑥1 to 𝑥4 and
𝐴𝑟𝑒𝑎 = NYC in 𝑥5 to 𝑥8. Without the idea of binning, we would need
16 variables because 𝐴𝑟𝑒𝑎 can take 2 distinct values and 𝑅1 contains
8 unique tuples. Finally, we iterate through each 𝐶𝐶𝑖 ∈ 𝑆𝐶𝐶 and
add rows 𝑟𝑖 and 𝑏𝑖 in 𝐴 and 𝑏, resp. For 𝐶𝐶1, 𝑟𝑖 = [1, 0, 0, 1, 0, 0, 0, 0]
and 𝑏𝑖 = 4 because only 𝑥1 and 𝑥4 match the selection conditions
in 𝐶𝐶1; similarly for other CCs. Hence, 𝐴𝑥 = 𝑏 has a solution given
by 𝑥1 = 2, 𝑥2 = 1, 𝑥3 = 2, 𝑥4 = 2, 𝑥5 = 1, 𝑥6 = 0, 𝑥7 = 0 and 𝑥8 = 1.
Finally, we iterate through 𝑥𝑖 ’s to find 𝑉𝐽 𝑜𝑖𝑛 tuples which satisfy its
selection condition and assign the matching 𝐴𝑟𝑒𝑎 value that gives the
view in Figure 5. E.g., we find two tuples in𝑉𝐽 𝑜𝑖𝑛 with𝐴𝑔𝑒 ∈ [25, 114],
𝑅𝑒𝑙 = Owner and𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 0 for 𝑥1 and assign 𝐴𝑟𝑒𝑎 = 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 .

Augmenting with All-Way Marginals: When 𝐴 is sparse, some

𝑥𝑖 values in the solution may not match the true counts. Despite

such discrepancies, we can complete several tuples in𝑉𝐽 𝑜𝑖𝑛 because

we update at most as many tuples as the value of 𝑥𝑖 in the solution.

The order of updates may also impact which subset of 𝑉𝐽 𝑜𝑖𝑛 tuples

gets specific 𝐵1, . . . , 𝐵𝑞 values. For example, another solution to the

ILP in Example 4.1 is given by 𝑥1 = 0, 𝑥2 = 3, 𝑥3 = 0, 𝑥4 = 4, 𝑥5 =

𝑝𝑖𝑑 𝐴𝑔𝑒 𝑅𝑒𝑙 𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 𝐴𝑟𝑒𝑎

1 75 𝑂𝑤𝑛𝑒𝑟 0 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

2 75 𝑂𝑤𝑛𝑒𝑟 1 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

3 25 𝑂𝑤𝑛𝑒𝑟 0 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

4 25 𝑂𝑤𝑛𝑒𝑟 1 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

5 24 𝑆𝑝𝑜𝑢𝑠𝑒 0 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

6 10 𝐶ℎ𝑖𝑙𝑑 1 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

7 10 𝐶ℎ𝑖𝑙𝑑 1 𝐶ℎ𝑖𝑐𝑎𝑔𝑜

8 30 𝑂𝑤𝑛𝑒𝑟 0 𝑁𝑌𝐶

9 30 𝑂𝑤𝑛𝑒𝑟 1 𝑁𝑌𝐶

Figure 5: Join view 𝑉𝐽 𝑜𝑖𝑛 = (𝑅1 ⊲⊳𝐹𝐾=𝐾2
𝑅2) of 𝑅1 and 𝑅2 from

Figure 1 with filled-in 𝐴𝑟𝑒𝑎 values

Algorithm 1: Complete 𝑉𝐽 𝑜𝑖𝑛 - Intersecting CCs

Input :Relations 𝑅1 (𝐾1, 𝐴1, . . . , 𝐴𝑝) and
𝑅2 (𝐾2, 𝐵1, . . . , 𝐵𝑞), 𝑆𝐶𝐶 - set of linear CCs with

target counts

Output :𝑉𝐽 𝑜𝑖𝑛 - 𝐵1, . . . , 𝐵𝑞 values filled-in

1 /* model CCs as integer program and solve */

2 View 𝑉𝐽 𝑜𝑖𝑛 (𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐵1, . . . , 𝐵𝑞) ← copy of 𝑅1 with

empty 𝐵1, . . . , 𝐵𝑞 columns;

3 𝑛𝑉𝐽 𝑜𝑖𝑛 ← number of bins in which distinct tuples of 𝑅1 are

grouped using binning;

4 ∀𝑖 ∈ [𝑞], 𝑛𝑖 ← number of distinct 𝐵𝑖 values in 𝑅2;

5 𝑛 ← 𝑛𝑉𝐽 𝑜𝑖𝑛 ×
𝑞∏
𝑖=1

𝑛𝑖 ;

6 /*𝐴 will be a (𝑛𝑉𝐽 𝑜𝑖𝑛 + |𝑆𝐶𝐶 |) × 𝑛 matrix for CCs*/

7 𝑏 ← empty (𝑛𝑉𝐽 𝑜𝑖𝑛 + |𝑆𝐶𝐶 |) × 1 vector for target counts;
8 𝑥 ← 𝑛 × 1 vector for non-negative integer variables;
9 for each tuple type 𝑡𝑖 accounted for by 𝑛𝑉𝐽 𝑜𝑖𝑛 do
10 Add row in 𝐴 /* 0’s except 1 for relevant variables in 𝑥*/;

11 𝑏 [𝑖] ← number of copies of 𝑡𝑖 in 𝑅1;

12 for each 𝐶𝐶𝑖 ∈ 𝑆𝐶𝐶 do
13 Add row in 𝐴 /* 0’s except 1 for relevant variables in 𝑥*/;

14 𝑏 [𝑖] ← 𝐶𝐶𝑖 .𝑡𝑎𝑟𝑔𝑒𝑡 ;

15 Compute 𝑥 by solving 𝐴𝑥 = 𝑏;

16 /* fill values in 𝐵1, . . . , 𝐵𝑞 greedily */

17 for each 𝑥𝑖 ∈ 𝑥 with value 𝑐𝑖 do
18 Find (at most) 𝑐𝑖 tuples satisfying 𝑥𝑖 ’s condition in𝑉𝐽 𝑜𝑖𝑛 ;

19 Update 𝐵1, . . . , 𝐵𝑞 values encoded by 𝑥𝑖 ;

20 return 𝑉𝐽 𝑜𝑖𝑛

𝑥6 = 𝑥7 = 0, 𝑥8 = 2. This assigns 𝐴𝑟𝑒𝑎 = Chicago to tuples with

𝑝𝑖𝑑 = 2, 4, 5, 9 in 𝑉𝐽 𝑜𝑖𝑛 . However, the remaining tuples do not get

any 𝐴𝑟𝑒𝑎 value and no CC in 𝑆𝐶𝐶 gets satisfied in 𝑉𝐽 𝑜𝑖𝑛 . We over-

come this issue by using both 𝑆𝐶𝐶 and all all-way marginals over

𝐴1, . . . , 𝐴𝑝 from 𝑅1 when solving the ILP (see the discussion about

the baseline’s CC accuracy in Section 6). The solution reported in

Example 4.1 was computed with all all-way marginals.

Complexity: The complexity of Algorithm 1 is 𝑂 (|𝑆 ′
𝐶𝐶
| ·𝑚 + 𝑆),

where 𝑆 ′
𝐶𝐶

contains CCs from 𝑆𝐶𝐶 along with the marginals, and𝑚

is the number of variables that is upper-bounded by the number of

tuples in 𝑅1 times the product of the sizes of the active domains of

𝐵1, . . . , 𝐵𝑞 in 𝑅2. Lastly, 𝑆 is the time complexity of the ILP solver.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

623

4.2 Efficient Algorithm for Special CC Types
In practice, Algorithm 1 may incur slow runtimes as generating and

solving the system of equations is time consuming, even with state-

of-the-art ILP solvers (as shown in Section 6). Thus, we describe

a model for relationships between the CCs in 𝑆𝐶𝐶 and devise an

algorithm to better tackle 𝑉𝐽 𝑜𝑖𝑛 completion in specific scenarios.

𝐶𝐶1 : |𝜎𝐴𝑔𝑒∈[10,14],𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜 (𝑅1 ⊲⊳ 𝑅2) | = 20

𝐶𝐶2 : |𝜎𝐴𝑔𝑒∈[50,60],𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔=0,𝐴𝑟𝑒𝑎=𝑁𝑌𝐶 (𝑅1 ⊲⊳ 𝑅2) | = 25

𝐶𝐶3 : |𝜎𝐴𝑔𝑒∈[13,64],𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜𝑅1 ⊲⊳ 𝑅2 | = 100

𝐶𝐶4 : |𝜎𝐴𝑔𝑒∈[18,24],𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔=0,𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜𝑅1 ⊲⊳ 𝑅2 | = 16

Figure 6: CC relationships. 𝐶𝐶1 ∩𝐶𝐶2 = ∅, and 𝐶𝐶4 ⊆ 𝐶𝐶3
Definition 4.2. 𝐶𝐶𝑖 ,𝐶𝐶 𝑗 ∈ 𝑆𝐶𝐶 are disjoint either if their selec-

tion conditions on the 𝑅1 attributes are disjoint, or if their selection
conditions on 𝑅1 are identical and the conditions on 𝑅2 are disjoint.
We denote this by 𝐶𝐶𝑖 ∩𝐶𝐶 𝑗 = ∅.

Note that we also consider pairs of CCs with the same 𝑅1, but

disjoint 𝑅2 selection conditions as disjoint. For a pair (𝐶𝐶𝑖 ,𝐶𝐶 𝑗)
of such CCs, assigning 𝐵1, . . . , 𝐵𝑞 values in tuples that contribute

to the count of 𝐶𝐶𝑖 should not limit the set of tuples available for

𝐶𝐶 𝑗 , if a solution exists. We label such pairs similarly to a pair of

disjoint CCs. Next, we define the notion of CC containment.

Definition 4.3. Let 𝐶𝐶𝑖 ,𝐶𝐶 𝑗 ∈ 𝑆𝐶𝐶 such that 𝐶𝐶𝑖 : |𝜎𝜑𝑖 (𝑅) | =
𝑘𝑖 and 𝐶𝐶 𝑗 : |𝜎𝜑 𝑗 (𝑅) | = 𝑘 𝑗 . 𝐶𝐶𝑖 is contained in 𝐶𝐶 𝑗 , denoted 𝐶𝐶𝑖 ⊆
𝐶𝐶 𝑗 , if 𝜑𝑖 uses a (non-strict) superset of attributes in 𝜑 𝑗 and for each
common attribute, the values in𝐶𝐶𝑖 are a subset of the corresponding
values in 𝐶𝐶 𝑗 .

Intuitively, if𝐶𝐶𝑖 is contained in𝐶𝐶 𝑗 , then𝐶𝐶𝑖 is more restrictive

than 𝐶𝐶 𝑗 , and assigning a tuple 𝑡 ∈ 𝑅1 values in 𝐵1, . . . , 𝐵𝑞 that

satisfy the selection condition in 𝐶𝐶𝑖 will also satisfy the selection

condition in 𝐶𝐶 𝑗 . This observation defines a partial order on 𝑆𝐶𝐶
which we utilize later to find a solution for CCs.

Definition 4.4. 𝐶𝐶𝑖 ,𝐶𝐶 𝑗 ∈ 𝑆𝐶𝐶 are said to be intersecting if they
are neither disjoint nor does one contain the other. We denote this by
𝐶𝐶𝑖 ∩𝐶𝐶 𝑗 ≠ ∅.

Example 4.5. Assume 𝑅1 (or𝑉𝐽 𝑜𝑖𝑛) contains 10 tuples with 𝐴𝑔𝑒 ∈
[10, 30), 20 with 𝐴𝑔𝑒 ∈ [30, 50) and 50 with 𝐴𝑔𝑒 ∈ [50, 70]. Let:

𝐶𝐶1 : |𝜎𝐴𝑔𝑒∈[10,50),𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜𝑅1 ⊲⊳ 𝑅2 | = 30

𝐶𝐶2 : |𝜎𝐴𝑔𝑒∈[30,70],𝐴𝑟𝑒𝑎=𝑁𝑌𝐶𝑅1 ⊲⊳ 𝑅2 | = 30

If all tuples with 𝐴𝑔𝑒 ∈ [30, 50) get assigned 𝐴𝑟𝑒𝑎 = 𝑁𝑌𝐶 , 𝐶𝐶1 can-
not be satisfied. Even when 𝐴𝑟𝑒𝑎 = 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 in𝐶𝐶2, it is unclear how
many tuples with age in [30, 50) can be assigned 𝐴𝑟𝑒𝑎 = 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 .

Solution Without Intersecting CCs: Now, we focus on the set-

ting where there are no intersecting CCs present and describe

Algorithm 2 that outputs an exact solution.

We use the notion of a Hasse diagram [53], denoted by H =

(𝑉 , 𝐸), to encode the containment relationships between the CCs

in 𝑆𝐶𝐶 . We refer to each connected component in the undirected

version ofH as a diagram. Within each diagram, the CC that is not

contained in any other CC is referred to as the maximal element.
Algorithm 2 is given the join view𝑉𝐽 𝑜𝑖𝑛 with missing 𝐵1, . . . , 𝐵𝑞

columns, 𝑆𝐶𝐶 and the Hasse diagramH describing the containment

relations in 𝑆𝐶𝐶 . We denote byV(H) and E(H) the collective set

of all nodes and edges of the diagrams inH . The algorithm operates

recursively with a single base case – if all the CCs in 𝑆𝐶𝐶 are disjoint,

i.e., E(H) is empty (line 2), then it simply chooses 𝑘𝑖 tuples that

can contribute to each 𝐶𝐶𝑖 ∈ 𝑆𝐶𝐶 and completes their 𝐵1, . . . , 𝐵𝑞
values given by𝐶𝐶𝑖 . When the base case is not met, for each𝐻 ∈ H ,

the algorithm makes a recursive call on each child of the maximal

element𝑚 in 𝐻 (lines 9–11) to get the resulting view of the sub-

diagram and then finds the remaining number of tuples that will

get𝐶𝐶𝑚 to its target count (lines 12–13). Finally, in the loop in line

15, the algorithm completes any missing values in the tuples while

ensuring that these values do not add to the count of any𝐶𝐶 ∈ 𝑆𝐶𝐶
by finding combinations that are not specified in 𝑆𝐶𝐶 .

Algorithm 2: Complete 𝑉𝐽 𝑜𝑖𝑛 - Non-intersecting CCs

Input :𝑉𝐽 𝑜𝑖𝑛 - View to complete, 𝑆𝐶𝐶 - Set of CCs,H - Set

of diagrams encoding CC containment

Output :𝑉𝐽 𝑜𝑖𝑛 - 𝐵1, . . . , 𝐵𝑞 values filled-in

1 ∀𝑖 ∈ V(H). 𝜎𝑖 , 𝑘𝑖 ← selection condition on 𝑅1, count;

2 if E(H) = ∅ then
3 foreach 𝑖 ∈ V(H) do
4 Find 𝑘𝑖 tuples in 𝑉𝐽 𝑜𝑖𝑛 (without 𝐵1, . . . , 𝐵𝑞 values)

that satisfy 𝜎𝑖 ;

5 Assign 𝐵1, . . . , 𝐵𝑞 values;

6 return 𝑉𝐽 𝑜𝑖𝑛 ;

7 foreach 𝐻 ∈ H do
8 𝑚 ← maximal elem. in 𝐻 ;

9 foreach 𝑐 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑚) do
10 𝐻𝑐 ← sub-diagram with maximal elem. 𝑐;

11 𝑉𝐽 𝑜𝑖𝑛 = Algorithm 2(𝑉𝐽 𝑜𝑖𝑛, 𝑆𝐶𝐶 , {𝐻𝑐 });
12 Find 𝑘𝑚 −

∑
𝑐∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑚) 𝑘𝑐 tuples in 𝑉𝐽 𝑜𝑖𝑛 that satisfy

𝜎𝑚
∧

𝑐∈𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝑚)
¬𝜎𝑐 ;

13 Assign 𝐵1, . . . , 𝐵𝑞 values from 𝐶𝐶𝑚 ;

14 𝑐𝑜𝑚𝑏𝑜𝑢𝑛𝑢𝑠𝑒𝑑 ← list of combinations in 𝑅2 columns that are

not relevant to 𝑆𝐶𝐶 ;

15 foreach 𝑡 ∈ 𝑉𝐽 𝑜𝑖𝑛 do
16 if 𝑡 .𝐵𝑖 , . . . , 𝑡 .𝐵𝑞 values are missing then
17 Assign a combination of values from 𝑐𝑜𝑚𝑏𝑜𝑢𝑛𝑢𝑠𝑒𝑑 ;

18 return 𝑉𝐽 𝑜𝑖𝑛 ;

Example 4.6. Reconsider CCs 1–4 in Figure 6. The setH is {𝐻1, 𝐻2,

𝐻3}, where 𝐻1 and 𝐻2 contain only 𝐶𝐶1 and 𝐶𝐶2, respectively, and
𝐻3 is a diagram composed of one edge from 𝐶𝐶3 to𝐶𝐶4. Algorithm 2
getsH along with 𝑉𝐽 𝑜𝑖𝑛 and 𝑆𝐶𝐶 as input. It assigns 𝐶𝐶𝑖 ’s selection
condition on 𝑅1 and target count to 𝜎𝑖 and 𝑘𝑖 , for all 𝑖 . Then, it
checks the condition in line 2, which does not hold as we have the
edge (𝐶𝐶3,𝐶𝐶4). Thus, it goes to the loop in line 7 to iterate over the
three diagrams. For 𝐻3, the maximal element is 𝐶𝐶3, so Algorithm
2 recursively calls itself for the sub-diagram containing only 𝐶𝐶4
(line 11) and finds 16 tuples such that 𝐴𝑔𝑒 ∈ [18, 24] and 𝑀𝑢𝑙𝑡𝑖-
𝑙𝑖𝑛𝑔 = 0, and assigns to them 𝐴𝑟𝑒𝑎 = 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 (lines 3–5). It then
returns from the recursive call to find 100−16 = 84 tuples with𝐴𝑔𝑒 ∈

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

624

[13, 64] \ [18, 24] and𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 ≠ 0 , and assigns to them 𝐴𝑟𝑒𝑎 =

𝐶ℎ𝑖𝑐𝑎𝑔𝑜 (lines 12–13). For𝐻1 (𝐻2) the maximal element is𝐶𝐶1 (𝐶𝐶2),
the algorithm then performs a recursive call to itself with an empty
diagram, and returns from the call to select 20 (25) tuples that have
𝐴𝑔𝑒 ∈ [10, 14] (𝐴𝑔𝑒 ∈ [50, 60] and 𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 0) and assign to
them 𝐴𝑟𝑒𝑎 = 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 (𝐴𝑟𝑒𝑎 = 𝑁𝑌𝐶). Here, 𝑐𝑜𝑚𝑏𝑜𝑢𝑛𝑢𝑠𝑒𝑑 contains
values from 𝐴𝑟𝑒𝑎’s domain except 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 and 𝑁𝑌𝐶 which get used
in 𝑆𝐶𝐶 . If there are any tuples in 𝑉𝐽 𝑜𝑖𝑛 without an assignment (see
loop on line 15), we assign to each a value chosen from 𝑐𝑜𝑚𝑏𝑜𝑢𝑛𝑢𝑠𝑒𝑑 .

At the end of the algorithm, any tuple in𝑉𝐽 𝑜𝑖𝑛 without 𝐵1, . . . , 𝐵𝑞
values is randomly assigned a combination of values that is not

used in 𝑆𝐶𝐶 (line 17). We refer to these tuples as invalid tuples if no
such combination is available. Observe that the matching tuples

in 𝑅1 do not have an 𝐹𝐾 to 𝐾2 mapping , i.e., if there is a tuple in

𝑉𝐽 𝑜𝑖𝑛 that is missing an assignment, also called an invalid tuple,

then 𝑉𝐽 𝑜𝑖𝑛 does not give a set of candidate 𝐾2 values that could be

assigned in its 𝐹𝐾 cell. We will handle such tuples in Section 5.2.

Proposition 4.7. If 𝑆𝐶𝐶 does not contain intersecting CCs and
there exists a join view 𝑉𝐽 𝑜𝑖𝑛 that satisfies all CCs in 𝑆𝐶𝐶 , then Algo-
rithm 2 finds such a view.

Complexity: The complexity of Algorithm 2 is𝑂 (|𝑆𝐶𝐶 |2 · 𝑑1 +
|𝑆𝐶𝐶 | · (max𝑖 |𝑑𝑜𝑚𝑎 (𝐵𝑖) |)𝑑2 + |𝑆𝐶𝐶 | · |𝑉𝐽 𝑜𝑖𝑛 |) , where 𝑑1, 𝑑2 are the
number of columns in𝑉𝐽 𝑜𝑖𝑛 and 𝑅2, 𝑑𝑜𝑚𝑎 (𝐵𝑖) is the active domain

of 𝑅2 .𝐵𝑖 . The first term is for computing the relationships between

CCs and recursing on the Hasse diagrams (lines 7–11), second term

is for constructing 𝑐𝑜𝑚𝑏𝑜𝑢𝑛𝑢𝑠𝑒𝑑 (line 14) and third term is for lines

1–6, 12–13 and choosing a random value per tuple in lines 15–17.

In practice, we only consider columns used in 𝑆𝐶𝐶 instead of 𝑑2.

4.3 Hybrid Approach
In many cases, 𝑆𝐶𝐶 contains a combination of disjoint, contained,

and intersecting CCs, so we combine Algorithms 1 and 2.

We start by constructing Hasse diagram based on containment

relationship between pairs of CCs in 𝑆𝐶𝐶 . Next, we iterate through

each diagram 𝐻 ∈ H , and discard 𝐻 if it contains intersecting

CCs. Note that the absence of an edge in the Hasse diagram does

not guarantee the lack of intersection at the beginning of phase I

(demonstrated by Example 4.5 where the Hasse diagram starts out

as two nodes without an edge, but the CCs represented by these

nodes do intersect). Therefore, we keep track of which CCs intersect

to then discard the affected diagrams (set 𝑆2) and run Algorithm 2

on the remaining diagrams (set 𝑆1). In particular, ∀𝐶𝐶𝑖 ∈ 𝑆1,𝐶𝐶 𝑗 ∈
𝑆2 . 𝐶𝐶𝑖 ∩ 𝐶𝐶 𝑗 = ∅, 𝐶𝐶𝑖 ⊈ 𝐶𝐶 𝑗 and 𝐶𝐶 𝑗 ⊈ 𝐶𝐶𝑖 . We then run

Algorithm 2 for CCs in 𝑆1, and Algorithm 1 for those in 𝑆2.

As seen above, it is possible that some tuples may not have a

𝐵1, . . . , 𝐵𝑞 assignment in𝑉𝐽 𝑜𝑖𝑛 . Let 𝑆3 be the set of these tuples that

are dealt with using 𝑐𝑜𝑚𝑏𝑜𝑢𝑛𝑢𝑠𝑒𝑑 as described in Example 4.6. If

|𝑐𝑜𝑚𝑏𝑜𝑢𝑛𝑢𝑠𝑒𝑑 | = ∅, then all tuples in 𝑆3 are invalid tuples.

Augmenting with Modified Marginals Our approach guaran-

tees that the partial solution returned by Algorithm 2 satisfies 𝑆1
exactly. In comparison to how we augment 𝑆𝐶𝐶 with marginals in

Section 4.1 before solving the ILP, we now want the scope of the

marginals being added to be limited to the tuples that are relevant

for the CCs in 𝑆2. For example, let 𝑆𝐶𝐶 = {𝐶𝐶1,𝐶𝐶3} from Figure 2b.

We add CCs with the following selection predicates: (1) 𝐴𝑔𝑒 <=

4

6

2
7

1

3

8
9

5

Figure 7: Conflict graph for the tuples in 𝑅1 from Figure 1
based on 𝑉𝐽 𝑜𝑖𝑛 from Figure 5. Two tuples are connected by a
solid edge if their 𝐴𝑟𝑒𝑎 values match but they cannot be as-
signed the same ℎ𝑖𝑑 value. Dashed edges show DC violations
between tuples with different𝐴𝑟𝑒𝑎 values. Partitioning𝑉𝐽 𝑜𝑖𝑛
by 𝐴𝑟𝑒𝑎 values addresses such violations because the set of
household ids is disjoint for different 𝐴𝑟𝑒𝑎 values

24, 𝑅𝑒𝑙 = 𝑂𝑤𝑛𝑒𝑟, 𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 0, and (2) 𝐴𝑔𝑒 <= 24, 𝑅𝑒𝑙 = 𝑂𝑤𝑛𝑒𝑟,

𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 = 1. It may still happen that the matrix 𝐴 is sparse and

some 𝑥𝑖 ’s do not match the true counts causing some CC errors.

5 SECOND PHASE: ADDING DCS
We start by presenting our model for conflict hypergraph for FK

DCs and then use it to describe the solution for DCs. In short, our

approach is to reverse-engineer 𝑅1 from 𝑉𝐽 𝑜𝑖𝑛 so that joining it

with 𝑅2 recovers 𝑉𝐽 𝑜𝑖𝑛 , and 𝑅1 satisfies all DCs in 𝑆𝐷𝐶 .

5.1 Conflict Hypergraphs and List Coloring
We slightly augment the notion of conflict hypergraphs to illustrate

possible Foreign Key DC violations caused by subsets of 𝑅1 tuples.

Definition 5.1 (Conflict Hypergraph for Foreign Key DCs).

A conflict hypergraph for 𝑅1 and 𝑆𝐷𝐶 is defined as𝐺 = (𝑉 , 𝐸) where
𝑉 is the set of tuples in 𝑅1 and 𝑒 = {𝑡1, . . . , 𝑡𝑘 } ∈ 𝐸 if there is a Foreign
Key DC of the form ¬(𝜑 (𝑡1, . . . , 𝑡𝑘) ∧ 𝑡1 .𝐹𝐾 = . . . = 𝑡𝑘 .𝐹𝐾) such that
𝜑 (𝑡1, . . . , 𝑡𝑘) evaluates to 𝑇𝑟𝑢𝑒 .

It suffices to consider only 𝜑 (𝑡1, . . . , 𝑡𝑘) in the DCs when adding

edges because 𝐹𝐾 is initially missing. Abusing notation, we denote a

set of tuples T violating 𝜑𝑖 (𝑡1, . . . , 𝑡𝑘) in a given DC 𝜎𝑖 by T ⊭𝜑𝑖 𝜎𝑖
(we will use this notation in Algorithm 4).

Next, we give the connection between conflict hypergraph col-

oring and 𝐹𝐾 assignment in 𝑅1, so a proper coloring satisfies DCs.

Proposition 5.2. Given an instance of C-Extension, a coloring of
the conflict hypergraph gives an assignment to all cells of the missing
FK column in 𝑅1 such that all DCs are satisfied.

We now turn to the problem of inferring 𝐹𝐾 values in 𝑅1 from

the completed 𝑉𝐽 𝑜𝑖𝑛 . Each tuple in 𝑅1 can have multiple options

for foreign key values that lead to 𝑉𝐽 𝑜𝑖𝑛 obtained in phase I. This

establishes a list of possible colors, also referred to as candidate
colors, for each vertex in the conflict graph. This problem is called

List Coloring [2, 26]. It is a generalization of 𝑘-coloring, and is thus

NP-hard. Hence, we use a heuristic approach, described by Algo-

rithm 3, to color the vertices in a non-increasing order by degree,

coloring as many vertices as possible. In Section 5.2, we describe

how to color the vertices that remain uncolored by Algorithm 3.

Algorithm 3 takes as input the conflict hypergraph𝐺𝑐 , a mapping

𝑐 from vertices to colors (initially empty) and a list of candidate

colors 𝐿. It can be called on a graph with a partial color assignment

(used in Algorithm 4 in Section 5.2). Initially, 𝑠 is an empty list

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

625

that is used to store skipped vertices, and 𝑙 is the list of uncolored

vertices sorted in non-increasing order by degree in 𝐺𝑐 (lines 2–3).

In lines 4–12, we find a list of permissible colors for each 𝑣 ∈ 𝑙 , i.e.,
those vertices in 𝐺𝑐 that have not been given a color in the input

color map 𝑐 . If vertex 𝑣 belongs to an edge 𝑒 where all vertices other

than 𝑣 in 𝑒 have the same color 𝑐 , then 𝑐 is a forbidden color for 𝑣 .

Next, the algorithm assigns the “smallest” available color to 𝑣 in

line 10. Otherwise, 𝑣 gets added to 𝑠 and remains uncolored (line

12). Finally, color map 𝑐 and list of skipped vertices 𝑠 are returned.

Algorithm 3: Largest-first list coloring
Input :𝐺𝑐 - conflict hypergraph with color choices per

vertex, 𝑐 - a map from vertices to colors so far, 𝐿

- list of candidate colors

Output :𝑐 - updated coloring that builds on the input

coloring, 𝑠 - list of skipped vertices

1 Function ColoringLF(𝐺𝑐 , 𝑐, 𝐿):
2 𝑠 ← ∅;
3 𝑙 ← 𝑠𝑜𝑟𝑡𝐷𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔𝐷𝑒𝑔({𝑣 ∈ 𝑉 [𝐺𝑐] | 𝑣 ∉ 𝑐});
4 for 𝑣 ∈ 𝑙 do
5 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 ← ∅;
6 for 𝑒 s.t. 𝑣 ∈ 𝑒 do
7 if ∃𝑐 ∀𝑢 ≠ 𝑣 ∈ 𝑒. 𝑐 [𝑢] = 𝑐 then
8 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛.𝑎𝑑𝑑 (𝑐);

9 if 𝐿 \ 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 ≠ ∅ then
10 𝑐 [𝑣] ← min(𝐿 \ 𝑓 𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛);
11 else
12 𝑠 ← 𝑠 ∪ {𝑣};

13 return 𝑐 , 𝑠

Example 5.3. Reconsider the view𝑉𝐽 𝑜𝑖𝑛 and DCs shown in Figure 5
and 2a, respectively. Figure 7 (including the dashed edges) gives the
resulting conflict graph𝐺𝑐 . For example, there is an edge between ver-
tices 1 and 2 because 𝑡1 .𝑅𝑒𝑙 = 𝑡2.𝑅𝑒𝑙 = Owner, so assigning them the
same 𝐹𝐾 value would violate 𝐷𝐶𝑂,𝑂 . Here, 𝑙 = [2, 1, 3, 4, 8, 9, 5, 6, 7].
Thus, Algorithm 3 returns: 𝑐 [1] = 2, 𝑐 [2] = 1, 𝑐 [3] = 3, 𝑐 [4] =

4, 𝑐 [5] = 3, 𝑐 [6] = 2, 𝑐 [7] = 2, 𝑐 [8] = 5 and 𝑐 [9] = 6.

Complexity: The complexity of Algorithm 3 is 𝑂 (|𝑉 | · log |𝑉 | +
|𝑉 | · |𝐸 |) since, the algorithm sorts all vertices by degree (line 3)

and then traverses all edges adjacent to each vertex.

5.2 Algorithm for DCs
We describe Algorithm 4 as the last step in solving C-Extension by

completing 𝑅1 .𝐹𝐾 . In Section 4, we showed how to complete 𝑉𝐽 𝑜𝑖𝑛
by assigning values in the columns that came from 𝑅2. For a tuple

𝑡 ∈𝑉𝐽 𝑜𝑖𝑛 with values 𝑡 .𝐵𝑖 = 𝑏𝑖 , 1 ≤ 𝑖 ≤ 𝑞, the candidate 𝐹𝐾 values

for the corresponding tuple in 𝑅1 are given by 𝜋𝐾2
𝜎𝐵1=𝑏1,...,𝐵𝑞=𝑏𝑞𝑅2.

We begin with an optimization that we employ in the algorithm.

Optimization:Working with a single conflict hypergraph when

𝑅1 contains a large number of tuples would not scale since the hy-

pergraph can form one clique in the worst-case. However, observe

that we can partition the filled-in𝑉𝐽 𝑜𝑖𝑛 and 𝑅2 by 𝐵1, . . . , 𝐵𝑞 values

into sets, and only consider conflict hypergraphs within each set

because the candidate 𝐹𝐾 values are disjoint across sets.

Example 5.4. Reconsider relations 𝑅1 and 𝑅2, and view 𝑉𝐽 𝑜𝑖𝑛
shown in Figures 1 and 5, respectively. In𝑉𝐽 𝑜𝑖𝑛 , the tuples have𝐴𝑟𝑒𝑎 =

𝐶ℎ𝑖𝑐𝑎𝑔𝑜 or𝐴𝑟𝑒𝑎 = 𝑁𝑌𝐶 . Note that the set of candidate keys for tuples
with 𝐴𝑟𝑒𝑎 = 𝐶ℎ𝑖𝑐𝑎𝑔𝑜 comprises of values in 𝜋ℎ𝑖𝑑𝜎𝐴𝑟𝑒𝑎=𝐶ℎ𝑖𝑐𝑎𝑔𝑜𝑅2
that is disjoint from those in 𝜋ℎ𝑖𝑑𝜎𝐴𝑟𝑒𝑎=𝑁𝑌𝐶𝑅2. This eliminates edges
that would have been added to the conflict graph if we were to consider
all vertices at once (shown as dashed edges in Figure 7). After parti-
tioning𝑉𝐽 𝑜𝑖𝑛 by 𝐵1, . . . , 𝐵𝑞 values and using the DCs in Figure 2a, we
get two conflict graphs: (1) with vertices for tuples 𝑡1, . . . , 𝑡7, and (2)
with vertices for tuples 𝑡8 and 𝑡9. There is an edge between a pair of
vertices when the corresponding tupleswould violate a DC if assigned
the same ℎ𝑖𝑑 value, and these are shown as solid edges in Figure 7.

Algorithm 4: Complete 𝑅1 .𝐹𝐾 column using 𝑉𝐽 𝑜𝑖𝑛

Input :View 𝑉𝐽 𝑜𝑖𝑛 (𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐵1, . . . , 𝐵𝑞),
Relations 𝑅1 (𝐾1, 𝐴1, . . . , 𝐴𝑝 , 𝐹𝐾) and
𝑅2 (𝐾2, 𝐵1, . . . , 𝐵𝑞), 𝑆𝐷𝐶 - set of DCs on 𝑅1

Output :𝑅1 - copy of 𝑅1 with 𝐹𝐾 column filled-in, 𝑅2 -

updated copy of 𝑅2 (𝐾2, 𝐵1, . . . , 𝐵𝑞)

1 𝑐𝑎𝑙𝑙 ← ∅, 𝑅1 ← copy of 𝑅1, 𝑅2 ← copy of 𝑅2;

2 for 𝑣 = (𝑏1, . . . , 𝑏𝑞) ∈ 𝜋𝐵1,...,𝐵𝑞𝑉𝐽 𝑜𝑖𝑛 do
3 𝑃𝑣 = {𝑡 ∈ 𝑉𝐽 𝑜𝑖𝑛 | ∀1 ≤ 𝑖 ≤ 𝑞. 𝑡 .𝐵𝑖 = 𝑏𝑖 };
4 𝑉 ← ∅, 𝐸 ← ∅, 𝑐 ← ∅;
5 𝐿 = 𝜋𝐾2

𝜎𝐵1=𝑏1,...,𝐵𝑞=𝑏𝑞𝑅2;

6 for 𝑡 𝑗 ∈ 𝑃𝑣 do
7 𝑉 ← 𝑉 ∪ {𝑣 𝑗 };
8 for T ⊆ 𝑃𝑣 s.t. ∃𝜎 ∈ 𝑆𝐷𝐶 . T ⊭𝜑 𝜎 do
9 𝐸 ← 𝐸 ∪ {T };

10 𝑐, 𝑠 ← 𝐶𝑜𝑙𝑜𝑟𝑖𝑛𝑔𝐿𝐹 (𝐺𝑐 = (𝑉 , 𝐸), 𝑐, 𝐿);
11 𝐿𝑛𝑒𝑤 ← |𝑠 | number of new colors;

12 𝑐, 𝑠 ← 𝐶𝑜𝑙𝑜𝑟𝑖𝑛𝑔𝐿𝐹 (𝐺𝑐 = (𝑉 , 𝐸), 𝑐, 𝐿𝑛𝑒𝑤);
13 for color 𝑐𝑛𝑒𝑤 in 𝐿𝑛𝑒𝑤 that gets used do
14 Add tuple 𝑡𝑛𝑒𝑤 in 𝑅2 with 𝑡𝑛𝑒𝑤 .𝐾2 = 𝑐𝑛𝑒𝑤 and

𝑡𝑛𝑒𝑤 .𝐵𝑖 = 𝑏𝑖 (1 ≤ 𝑖 ≤ 𝑞);
15 𝑐𝑎𝑙𝑙 ← 𝑐𝑎𝑙𝑙 ∪ 𝑐;
16 𝑐𝑎𝑙𝑙 ← 𝑠𝑜𝑙𝑣𝑒𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑇𝑢𝑝𝑙𝑒𝑠 (𝑉𝐽 𝑜𝑖𝑛, 𝑆𝐷𝐶 , 𝑆𝐶𝐶 , 𝑅2) ;
17 ∀𝑡 𝑗 ∈ 𝑉𝐽 𝑜𝑖𝑛, 𝑡 ′ ∈ 𝑅1 . 𝑡 𝑗 .𝐾1 = 𝑡 ′.𝐾1 set 𝑡 ′.𝐹𝐾 = 𝑐𝑎𝑙𝑙 [𝑣 𝑗];
18 return 𝑅1, 𝑅2;

Algorithm 4 gets as input the view 𝑉𝐽 𝑜𝑖𝑛 outputted by the algo-

rithm described in Section 4.3, relations 𝑅1 (with missing 𝐹𝐾 values)

and 𝑅2, and set 𝑆𝐷𝐶 . It outputs 𝑅1, i.e., 𝑅1 with values in the 𝐹𝐾

column and 𝑅2, i.e., 𝑅2 with possible additional tuples (as described

next). The algorithm can be divided into three parts: (1) coloring the

tuples that were assigned 𝐵1, . . . , 𝐵𝑞 values in𝑉𝐽 𝑜𝑖𝑛 , (2) coloring the

invalid tuples, i.e., tuples that were not assigned 𝐵1, . . . , 𝐵𝑞 values

in𝑉𝐽 𝑜𝑖𝑛 , and (3) coloring any skipped tuples (defined in Section 5.1).

Algorithm 4 maintains a map from tuples to their list of colors in 𝑐

and tracks the overall coloring in 𝑐𝑎𝑙𝑙 . Eventually, 𝑐𝑎𝑙𝑙 has a color

for every vertex that is used to complete 𝐹𝐾 in 𝑅1 (lines 17, 18).

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

626

In lines 2–15, the algorithm iterates over each set of tuples with

the same 𝐵1, . . . , 𝐵𝑞 value. Given a vector 𝑣 = (𝑏1, . . . , 𝑏𝑞) of 𝑞 con-

stants, it iterates over tuples in sets given by 𝑃𝑣 = {𝑡 ∈ 𝑉𝐽 𝑜𝑖𝑛 | ∀1 ≤
𝑖 ≤ 𝑞. 𝑡 .𝐵𝑖 = 𝑏𝑖 }. For each 𝑃𝑣 , it generates the conflict hypergraph
𝐺𝑐 as follows: a node 𝑣 𝑗 per tuple 𝑡 𝑗 , a list 𝐿 of candidate colors

given by the keys from tuples in 𝑅2 with values 𝑣 𝑗 .𝐵1, . . . , 𝑣 𝑗 .𝐵𝑞 ,

and an edge per set of tuples in 𝑃𝑣 that violates 𝜑 in some DC. Next,

𝐺𝑐 , 𝑐 and 𝐿 are inputted to Algorithm 3, which outputs a partial

coloring 𝑐 and a list of skipped vertices 𝑠 . Vertices in 𝑠 are colored

using at most |𝑠 | new colors (lines 11-14), resulting in insertion of

tuples in 𝑅2 because colors correspond to primary keys in 𝑅2.

Procedure 𝑠𝑜𝑙𝑣𝑒𝐼𝑛𝑣𝑎𝑙𝑖𝑑𝑇𝑢𝑝𝑙𝑒𝑠 (line 16) handles the invalid tuples

(defined in Section 4.2). Since these do not have 𝐵1, . . . , 𝐵𝑞 values in

𝑉𝐽 𝑜𝑖𝑛 , the corresponding 𝑅1 tuples are missing 𝐹𝐾 values because

we have not yet considered them in any conflict hypergraphs. We

construct a hypergraph for tuples in 𝑉𝐽 𝑜𝑖𝑛 with edges incident to

only the vertices for invalid tuples. However, the set 𝑠 outputted by

Algorithm 3 may contain invalid tuples that had to be skipped for a

lack of available colors. Our strategy for coloring these is to assign

to each a combination of 𝐵1, . . . , 𝐵𝑞 values that minimizes the error

stemming from the CCs (defined in Section 6), and generate a tuple

in 𝑅2 with a fresh key and the chosen 𝐵1, . . . , 𝐵𝑞 values. Finally,

𝑅1 .𝐹𝐾 values are assigned based on the coloring 𝑐𝑎𝑙𝑙 (line 17).

Proposition 5.5. Given 𝑉𝐽 𝑜𝑖𝑛 , 𝑅1, 𝑅2, 𝑆𝐷𝐶 , Algorithm 4 outputs
relations 𝑅1, 𝑅2 such that 𝑅2 is a copy of 𝑅2, possibly with more tuples,
and 𝑅1 is a copy of 𝑅1 with all the values in the 𝐹𝐾 column completed
such that ∀𝜎 ∈ 𝑆𝐷𝐶 , 𝑅1 ⊨ 𝜎 , and 𝑅1 ⊲⊳𝐹𝐾=𝐾2

𝑅2 = 𝑉𝐽 𝑜𝑖𝑛 .

Complexity: The complexity of Algorithm 4 is 𝑂 (𝑛 · |𝑆𝐷𝐶 | ·
(𝑛
𝑇

)
),

where |𝑅1 | = 𝑛, and𝑇 is the number of tuples involved in the largest

DC (assumed to be a constant), since the number of edges of each

vertex can be at most

(𝑛
𝑇

)
. The 𝑛 component stands for the possible

need to iterate over all tuples in 𝑉𝐽 𝑜𝑖𝑛 in line 2, the |𝑆𝐷𝐶 | com-

ponent stands for the possible need to iterate over all DCs when

checking the condition in line 8, and the

(𝑛
𝑇

)
component is added

due to the need to iterate over all subsets of 𝑃𝑣 that may satisfy a

DC in lines 8–9. Since Algorithm 3 (lines 10, 12) has a complexity

of 𝑂 (𝑛 ·
(𝑛
𝑇

)
), and the loop (line 13) has complexity of 𝑂 (𝑛), they

are not presented in the overall complexity of the algorithm. Note

that

Ï𝑚
𝑗=1 𝑃

𝑗
𝑣 = 𝑉𝐽 𝑜𝑖𝑛 , where𝑚 is the number of iterations and 𝑃

𝑗
𝑣

is the set 𝑃
𝑗
𝑣 generated in iteration 𝑗 .

Extending the solution to snowflake schemas: Our solution

can be generalized to snowflake schemas in a manner similar to

[5]. The idea is to start from the fact table (the central table) as

𝑅1 and a table connected to it as 𝑅2, i.e. going from the inside out

in a Breadth-First Search manner. In every step, we include the

previously completed tables in 𝑅1, allowing CCs that span over the

join view of multiple tables. This ensures that tuples are (possibly)

added to the relation in the role of 𝑅2 only once, since in the next

step it would be considered as 𝑅1 and thus maintain the foreign

key dependency from the previous steps.

Example 5.6. Consider a central Students table with two foreign
key dependencies of a Majors table and a Courses table, and another
foreign key connection to a Departments table through Majors:

1Students

2Majors

4Department

3Courses

The steps of the algorithm are as follows:
Step 𝑅1 𝑅2

1 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 𝑀𝑎𝑗𝑜𝑟𝑠

2 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⊲⊳ 𝑀𝑎𝑗𝑜𝑟𝑠 𝐶𝑜𝑢𝑟𝑠𝑒𝑠

3 (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⊲⊳ 𝑀𝑎𝑗𝑜𝑟𝑠) ⊲⊳ 𝐶𝑜𝑢𝑟𝑠𝑒𝑠 𝐷𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠

At each step we can therefore consider CCs over all tables we have
considered so far. For example, in step 2, we can consider CCs over
((𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⊲⊳ 𝑀𝑎𝑗𝑜𝑟𝑠) ⊲⊳ 𝐶𝑜𝑢𝑟𝑠𝑒𝑠) and not just over 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 ⊲⊳

𝐶𝑜𝑢𝑟𝑠𝑒𝑠 . Note that in the first step, we might have added artificial
tuples to the Majors table. These are added without an 𝐹𝐾 value that
connects them to the Departments table so we account for them in the
last step of connecting the Majors and Departments tables, making
sure that the DCs that apply to the Majors table are satisfied.

6 EXPERIMENTS
We analyze the performance of our (hybrid) approach, and compare

it with a baseline algorithm (based on [5]) in these terms:

(1) Accuracy and runtime comparison between the baseline and

our approach as data grows for fixed 𝑆𝐷𝐶 and two settings

of 𝑆𝐶𝐶 (based on Section 4.2): (i) 𝑆𝐶𝐶 with no intersecting

CCs, and (ii) 𝑆𝐶𝐶 with intersecting CCs.

(2) Accuracy and runtime comparison between the baseline and

our approach for fixed data and combinations of good and

bad 𝑆𝐷𝐶 and 𝑆𝐶𝐶 . Good 𝑆𝐷𝐶 creates zero cliques in conflict

graphs and good 𝑆𝐶𝐶 contains zero intersecting CCs.

(3) Runtime performance of our approach when data and 𝑆𝐷𝐶
are kept fixed but the size of good 𝑆𝐶𝐶 and bad 𝑆𝐶𝐶 varies.

(4) Runtime performance of our approach for fixed data, and

good 𝑆𝐷𝐶 and 𝑆𝐶𝐶 as the number of columns in 𝑅2 grows.

We implemented our solution and baseline in Python 3.6.9 and

Pandas DataFrame interface [39] on Tensor TXR231-1000R D126

Intel(R) Xeon(R) CPU E5-2640 v4 2.40GHz CPU with 512 GB (40

cores) of RAM.We use the standard PuLP [38] and NumPy Libraries

for the ILP, and NetworkX [6] to construct and color conflict graphs.

A summary of our findings:
(1) Our approach satisfies all CCs in the absence of intersecting

CCs with no error. Additionally, our approach satisfies all

DCs (as guaranteed by our theoretical analysis), whereas the

baseline does not (Figures 8-10). Overall, our approach has

the shortest runtime (Figure 11a) and achieves better accu-

racy for CCs and DCs together. Additionally, augmenting the

input set of CCs with marginals over the non-key attributes

in 𝑅1 improves accuracy for CCs. We also find that the time

spent by the baseline on the ILP solver alone is comparable

to the total time taken by our approach for larger data scales.

(2) At a fixed data scale and for good and bad settings of DCs

and CCs, where good DCs do not create cliques in conflict

graphs and good CCs do not intersect, our approach has the

shortest runtime. Its best performance is for good DCs and

good CCs. In comparison, using bad DCs is slower because

conflict graphs become denser, and using bad CCs is even

slower because of the ILP solver.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

627

(3) Keeping the data and 𝑆𝐷𝐶 fixed, we find that increasing the

size of and/or intersections in 𝑆𝐶𝐶 slows down 𝑉𝐽 𝑜𝑖𝑛 com-

pletion, increasing the runtime of our approach (Figure 13).

(4) We find that the time spent on coloring grows faster than that

for recursing on Hasse diagrams as the number of columns

in 𝑅2 grows when good 𝑆𝐷𝐶 and 𝑆𝐶𝐶 are used.

6.1 Setup
We now describe the experimental setup (summarized in Table 3)

and define the error measures that are used to evaluate accuracy.

We vary the database size (Table 1), DCs and CCs (see [21]) to

examine the scalability and accuracy of our solution. In Section 6.2,

the errors and runtimes are averaged over 3 independent runs.

Data. We perform experiments on a dataset that is derived from

the 2010 U.S. Decennial Census [45] comprising of two relations

𝑃𝑒𝑟𝑠𝑜𝑛𝑠 (𝑝𝑖𝑑 , 𝑅𝑒𝑙 , 𝐴𝑔𝑒 , 𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔, ℎ𝑖𝑑) and 𝐻𝑜𝑢𝑠𝑖𝑛𝑔(ℎ𝑖𝑑 , 𝑇𝑒𝑛𝑢𝑟𝑒 ,
𝐴𝑟𝑒𝑎), with 𝑃𝑒𝑟𝑠𝑜𝑛𝑠 (𝑅1) missing all values in its foreign key column

ℎ𝑖𝑑 . The different data scales are given in Table 1. By construction,

𝑉𝐽 𝑜𝑖𝑛 and 𝑃𝑒𝑟𝑠𝑜𝑛𝑠 contain the same number of tuples. We also con-

sider up to 10 (non-key) columns in 𝐻𝑜𝑢𝑠𝑖𝑛𝑔, where we go from

(𝑇𝑒𝑛𝑢𝑟𝑒,𝐴𝑟𝑒𝑎) to (𝑇𝑒𝑛𝑢𝑟𝑒,𝐶𝑜𝑢𝑛𝑡𝑦,𝐴𝑟𝑒𝑎, 𝑆𝑡), add (𝐷𝑖𝑣, 𝑅𝑒𝑔) and
then add binary attributes (𝑊𝑎𝑡𝑒𝑟, 𝐵𝑎𝑡ℎ) followed by (𝐹𝑟𝑖𝑑𝑔𝑒, 𝑆𝑡𝑜𝑣𝑒).
Note that values in 𝐷𝑖𝑣 and 𝑅𝑒𝑔 are determined by the 𝑆𝑡 value.

Table 1: Data scales given by the number of tuples
Scale Persons table Housing table 𝑉𝐽 𝑜𝑖𝑛
1× 25, 099 9, 820 25, 099

2× 50, 039 19, 640 50, 039

5× 124, 746 49, 100 124, 746

10× 249, 259 98, 200 249, 259

40× 1, 015, 686 392, 800 1, 015, 686

80× 2, 043, 975 785, 600 2, 043, 975

120× 3, 064, 328 1, 178, 400 3, 064, 328

160× 4, 097, 471 1, 571, 200 4, 097, 471

Denial Constraints. 𝑆𝑎𝑙𝑙
𝐷𝐶

is the set of DCs (see [21]) that not only

gives the permissible age gap between a homeowner (𝑅𝑒𝑙 = Owner)

and other members in the same home, but also limits the number

of homeowners, spouses and unmarried partners per home. 𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
contains first 8 DCs, none of which create cliques in conflict graphs.

Cardinality Constraints.We use two sets of CCs, 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
and 𝑆𝑏𝑎𝑑

𝐶𝐶
,

with 1001 CCs each (see [21]). We assume that each input CC

specifies a condition on an attribute from both 𝑅1 and 𝑅2. 𝑆
𝑏𝑎𝑑
𝐶𝐶

contains CCs with intersecting 𝐴𝑔𝑒 intervals, but 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
does not.

Error Measures.We measure relative CC error 𝑒𝑟𝑟 𝑖 as
|𝑐𝑖−𝑐𝑖 |

max(10,𝑐𝑖) ,
where 𝑐𝑖 and 𝑐𝑖 are 𝐶𝐶𝑖 ’s (in 𝑆𝐶𝐶) counts in the solution and input.

We use a threshold of 10 in the denominator because some CCs

have a target count of 0 for small data scales. We report the median

relative CC errors in Figures 8-10, where 𝑦 = 1 represents 100%

error. We measure DC error as the fraction of tuples in 𝑅1 that

violate a 𝐷𝐶 ∈ 𝑆𝐷𝐶 . E.g., if ℎ𝑖𝑑 value in the first two tuples in

𝑃𝑒𝑟𝑠𝑜𝑛𝑠 relation in Figure 3 was 2, then the DC error would be 2/9.
Baseline. Arasu et al. [5] focuses on the generation of synthetic

databases with snowflake schema, where all joins are foreign key

joins. This work considers CCs alone (no DCs) and imputes 𝐹𝐾

using 𝑉𝐽 𝑜𝑖𝑛 . Motivated by this work, we establish the two baseline

versions given below (Section 7 surveys more related works).

(1) Baseline: First, we use Algorithm 1 (without the for loop

on line 9) to fill-in tuples in 𝑉𝐽 𝑜𝑖𝑛 . Any 𝑉𝐽 𝑜𝑖𝑛 tuple without

an assignment is completed by randomly assigning values

in 𝐵1, . . . , 𝐵𝑞 . In phase II, we randomly assign a value from

the candidate 𝐹𝐾 values given by 𝑉𝐽 𝑜𝑖𝑛 for each tuple in 𝑅1.

(2) Baseline withmarginals:We also study the impact of aug-

menting 𝑆𝐶𝐶 with all𝐴𝑔𝑒–𝑅𝑒𝑙–𝑀𝑢𝑙𝑡𝑖-𝑙𝑖𝑛𝑔 (all-way)marginals

from 𝑃𝑒𝑟𝑠𝑜𝑛𝑠 , where domains of numerical attributes are bro-

ken using intervalization [5] on 𝑆𝐶𝐶 . Note that the marginals

have equal target counts in 𝑃𝑒𝑟𝑠𝑜𝑛𝑠 and 𝑉𝐽 𝑜𝑖𝑛 by construc-

tion. They ensure that each variable participates in the ILP,

and is thus assigned a value in the solution. We find that this

fills in all 𝑉𝐽 𝑜𝑖𝑛 tuples. We refer to this algorithm as baseline
with marginals that uses Algorithm 1 for phase I, followed by

random assignment in 𝐹𝐾 using𝑉𝐽 𝑜𝑖𝑛 for phase II. Hence, it

falls in-between the baseline and our approach (Section 4.3).

Table 2: Datasets used in experiments, with details about the
data scales, DCs and CCs given in Table 1 and in [21]

Dataset no. Data Scale DCs CCs
1-5 1× to 40× 𝑆𝑎𝑙𝑙

𝐷𝐶
𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶

6-10 1× to 40× 𝑆𝑎𝑙𝑙
𝐷𝐶

𝑆𝑏𝑎𝑑
𝐶𝐶

11 10× 𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶

12 10× 𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
𝑆𝑏𝑎𝑑
𝐶𝐶

13 − 17 10× 𝑆𝑎𝑙𝑙
𝐷𝐶 (500, 600, 700, 800, 900) 𝑆

𝑔𝑜𝑜𝑑

𝐶𝐶

18 − 22 10× 𝑆𝑎𝑙𝑙
𝐷𝐶

(500, 600, 700, 800, 900) 𝑆𝑏𝑎𝑑
𝐶𝐶

23 − 26 40× to 160× 𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶

27 − 30 40× to 160× 𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
𝑆𝑏𝑎𝑑
𝐶𝐶

31 − 34 10× (4, 6, 8, 10 non-

key 𝑅2 columns)
𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶

Table 3: Experimental settings for Figures 8-13. Table 2 con-
tains details about the input datasets

Experiment Figure Algorithm Input datasets
8a Baselines vs Hybrid 1-5

8b Baselines vs Hybrid 6-10

9 Baselines vs Hybrid 10
Accuracy Exp.

10 Baselines vs Hybrid 11, 12, 4, 9

11a Baselines vs Hybrid 9, 10

11b Hybrid 11, 23 − 26, 12, 27 − 30
12 Hybrid 11, 31 − 34Scalability Exp.

13 Hybrid 17, 22

6.2 Experimental Findings
We discuss results and address aspects raised at the start of Section 6.

Our approach vs baselines - Accuracy. We consider the experi-

mental setup from Table 3 for the accuracy experiments, and detail

our results in Figures 8-10. Our approach always satisfies all DCs,

and all CCs in 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
. For 𝑆𝑏𝑎𝑑

𝐶𝐶
(Table 8b), the median CC error is

0 but the smallest and largest average errors are 0.048 and 0.093

due to limitations in augmenting 𝑆𝐶𝐶 (Section 4.3). In contrast, the

baseline gives median CC and DC errors between 0.233-0.580 and

0.228-0.373, whereas baseline with marginals satisfies all CCs but

gives DC errors between 0.402-0.510. We take a closer look at the

relative CC errors for data Scale 40× and 𝑆𝑏𝑎𝑑
𝐶𝐶

in Figure 9. Note that

DCs are used only after 𝑉𝐽 𝑜𝑖𝑛 is partitioned by 𝐵1, . . . , 𝐵𝑞 values,

so CCs affect the quality of the solution given by Algorithm 4.

Next, we look at combinations of good and bad cases of DCs and

CCs for data at Scale 10×. Again, our approach satisfies all DCs

and gives a median CC error of 0. Here, half the CCs were passed

into Algorithm 2 that satisfies CCs exactly. The remaining CCs are

augmented (Section 4.3) to improve accuracy for Algorithm 1. We

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

628

CC error DC error
Scale Baseline Baseline

(marginals)
Hybrid Baseline Baseline

(marginals)
Hybrid

1× 0.300 0 0 0.218 0.445 0

2× 0.367 0 0 0.245 0.465 0

5× 0.526 0 0 0.274 0.446 0

10× 0.604 0 0 0.303 0.489 0

40× 0.559 0 0 0.371 0.520 0

(a) 𝑆𝑎𝑙𝑙
𝐷𝐶

, 𝑆𝑔𝑜𝑜𝑑
𝐶𝐶

CC error DC error
Scale Baseline Baseline

(marginals)
Hybrid Baseline Baseline

(marginals)
Hybrid

1× 0.233 0 0 0.228 0.435 0

2× 0.300 0 0 0.246 0.434 0

5× 0.467 0 0 0.279 0.402 0

10× 0.537 0 0 0.305 0.510 0

40× 0.580 0 0 0.373 0.489 0

(b) 𝑆𝑎𝑙𝑙
𝐷𝐶

, 𝑆𝑏𝑎𝑑
𝐶𝐶

Figure 8: Error rate comparison between the baseline, baseline with marginals and hybrid as data grows from Scale 1×–40×
and: (a) 𝑆𝑎𝑙𝑙

𝐷𝐶
(12 DCs) and 𝑆𝑔𝑜𝑜𝑑

𝐶𝐶
(1001 CCs) are used, and (b) 𝑆𝑎𝑙𝑙

𝐷𝐶
(12 DCs) and 𝑆𝑏𝑎𝑑

𝐶𝐶
(1001 CCs) are used

Figure 9: Relative CC error incurred by the baseline and hy-
brid for data Scale 40×, 𝑆𝑎𝑙𝑙

𝐷𝐶
(12 DCs) and 𝑆𝑏𝑎𝑑

𝐶𝐶
(1001 CCs). We

omit baseline with marginals as it satisfies all CCs
CC error DC errorData-

set Baseline
(no aug)

Baseline
(with aug)

Hybrid Baseline
(no aug)

Baseline
(with aug)

Hybrid

11 0.618 0 0 0.081 0.009 0

12 0.573 0 0 0.079 0.004 0

4 0.604 0 0 0.303 0.489 0

9 0.537 0 0 0.305 0.510 0

Figure 10: CC and DC error comparison between baseline,
baseline with marginals and hybrid for combinations of
good and bad cases of DCs and CCs at data Scale 10×

(a) 𝑆𝑎𝑙𝑙
𝐷𝐶

(12 DCs), 𝑆𝑏𝑎𝑑
𝐶𝐶

(b) 𝑆𝑔𝑜𝑜𝑑
𝐷𝐶

(8 DCs), 𝑆𝑔𝑜𝑜𝑑
𝐶𝐶

or 𝑆𝑏𝑎𝑑
𝐶𝐶

Figure 11: Shaded area depicts phase II in: (a) Runtime com-
parison between baseline and hybrid for 𝑆𝑎𝑙𝑙

𝐷𝐶
, 𝑆𝑏𝑎𝑑
𝐶𝐶

(1001CCs)

and data Scale 10× or 40×, (b) Runtime of hybrid for 𝑆𝑔𝑜𝑜𝑑
𝐷𝐶

and

data Scales 10×–160× with 𝑆𝑔𝑜𝑜𝑑
𝐶𝐶

or 𝑆𝑏𝑎𝑑
𝐶𝐶

(1001 CCs)

Figure 12: Runtime of hybrid for 𝑆𝑔𝑜𝑜𝑑
𝐷𝐶

(8 DCs), 𝑆𝑔𝑜𝑜𝑑
𝐶𝐶

(1001
CCs) and data Scale 10× as number of columns in 𝑅2 grows

find that most CCs have a relative error of 0. For 𝑆𝑏𝑎𝑑
𝐶𝐶

, the average

CC error given by our approach is 0.0735. In contrast, baseline gives

CC errors between 0.537-0.618 and DC errors between 0.079-0.305,

whereas baseline with marginals satisfies all CCs but gives DC

errors between 0.004-0.510 due to random assignment in 𝑅1 .𝐹𝐾 .

Our approach vs baselines - Runtime.We consider the experi-

mental setup as given in Table 3 for the scalability experiments. The

total runtimes at data Scales 10× and 40× are given in Figure 11a.

Observe that the time spent on phase II by the baseline is mini-

mal because it randomly assigns 𝐹𝐾 values, whereas our approach

colors conflict graphs to satisfy all DC exactly. In our approach,

Algorithm 1 and 4 are the bottlenecks taking 25.23 % and 72.74 %

of the total runtime for 𝑆𝑎𝑙𝑙
𝐷𝐶

and 𝑆𝑏𝑎𝑑
𝐶𝐶

at data Scale 40×.
At data Scale 40×, the runtimes for completing 𝑉𝐽 𝑜𝑖𝑛 for 𝑆

𝑔𝑜𝑜𝑑

𝐶𝐶

and 𝑆𝑏𝑎𝑑
𝐶𝐶

are as follows: (1) baseline takes 5.88 hours and 6.07 hours,

(2) baseline with marginals takes 9.75 hours and 10.15 hours, and (3)

our approach takes 7.79minutes and 1.48 hours. The corresponding

total runtimes are: (1) 6.19 hours and 6.38 hours, (2) 10.04 hours

and 10.49 hours, and (3) 1.06 hours and 5.43 hours hours. Our

approach has the shortest runtime in completing 𝑉𝐽 𝑜𝑖𝑛 because we

take advantage of the relationships between the CCs to separate

out intersecting CCs from 𝑆𝐶𝐶 which reduces the time to solve the

ILP. In contrast, the baseline creates one large ILP with all CCs

(with or without all-way marginals). In addition, our approach does

not need the ILP solver for 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
, further improving the runtime.

Note that the baselines do not take into account the DCs and ran-

domly assign 𝐹𝐾 values based on filled-in 𝑉𝐽 𝑜𝑖𝑛 , so solving the ILP

dominates the time to populate ℎ𝑖𝑑 in 𝑃𝑒𝑟𝑠𝑜𝑛𝑠 (𝑅1). Our approach

has the shortest runtime for (𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
, 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
) (at 5.17 minutes), fol-

lowed by (𝑆𝑎𝑙𝑙
𝐷𝐶
, 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
), (𝑆

𝑔𝑜𝑜𝑑

𝐷𝐶
, 𝑆𝑏𝑎𝑑
𝐶𝐶

) and (𝑆𝑎𝑙𝑙
𝐷𝐶
, 𝑆𝑏𝑎𝑑
𝐶𝐶

) (at 1.36 hours).

Intuitively, for fixed data, completing 𝑉𝐽 𝑜𝑖𝑛 is faster for 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
and

conflict graphs are more likely to have fewer edges for 𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
. For

(𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
, 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
) and (𝑆𝑎𝑙𝑙

𝐷𝐶
, 𝑆𝑏𝑎𝑑
𝐶𝐶

): (1) baseline took 4.84-5.14 hours,

and (2) baseline with marginals took close to 8 hours. Baseline ran

faster because it runs the ILP solver without the marginals.

Larger data scales - Runtime. We examine our solution’s run-

time for larger data scales when 𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
is used with 𝑆

𝑔𝑜𝑜𝑑

𝐶𝐶
vs 𝑆𝑏𝑎𝑑

𝐶𝐶
(see Figure 11b). We find that our solution scales well, taking a total

of 9.3 hours for 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
and 10.46 hours for 𝑆𝑏𝑎𝑑

𝐶𝐶
at data Scale 160×.

Increasing the number of 𝑅2 columns - Runtime. We study

the effect of increasing the number of 𝑅2 columns on the runtime of

our approach for 𝑆
𝑔𝑜𝑜𝑑

𝐷𝐶
, 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
and data Scale 10× (see Figure 12). We

describe in Section 6.1 how the number of columns in𝑅2 grows from

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

629

2 to 10. Our approach takes a total of 5.17 minutes for 2 columns

and 38.66 minutes for 10 columns because we only consider the

columns that are used in 𝑆𝐶𝐶 for 𝑐𝑜𝑚𝑏𝑜𝑢𝑛𝑢𝑠𝑒𝑑 (Algorithm 2).

Increasing the number of CCs - Runtime and accuracy. Here
we study the effect of the size of 𝑆𝐶𝐶 on the runtime and error in

our approach (the last row in Table 3). The breakdown of runtimes

for 900 CCs chosen from 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
and 𝑆𝑏𝑎𝑑

𝐶𝐶
is given in Figure 13.

900 CCs from 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
900 CCs from 𝑆𝑏𝑎𝑑

𝐶𝐶

Time % Time %
Pairwise

Comparison
4.48s 1.12 4.24s 0.10

Recursion 1.70m 25.64 1.29m 1.76

ILP solver − − 1.06h 86.21

Coloring 4.87m 73.24 8.77m 11.93

Figure 13: Runtime breakdown of the hybrid approach for
data Scale 10× with 𝑆𝑎𝑙𝑙

𝐷𝐶
(12 DCs) and 900 CCs from 𝑆

𝑔𝑜𝑜𝑑

𝐶𝐶
or

𝑆𝑏𝑎𝑑
𝐶𝐶

(overall we have 1001 CCs for both)

As more CCs are used, the time spent on labeling pairs of CCs as

disjoint, contained or intersecting increases. Since 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
contains

no intersecting CCs, the ILP solver is not used and the runtime is

faster. Algorithm 2 takes 1.42minutes for 500 CCs and 1.78minutes

for 900 CCs. More CCs not only cause more updates to 𝑉𝐽 𝑜𝑖𝑛 , but

may also add CCs where 𝐴𝑟𝑒𝑎 is used without 𝑇𝑒𝑛𝑢𝑟𝑒 , creating

tuples with a partial assignment in 𝑉𝐽 𝑜𝑖𝑛 that are completed in line

17 of the algorithm. For 900 CCs, the total runtime is 6.65 minutes,

of which 4.87 minutes are spent in filling-in 𝑅1 (Algorithm 4).

When more CCs are chosen from 𝑆𝑏𝑎𝑑
𝐶𝐶

, we see an increase in the

number of CCs passed to Algorithm 1 that makes the ILP solver

slower. Algorithm 2 takes 1.21minutes for 500CCs and 1.36minutes

for 900 CCs, whereas Algorithm 1 takes 25.99 minutes for 500 CCs

and 1.06 hours for 900 CCs. For 900 CCs, the total runtime is 1.23

hours, of which 8.77 minutes are spent in completing 𝑅1.

Our approach satisfies all DCs, and CCs in 𝑆
𝑔𝑜𝑜𝑑

𝐶𝐶
. The median

and average CC error rates are 0 and 0.034-0.092, resp. We give an

optimization for (bottleneck) coloring step in the full version [21].

7 RELATEDWORK
Data generation has been the focus of multiple works, e.g., [4, 5,

9, 11, 12, 19, 22, 25, 32, 35, 42, 44, 46, 51]. The main novelty of this
paper is the generation of foreign keys for existing database relations
while reducing the error of a set of CCs and ensuring the satisfaction
of a set of DCs that relate to the foreign key attribute.

A prominent line of work uses CCs to define the desired parame-

ters of the generated data [5, 9, 44]. QAGen [9] was among the first

system that focused on data generation in a query-aware fashion.
The target application was to test the performance of a database

management system (DBMS) when given a database schema, one

parametric Conjunctive Query and a collection of constraints on

each operator. MyBenchmark [32] extends [9] by generating a set
of database instances that approximately satisfies the cardinality

expectations from a set of query results. HYDRA [44] uses a declara-
tive approach that allows for the generation of a database summary

that can be used for dynamically generating data for query execu-

tion. Arasu et. al. [5] proposed a framework that supports multiple

CCs and generates data using a graphical model that converts the

CCs to equations, using the concept of intervalization for efficient

computations. Indeed, we have drawn on this work for Algorithm

1. These approaches allow for complex CCs, whereas our approach

allows for DCs as well. A recent work [48] has proposed a solution

for generating multiple data samples using a seed sample of the

data (generated by previous work [49]), statistical constraints and

data validity constraints specified in OCL [1]. UpSizeR [51] has

focused on scaling the database while maintaining foreign key con-

straints. Data generation from the database schema and statistical

information has also been studied [42, 46].

The field of data privacy [17, 28, 30, 34, 36, 50, 54] typically

gives mechanisms that generate query answers that do not expose

features of the underlying private data, rather than generate the

data itself. Some works [23, 56] focus on providing consistent query

answers, but none, to our knowledge, consider queries over linked

data that guarantee the satisfaction of a set of ICs. Yahalom et. al.

[55] developed a framework for converting production data into

test data by modeling it as a constrained satisfaction problem (CSP)

using specific constraints that can be expressed as part of the CSP.

Finally, DCs (without CCs) have been mainly explored in relation

with data cleaning [3, 8, 14, 16, 18, 20, 27, 43]. Previous work on the

subject has focused on two main approaches: (1) repairing attribute

values in cells [8, 16, 43] and (2) tuple deletion [14, 20, 33]. In this

context, there has been previous work on automatically discovering

DCs from the complete data [15, 31, 40]. We consider DCs based

on the FK column, which is missing. In many scenarios, as is the

premise in many data cleaning works (e.g., [14, 16, 20, 43]), such

DCs can be naturally inferred from the schema or from domain

knowledge. As in data cleaning, the constraints can be formulated

by the users as logical statements [43] or as SQL queries [20].

8 CONCLUSIONS AND LIMITATIONS
We have defined the problem of generating links between database

relations using linear CCs and foreign key DCs, and proved that it

is intractable. Therefore, we have shown a novel two-phase heuris-

tic solution. Our solution first considers the CCs, with a hybrid

approach that combines an ILP-based solution and a solution based

on specific relationships between the CCs. Second, our approach

utilizes a version of conflict graph coloring in order to find a com-

pletion of the tuples that satisfies all DCs. Our experimental results

show that our solution is both accurate and scalable.

There are many intriguing directions for future work. First, our

solution focuses on linear CCs and a subset of DCs. Finding a solu-

tion when the constraints include non-linear CCs (e.g., CCs on the

number of rows that share the same foreign key) and general DCs

(e.g., DCs on tuples that do not share a foreign key) is an important

extension of our approach. Second, in phase I, we assume foreign

key dependence that induces a one-to-one mapping between the

tuples of 𝑅1 and the tuples of 𝑉𝐽 𝑜𝑖𝑛 . Examining other join depen-

dencies that do not have this property is an interesting direction

of exploration. Third, in phase II, tuples may be artificially added

to 𝑅2 due to the coloring algorithm. Some scenarios may not allow

such augmentation and thus require different solutions. Finally, the

extension of our solution to non-relational databases, such as graph

databases and wide-column store is another subject of future study.

Acknowledgements. This work was supported by the National

Science Foundation under grants 1408982 and 1703431; and by

DARPA and SPAWAR under contract N66001-15-C-4067.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

630

REFERENCES
[1] 2017. Object Constraint Language 2.4 Specification. https://www.omg.org/spec/

OCL/About-OCL/.

[2] Dimitris Achlioptas and Michael Molloy. 1997. The Analysis of a List-Coloring

Algorithm on a Random Graph (extended abstract. IEEE (1997). https://users.

soe.ucsc.edu/~optas/papers/list-coloring.pdf

[3] Foto N. Afrati and Phokion G. Kolaitis. 2009. Repair Checking in Inconsistent

Databases: Algorithms and Complexity. In ICDT. 31–41.
[4] Shaukat Ali, Muhammad Zohaib Z. Iqbal, Andrea Arcuri, and Lionel C. Briand.

2013. Generating Test Data from OCL Constraints with Search Techniques. IEEE
Trans. Software Eng. 39, 10 (2013), 1376–1402.

[5] Arvind Arasu, Raghav Kaushik, and Jian Li. 2011. Data Generation Using Declar-

ative Constraints. In SIGMOD. 685–696.
[6] Daniel A. Schult Aric A. Hagberg and Pieter J. Swart. 2008. Exploring network

structure, dynamics, and function using NetworkX. SciPy.

[7] Boaz Barak, Kamalika Chaudhuri, Cynthia Dwork, Satyen Kale, Frank McSherry,

and Kunal Talwar. 2007. Privacy, accuracy, and consistency too: a holistic solution

to contingency table release. In SIGACT-SIGMOD-SIGART. 273–282.
[8] Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. 2013. Data

Cleaning and Query Answering with Matching Dependencies and Matching

Functions. Theory Comput. Syst. 52, 3 (2013), 441–482.
[9] Carsten Binnig, Donald Kossmann, Eric Lo, and M. Tamer Özsu. 2007. QAGen:

generating query-aware test databases. In SIGMOD. 341–352.
[10] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-

etsidis. 2007. Conditional functional dependencies for data cleaning. In ICDE.
746–755.

[11] Nicolas Bruno and Surajit Chaudhuri. 2005. Flexible Database Generators. In

Proc. VLDB Endow. 1097–1107.
[12] Teodora Sandra Buda, Thomas Cerqueus, John Murphy, and Morten Kristiansen.

2013. VFDS: Very fast database sampling system. In IRI. 153–160.
[13] Surajit Chaudhuri and Umeshwar Dayal. 1997. AnOverview of DataWarehousing

and OLAP Technology. SIGMOD Rec. 26, 1 (March 1997), 65–74.

[14] Jan Chomicki and Jerzy Marcinkowski. 2005. Minimal-change integrity mainte-

nance using tuple deletions. Inf. Comput. 197, 1-2 (2005), 90–121.
[15] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.

PVLDB 6, 13 (2013), 1498–1509.

[16] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting

violations into context. In ICDE. 458–469.
[17] Cynthia Dwork. 2006. Differential Privacy. In ICALP, Vol. 4052. 1–12.
[18] Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. 2015. Dichotomies in

the Complexity of Preferred Repairs. In PODS. 3–15.
[19] Bálint Fazekas and Attila Kiss. 2018. Statistical Data Generation Using Sample

Data. In New Trends in Databases and Information Systems, Vol. 909. 29–36.
[20] Amir Gilad, Daniel Deutch, and Sudeepa Roy. 2020. On Multiple Semantics for

Declarative Database Repairs. In SIGMOD. 817–831.
[21] Amir Gilad, Shweta Patwa, and Ashwin Machanavajjhala. 2021. Synthesizing

Linked Data Under Cardinality and Integrity Constraints. https://arxiv.org/abs/

2103.14435. CoRR abs/2103.14435 (2021).

[22] Jim Gray, Prakash Sundaresan, Susanne Englert, Kenneth Baclawski, and Peter J.

Weinberger. 1994. Quickly Generating Billion-Record Synthetic Databases. In

SIGMOD. 243–252.
[23] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting

the Accuracy of Differentially Private Histograms Through Consistency. Proc.
VLDB Endow. 3, 1 (2010), 1021–1032.

[24] Xi He, Ashwin Machanavajjhala, and Bolin Ding. 2014. Blowfish privacy: tuning

privacy-utility trade-offs using policies. In SIGMOD. ACM, 1447–1458.

[25] Kenneth Houkjær, Kristian Torp, and Rico Wind. 2006. Simple and Realistic Data

Generation. In Proc. VLDB Endow. 1243–1246.
[26] Tommy R Jensen and Bjarne Toft. 2011. Graph coloring problems. Vol. 39. John

Wiley & Sons.

[27] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On approximating optimum

repairs for functional dependency violations. In ICDT. 53–62.
[28] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. 2019. PrivateSQL: A Differentially

Private SQL Query Engine. Proc. VLDB Endow. 12, 11 (2019), 1371–1384.
[29] Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. 2014. A Data- and

Workload-Aware Query Answering Algorithm for Range Queries Under Differ-

ential Privacy. Proc. VLDB Endow. 7, 5 (2014), 341–352.

[30] Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Ras-

togi. 2015. The matrix mechanism: optimizing linear counting queries under

differential privacy. VLDB J. 24, 6 (2015), 757–781.
[31] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-

imate Denial Constraints. Proc. VLDB Endow. 13, 10 (2020), 1682–1695.
[32] Eric Lo, Nick Cheng, and Wing-Kai Hon. 2010. Generating Databases for Query

Workloads. Proc. VLDB Endow. 3, 1 (2010), 848–859.
[33] Andrei Lopatenko and Leopoldo E. Bertossi. 2007. Complexity of Consistent

Query Answering in Databases Under Cardinality-Based and Incremental Repair

Semantics. In ICDT. 179–193.
[34] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrish-

nan Venkitasubramaniam. 2007. L-diversity: Privacy beyond k-anonymity. ACM
Trans. Knowl. Discov. Data 1, 1 (2007), 3.

[35] Heikki Mannila and Kari-Jouko Räihä. 1989. Automatic Generation of Test Data

for Relational Queries. J. Comput. Syst. Sci. 38, 2 (1989), 240–258.
[36] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.

2018. Optimizing error of high-dimensional statistical queries under differential

privacy. Proc. VLDB Endow. 11, 10 (2018), 1206–1219.
[37] Ryan McKenna, Daniel Sheldon, and Gerome Miklau. 2019. Graphical-model

based estimation and inference for differential privacy. In ICML, Vol. 97. 4435–
4444.

[38] Stuart Mitchell, Stuart Mitchell Consulting, and Iain Dunning. 2011. PuLP: A

Linear Programming Toolkit for Python. http://www.optimization-online.org/

DB_FILE/2011/09/3178.pdf.

[39] The pandas development team. 2020. pandas-dev/pandas: Pandas. https://doi.

org/10.5281/zenodo.3509134

[40] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2019.

Discovery of Approximate (and Exact) Denial Constraints. Proc. VLDB Endow.
13, 3 (2019), 266–278.

[41] Meikel Pöss and Chris Floyd. 2000. New TPC Benchmarks for Decision Support

and Web Commerce. SIGMOD Rec. 29, 4 (2000), 64–71.
[42] Tilmann Rabl, Manuel Danisch, Michael Frank, Sebastian Schindler, and Hans-

Arno Jacobsen. 2015. Just can’t get enough: Synthesizing Big Data. In SIGMOD.
1457–1462.

[43] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:

Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–

1201.

[44] Anupam Sanghi, Raghav Sood, Jayant R. Haritsa, and Srikanta Tirthapura. 2018.

Scalable and Dynamic Regeneration of Big Data Volumes. In EDBT. 301–312.
[45] William Sexton, John M. Abowd, Ian M. Schmutte, and Lars Vilhuber. 2017.

Synthetic population housing and person records for the United States. https:

//www.openicpsr.org/openicpsr/project/100274/version/V1/view

[46] Entong Shen and Lyublena Antova. 2013. Reversing statistics for scalable test

databases generation. In DBTest. 7:1–7:6.
[47] Joshua Snoke and Aleksandra B. Slavkovic. 2018. pMSEMechanism: Differentially

Private Synthetic Data with Maximal Distributional Similarity. In PSD, Vol. 11126.
138–159.

[48] Ghanem Soltana, Mehrdad Sabetzadeh, and Lionel C. Briand. 2017. Synthetic

data generation for statistical testing. In ASE. 872–882.
[49] Ghanem Soltana, Nicolas Sannier, Mehrdad Sabetzadeh, and Lionel C. Briand.

2018. Model-based simulation of legal policies: framework, tool support, and

validation. Software and Systems Modeling 17, 3 (2018), 851–883.

[50] Latanya Sweeney. 2002. k-Anonymity: A Model for Protecting Privacy. Int. J.
Uncertain. Fuzziness Knowl. Based Syst. 10, 5 (2002), 557–570.

[51] Y. C. Tay, Bing Tian Dai, Daniel T. Wang, Eldora Y. Sun, Yong Lin, and Yuting

Lin. 2013. UpSizeR: Synthetically scaling an empirical relational database. Inf.
Syst. 38, 8 (2013), 1168–1183.

[52] TPC. 2020. TPC-H benchmark. http://www.tpc.org/tpch/.

[53] Stanley Gill Williamson. 2002. Combinatorics for computer science. Courier

Corporation.

[54] William E. Winkler. 2004. Masking and Re-identification Methods for Public-Use

Microdata: Overview and Research Problems. In PSD, Vol. 3050. 231–246.
[55] Ran Yahalom, Erez Shmueli, and Tomer Zrihen. 2010. Constrained Anonymization

of Production Data: A Constraint Satisfaction Problem Approach. In Secure Data
Management, 7th VLDB Workshop, Vol. 6358. 41–53.

[56] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and

Xiaokui Xiao. 2017. PrivBayes: Private Data Release via Bayesian Networks.

ACM Trans. Database Syst. 42, 4 (2017), 25:1–25:41.

Research Data Management Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

631

https://www.omg.org/spec/OCL/About-OCL/
https://www.omg.org/spec/OCL/About-OCL/
https://users.soe.ucsc.edu/~optas/papers/list-coloring.pdf
https://users.soe.ucsc.edu/~optas/papers/list-coloring.pdf
https://arxiv.org/abs/2103.14435
https://arxiv.org/abs/2103.14435
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
http://www.optimization-online.org/DB_FILE/2011/09/3178.pdf
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://www.openicpsr.org/openicpsr/project/100274/version/V1/view
https://www.openicpsr.org/openicpsr/project/100274/version/V1/view
http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	2 Preliminaries and Model
	3 Solution Overview
	3.1 Overview of the First Phase
	3.2 Overview of the Second Phase

	4 First Phase: Solving CCs
	4.1 Solution as an ILP
	4.2 Efficient Algorithm for Special CC Types
	4.3 Hybrid Approach

	5 Second Phase: Adding DCs
	5.1 Conflict Hypergraphs and List Coloring
	5.2 Algorithm for DCs

	6 Experiments
	6.1 Setup
	6.2 Experimental Findings

	7 related work
	8 Conclusions and Limitations
	References

