
HypeR: Hypothetical Reasoning With What-If and How-To
Queries Using a Probabilistic Causal Approach

Sainyam Galhotra∗
University of Chicago
sainyam@uchicago.edu

Amir Gilad∗
Duke University

agilad@cs.duke.edu

Sudeepa Roy
Duke University

sudeepa@cs.duke.edu

Babak Salimi
University of California,

San Diego
bsalimi@ucsd.edu

ABSTRACT

What-if (provisioning for an update to a database) and how-to (how
to modify the database to achieve a goal) analyses provide insights
to users who wish to examine hypothetical scenarios without mak-
ing actual changes to a database and thereby help plan strategies in
their fields. Typically, such analyses are done by testing the effect
of an update in the existing database on a specific view created by
a query of interest. In real-world scenarios, however, an update to a
particular part of the database may affect tuples and attributes in a
completely different part due to implicit semantic dependencies. To
allow for hypothetical reasoning while accommodating such depen-
dencies, we develop HypeR, a framework that supports what-if and
how-to queries accounting for probabilistic dependencies among
attributes captured by a probabilistic causal model. We extend the
SQL syntax to include the necessary operators for expressing these
hypothetical queries, define their semantics, devise efficient algo-
rithms and optimizations to compute their results using concepts
from causality and probabilistic databases, and evaluate the effec-
tiveness of our approach experimentally.

1 INTRODUCTION

Hypothetical reasoning is a crucial element in decision-making and
risk assessment in business [23, 49, 56], healthcare [40, 41], real
estate [19], etc. Such analysis is split by previous work into two
categories: what-if analysis and how-to analysis. What-if analysis
[9, 28, 30] is usually meant for testing assumptions and projections
on a particular outcome by allowing users to pose queries about
hypothetical updates in the database and examining their effect
on a query result. Users detail a specific hypothetical scenario
whose effect they wish to examine on their view of choice and the
system computes the view as if the update has been performed in
the database. On the other hand, how-to analysis [32, 34] has the
reverse goal; users specify a target effect that they want to achieve
and the system computes the appropriate hypothetical updates that
have to be performed in the database to fulfill the goal.

Example 1. Consider a simplified version of the Amazon prod-

uct database [27] shown in Figure 1 describing product details and

product reviews. Each tuple has a unique tuple identifier next to it

for clarity. Now, consider an analyst who wants to examine the effect

of laptop prices on their Amazon ratings. She may ask “what would

be the effect of increasing the price of Asus laptops by 10% on their

average ratings?”. This what-if query asks about the effect of the hy-

pothetical update on the database (increasing the Price) on a specific

view (average Rating). She may also be interested in “what fraction

of Asus laptops would have rating more than 4.0 if their price drops

∗Both authors contributed equally to this research.

by $100?” or “What would be the average sentiment in the reviews for

cameras if their color was changed to red?". A different analyst may

also be interested in maximizing the average rating of laptops reviews

by changing their price. She may ask “how to maximize the average

rating of laptops and cameras by updating the price of laptops so

that it will not drop below 500 and increase above 800, and will be at

most 100 away from it original value?” or “How to increase average

sentiment in the reviews for cameras by changing their color?" Both

queries are forms of hypothetical reasoning that can assist analysts

and decision-makers in gaining insights about their products and

their marketing strategies.

Multiple works in the database community have studied hypo-
thetical reasoning. A substantial part of these [7, 16–18, 32, 34]
has focused on provenance updates and view manipulation as a
main component for answering such queries. Therein, hypothetical
updates are captured by changing values in the provenance and
thus updating the view generated by the query of interest. However,
in many real world situations, due to complex probabilistic causal
dependencies between attributes of tuples that are relationally con-
nected, updating an attribute of a tuple has collateral effects on
other attributes of the same tuple, as well as attributes of other
tuples. Such dependencies cannot be expressed and captured by
provenance. We illustrate with an example.

Example 2. Reconsider Example 1. The provenance of the average

rating of Asus laptops will not change if the price of the laptops is

augmented. Similarly, for the how-to query, the provenance of the

average rating of laptops and cameras will not be affected by the

change in price. Thus, previous work in databases fails to account

for the collateral effect that increasing the price of a laptop may

have on the user’s ratings. Note that due to our lack of knowledge

about the underlying process that leads to the user’s ratings, we may

only reason about the probabilistic effect of increasing the price on

user’s ratings. Figure 2 gives an intuitive description of potential

dependencies between the attributes of the database in Figure 1. For

example, changing the Price of a laptop may affect its Rating (denoted

as the edge from the blue Price node to the blue Rating node in Figure

2). Furthermore, increasing the Price of Asus laptops may affect the

Rating of Vaio laptops and vice versa (denoted as the edge from the red

Price node to the blue Rating node in Figure 2). In general, a directed

edge stands for an effect of the outbound node on the inbound node,

e.g., Price affects Rating. Accounting for such dependencies is crucial

for sound hypothetical reasoning.

In this paper, we propose a novel probabilistic framework for hypo-

thetical reasoning in relational databases that accounts for collateral

effects of hypothetical updates on the entire data. Our system, HypeR
(Hypothetical Reasoning), allows users to ask complex relational

PID Category Price Brand Color Quality
𝑝1 1 Laptop 999 Vaio Silver 0.7
𝑝2 2 Laptop 529 Asus Black 0.65
𝑝3 3 Laptop 599 HP Silver 0.5
𝑝4 4 DSLR Camera 549 Canon Black 0.75
𝑝5 5 Sci Fi eBooks 15.99 Fantasy Press Blue 0.4

(a) Product

PID ReviewID Sentiment Rating
𝑟1 1 1 -0.95 2
𝑟2 2 2 0.7 4
𝑟3 2 3 -0.2 1
𝑟4 3 3 0.23 3
𝑟5 3 5 0.95 5
𝑟6 4 5 0.7 4

(b) Review

Figure 1: Amazon product database

Quality

Category

Brand

Color Price

Rating

Sentiment
Price

Quality

Figure 2: A graph showing the dependencies between the at-

tributes in the database in Figure 1. Blue nodes are attributes

of the same tuple and the red node is an attribute of a dif-

ferent tuple. A dashed edge denotes a dependency between

attributes of different tuples

what-if and how-to queries using a SQL-like declarative language.
The underlying inference mechanism, then, internally accounts for
the probabilistic causal effect of hypothetical updates and computes
probabilistic answers to such hypothetical queries. Our framework
brings together techniques from probabilistic databases [6, 15], and
recent advancements in inference from relational data [47, 54, 57],
to provide a principled approach for computing complex what-if
and how-to queries from relational databases. Specifically, HypeR
relies on causal reasoning to capture background knowledge on
probabilistic causal dependencies between attributes and interprets
hypothetical updates as real world actions that potentially affect
the other attributes.

Our framework supports a rich class of what-if queries that
involve joins and aggregations to support complex real-world what-
if scenarios in relational domains. HypeR captures what-if queries
through a novel model that can accommodate complex probabilistic
dependencies, and computes their results efficiently by employing
optimizations from probabilistic databases and causal inference.
In addition, our framework supports complex how-to queries and
frames them as an optimization problem on the search space of
consistent what-if queries, and searches for a hypothetical update
that optimizes the desired query result. HypeR employs an efficient
routine to solve this optimization problem, by expressing it as
an Integer Program (IP) that can be efficiently handled using the
existing IP solvers.

Our main contributions can be summarized as follows:
• We propose a formal probabilistic model for hypothetical what-
if and how-to queries in relational domains that combines no-
tions from probabilistic databases and causality. Our model

assigns a probability to each possible world [15] that can be
obtained after a hypothetical update according to the under-
lying probabilistic causal dependencies. We further define a
probabilistic possible world semantics for complex what-if and
how-to queries that support joins and aggregations.
• We develop a declarative language that extends the standard
SQL syntax with new operators that capture hypothetical rea-
soning in relational domains and allow users to succinctly for-
mulate complex probabilistic what-if and how-to queries.
• Evaluating hypothetical queries in a naive manner can be in-
efficient due to the need to iterate over all possible worlds, or
explore the space of all possible hypothetical updates. To ad-
dress these, we develop a suite of optimizations that allows
HypeR to efficiently evaluate hypothetical queries:
– We use the model of block-independent databases [42], i.e.,
the database can be partitioned into blocks of tuples where
the tuples in different blocks are independent, meaning there
are no causal dependencies between the tuples across differ-
ent blocks (without background knowledge, we assume tuple
independence). We then show that what-if queries can be
evaluated independently within each block and the results
can be combined to get the result over the entire database.

– We further show that under some assumptions complexwhat-
if queries in relational domains can be evaluated using the
existing techniques in causal inference and machine leaning.

– We frame how-to queries as an optimization problem and
develop an efficient mechanism to solve this optimization
problem, by expressing it as an Integer Program (IP) that can
be efficiently handled using the existing IP solvers.

• We perform an extensive experimental evaluation of HypeR
on both real and synthetic data. On real datasets, we show that
the query output by HypeRmatches the conclusions from prior
studies in fair and explainable AI [22]. On synthetic datasets,
we show that HypeR’s query output is accurate as compared to
other baselines. Running time analysis shows that both what-if
and how-to components of HypeR are highly efficient.

2 PROBABILISTIC UPDATES IN HYPER

In this section we describe our notations and then define the proba-
bilistic hypothetical update model in HypeR (Section 2.1) that serve
as the basis for probabilistic what-if and how-to queries in the fol-
lowing sections. Then in Section 2.2, we review necessary concepts
from probabilistic causal models [38] that capture the propagation
of the effect of an update through other attributes due to underlying
dependencies between them and succinctly defines the probability
distribution after updates.
Notations. Let 𝐷 be a standard multi-relational database; we use
𝐷 for both schema and instance (as a set of tuples) where it is clear
from the context. For each relation 𝑅 in 𝐷 , Attr(𝑅) denotes the
set of attributes of 𝑅 and A = ∪𝑅∈𝐷Attr(𝑅) denotes the set of
attributes in 𝐷 . For attributes 𝐴 appearing in multiple relations, we
use 𝑅.𝐴 for disambiguation. For an attribute𝐴 ∈ A, Dom(𝐴) denotes
the domain of𝐴;𝐴𝑖 [𝑡] ∈ Dom(𝐴𝑖) denotes the value of the attribute
𝐴𝑖 of the tuple 𝑡 . We assume that each relation 𝑅 has a (primary)
key, that can be a single or a combination of multiple attributes. For
easy reference, we annotate each tuple with a unique identifier as

demonstrated by the identifiers 𝑝𝑖 , 𝑟 𝑗 in Figure 1. We assume each
relation can be modeled as a set of tuples (set semantics) and, for a
relation 𝑅, we use the notation 𝑡 ∈ 𝑅 to denote a tuple in 𝑅.

For the purpose of hypothetical updates, a subset of attributes
that can change values directly or indirectly in tuples is referred
to as mutable attributes, the other attributes are immutable

attributes. The attribute that is updated in hypothetical updates is
called the update attribute, and the final effect is measured on an
output attribute as specified by the user. The update and output
attributes are always mutable, and the key attributes are always
immutable.

Example 3. In Figure 1a, the database has two relations Product
and Review with keys {PID} and {PID, ReviewID} respectively. For
example, suppose Dom(𝑃𝑟𝑖𝑐𝑒) = [0, 500𝐾]. In tuple𝑝1,𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 [𝑝1] =
𝐿𝑎𝑝𝑡𝑜𝑝 and 𝑃𝑟𝑖𝑐𝑒 [𝑝1] = 999 etc. The mutable attributes are Price,
Quality, Color, Rating, and Sentiment, whereas Brand and
Category are immutable. The update attribute is Price in relation

Product, and the output attribute is Rating in relation Review.

We assume the update and output attributes do not appear in
multiple relations, but as Example 3 illustrates, they can appear in
two different tuples.

2.1 Probabilistic Hypothetical Updates

HypeR interprets hypothetical updates in terms of real world inter-
ventions that potentially influence the value of other attributes in
the data due to probabilistic dependencies between the attributes
and tuples. To capture such probabilistic influence, we use the no-
tion of possible worlds from the literature of probabilistic databases
[15] as the set of all possible instances on the same schema with the
same number of tuples in each relation that may contain different
values in their mutable attributes from the appropriate domains.

Definition 1 (Possible worlds). Let 𝑅 in 𝐷 be a relation where

in Attr(𝑅), 𝐴1, · · · , 𝐴𝑚 are immutable attributes (including keys)

and 𝐵1, · · · , 𝐵ℓ are mutable attributes. For a tuple 𝑡 ∈ 𝑅, a possible
world of tuple 𝑡 is the set (assuming values are associated with

corresponding attribute names for disambiguation)

𝑃𝑊𝐷 (𝑡) = {𝐴1 [𝑡], · · · , 𝐴𝑚 [𝑡], 𝑣1, · · · , 𝑣ℓ : 𝑣𝑖 ∈ Dom(𝐵𝑖), 𝑖 = 1 to ℓ }.

The set of possibleworlds of relation𝑅 is 𝑃𝑊𝐷 (𝑅) = ×𝑡 ∈𝑅𝑃𝑊𝐷 (𝑡).
The set of possible worlds of a database 𝐷 is 𝑃𝑊𝐷 (𝐷) =

×𝑅∈𝐷𝑃𝑊𝐷 (𝑅).

Next we define the notion of hypothetical updates.

Definition 2 (Hypothetical updates). A hypothetical up-

date𝑈 = 𝑢𝑅,𝐵,𝑓 ,𝑆 on a database𝐷 is a 4-tuple that includes a relation

𝑅 in 𝐷 containing the mutable update attribute 𝐵 ∈ Attr(𝑅), a sub-
set of tuples 𝑆 ⊆ 𝑅 where the update will be applied, and a function

𝑓 : Dom(𝐵) → Dom(𝐵) specifying the update for attribute 𝐵 [𝑡] for
tuples 𝑡 ∈ 𝑆 to 𝑓 (𝐵 [𝑡]).

In other words, the hypothetical update 𝑢𝑅,𝐵,𝑓 ,𝑆 forces all tuples
in set 𝑆 in relation 𝑅 to take the value 𝑓 (𝐵 [𝑡]) instead of 𝐵 [𝑡]. In
the what-if query in Example 1, intuitively, 𝑅 = Product, 𝑆 defines
the set of Asus laptops, 𝐵 is Price, and 𝑓 increases the price by 10%
(see Section 3.1 for details). This update, in turn, may change values
of other mutable attributes in 𝑅 or even mutable attributes in other
relations 𝑅′ in 𝐷 through causal dependencies as discussed next

in Section 2.2, eventually (possibly) changing the output attribute.
These changes are likely not deterministic (e.g., changing price
of a laptop does not change its reviews or their sentiments in a
fixed way), therefore, we model the state of the database after a
hypothetical update as a probability distribution called the post-
update distribution.

Definition 3 (Post-update distribution). Given a database

𝐷 and an update 𝑈 = 𝑢𝑅,𝐵,𝑓 ,𝑆 (Definition 2), the post-update

distribution is a probability distribution over possible worlds, i.e.,

Pr𝐷,𝑈 : 𝑃𝑊𝐷 (𝐷) → [0, 1] such that

∑
𝐼 ∈𝑃𝑊𝐷 (𝐷) Pr𝐷,𝑈 (𝐼) = 1.

While the previous definition defines the post-update distribu-
tion in a generic form, there will be restrictions imposed by the
hypothetical update as well as by its effect on the distribution of
other attributes (e.g., for all possible worlds with non-zero proba-
bility, the value of attribute 𝐵 for tuples 𝑡 ∈ 𝑆 must be 𝑓 (𝐵 [𝑡])). We
define this post-update distribution with the help of a probabilistic
relational causal model in Section 2.2.

2.2 Causal Model for Probabilistic Updates

In this paper, we use causal modeling to capture probabilistic causal
dependencies between attributes in relational domains, and to ac-
count for the collateral effect of hypothetical updates on other
attributes. Specifically, HypeR rests on relational causal models,
recently introduced in [47], which are briefly reviewed next.
Probabilistic Relational Causal Models (PRCM). A probabilis-
tic relational causal model (PRCM) associated with a relational
instance 𝐷 is a tuple (𝜖,V, 𝑃𝑟𝜖 , 𝜙), where 𝜖 is a set of unobserved
exogenous (noise) variables distributed according to 𝑃𝑟𝜖 ,V is a set
of endogenous ground1 variables associated with observed attribute
values of each tuple 𝐴[𝑡], for all 𝐴 ∈ Attr(𝑅), 𝑡 ∈ 𝑅 and 𝑅 ∈ 𝐷 ,
and 𝜙 is a set of structural equations. The structural equations cap-
ture the causal dependencies among the attributes and are of the
form 𝜙𝐴𝑖 [𝑡] : Dom(𝑃𝑎V (𝐴𝑖 [𝑡])) × Dom(𝑃𝑎𝜖 (𝐴𝑖 [𝑡])) → Dom(𝐴𝑖 [𝑡]),
where 𝑃𝑎𝜖 (𝐴𝑖 [𝑡]) ⊆ 𝜖 and 𝑃𝑎V (𝐴𝑖 [𝑡]) ⊆ V − {𝐴𝑖 [𝑡]} respec-
tively denote the exogenous and endogenous parents of 𝐴𝑖 [𝑡]. A
PRCM is associated with a ground causal graph𝐺 , whose nodes are
the endogenous variablesV and whose edges are all pairs (𝑋,𝑌)
(directed edges) such that 𝑋 ∈ V and 𝑌 ∈ 𝑃𝑎V (𝐴𝑖 [𝑡]). In this
paper we assume the underling causal model is acyclic. Due to
uncertainty over the unobserved noise variables, the structural
equations can be seen a set of probabilistic dependencies2 of the
form Pr(𝐴[𝑡] | 𝑃𝑎V (𝐴[𝑡])) between the attributes. From now on,
we will use 𝐴[𝑡] interchangeability to refer to both an attribute
value and the ground variable associated with it.

Example 4. Reconsider the database in Figure 1 and the causal

diagram in Figure 2. Part of its ground version w.r.t. the database is de-

picted in Figure 3, where the blue nodes are related to the tuple 𝑝1 and
the red nodes are related to the tuple 𝑝2. Cross-attribute dependencies

1The endogenous variables are called ground variables since in a PRCM the attribute
𝐴 [𝑡] associated with each tuple 𝑡 form the variables, generating multiple variables
corresponding to the same attribute, in contrast to the standard probabilistic causal
model [38] where each attribute or feature𝐴 forms a unique variable.
2Note that it is not necessary to have relational connections through database con-
straints like foreign key dependencies or functional dependencies for causal depen-
dencies and vice versa.

Quality[𝑝1]

Category[𝑝1]

Brand[𝑝1]

Color[𝑝1]

Price[𝑝1]

Rating[𝑟1]Sentiment[𝑟1]

Quality[𝑝2]

Category[𝑝2]

Brand[𝑝2]

Color[𝑝2]

Price[𝑝2]

Rating[𝑟2]Sentiment[𝑟2] Rating[𝑟3]Sentiment[𝑟3]

Figure 3: Part of the ground causal graph for the tuples in Figure 1. 𝐴[𝑝𝑖] (𝐴[𝑟 𝑗]) represents the attribute 𝐴 of tuple 𝑝𝑖 (𝑟 𝑗). Blue

nodes are related to 𝑝1, red nodes are related to 𝑝2, and dashed edges represent cross-tuple dependencies. Cross-tuple edges

between Quality and Rating are dropped.

within the same tuple are illustrated as solid edges and cross-tuple

dependencies between the tuples are shown as dashed edges.

To be able to estimate the conditional probability distributions
Pr(𝐴[𝑡] | 𝑃𝑎V (𝐴[𝑡])), for 𝑡 ∈ 𝑅, from the relational instance 𝐷 ,
we make the following assumptions that are common in causal
inference from relational data [47, 54]. First, since 𝑃𝑎V (𝐴[𝑡]),
the set of parents of 𝐴[𝑡] may have variable cardinality for each
𝑡 ∈ 𝑅, we assume there exists a distribution preserving summary
function 𝜓 that projects 𝑃𝑎V (𝐴[𝑡]) into a fixed size vector such
that Pr(𝐴[𝑡] | 𝑃𝑎V (𝐴[𝑡])) = Pr(𝐴[𝑡] | 𝜓 (𝑃𝑎V (𝐴[𝑡]))), for each
𝑡 ∈ 𝑅 . Second, we assume the conditional probability distributions
Pr(𝐴[𝑡] | 𝜓

(
𝑃𝑎V (𝐴[𝑡]))

)
are the same for all 𝑡 ∈ 𝐷 , i.e., the con-

ditional probability distributions Pr(𝐴𝑖 [𝑡] | 𝜓
(
𝑃𝑎V (𝐴𝑖 [𝑡]))

)
are

independent of a particular 𝑡 ∈ 𝑅 and can be readily estimated from
𝐷 , hence we denote them by unified notation Pr𝐷 (𝐴𝑖 | 𝜓 (𝑃𝑎(𝐴𝑖))).
For more discussion on these assumptions, please see [47].

Example 5. Continuing Example 1, suppose we want to update

attribute Price and examine its effect on Rating. Since each product has

one price but several review ratings in Figure 1, we will summarize the

Rating attribute into the Product table by, e.g., averaging the Rating

for each product and price. Thus, for 𝑝2, we will have 𝑃𝑟𝑖𝑐𝑒 = 529
and 𝑅𝑎𝑡𝑖𝑛𝑔 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (4, 2) = 3 (the average over tuples 𝑟2 and 𝑟3).

Post-update distribution by PRCM. We describe how the post-
update distribution (Definition 3) is defined using a PRCM inHypeR.
Given a relation 𝑅 in 𝐷 , an update attribute 𝐵 ∈ Attr(𝑅), a hypo-
thetical update 𝑈 = 𝑢𝑅,𝐵,𝑓 ,𝑆 (Definition 2) can be interpreted as an
intervention that modifies the underlying PRCM and replaces the
structural equation associated with the variables 𝐵 [𝑡] for all 𝑡 ∈ 𝑆
with the constant 𝑓 (𝐵 [𝑡]). Updating 𝐵 [𝑡] propagates through all
relations, tuples and attributes according to the underlying PRCM.
The post-update state of a tuple 𝑡 ′ ∈ 𝑅′ in a relation 𝑅′ in 𝐷 is
the solutions to each ground variable 𝐴[𝑡 ′], for 𝐴 ∈ Attr(𝑅′), in
the modified set of structural equations. Now, the uncertainty over
unobserved noise variables 𝜖 induces uncertainty over post-update
states of all tuples 𝑡 ′ captured by their post-update distribution on
the possible worlds (Definition 1): Pr𝐷,𝑈 (𝜏) for 𝜏 ∈ 𝑃𝑊𝐷 (𝑡 ′), and
in turn, the post-update distribution of the entire database Pr𝐷,𝑈 (𝐼)
for 𝐼 ∈ 𝑃𝑊𝐷 (𝐷). As we will show in Section 3.3, to answer what-if
and how-to queries inHypeR, it suffices to estimate the post-update
conditional distributions of the form Pr𝐷,𝑈 (𝑌 = 𝑦 | 𝐵 = 𝑏,C = 𝑐),
where 𝑌, 𝐵,C ∈ Attr(𝑅), that measures the probabilistic influence
of the update 𝑈 on subset of tuples for which 𝐵 = 𝑏 and C = c. It
is known that if C satisfies a graphical criterion called backdoor-

criterion (see Section 3.3) w.r.t. 𝐵 and 𝑌 in the causal model 𝐺 , then

Use 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝑉𝑖𝑒𝑤 As
(Select𝑇 1.𝑃𝐼𝐷,𝑇 1.𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦,𝑇 1.𝑃𝑟𝑖𝑐𝑒,𝑇 1.𝐵𝑟𝑎𝑛𝑑,
Avg(𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡)As 𝑆𝑒𝑛𝑡𝑖,Avg(𝑇 2.𝑅𝑎𝑡𝑖𝑛𝑔)As 𝑅𝑡𝑛𝑔

From 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 As𝑇 1, 𝑅𝑒𝑣𝑖𝑒𝑤 As𝑇 2
Where𝑇 1.𝑃𝐼𝐷 = 𝑇 2.𝑃𝐼𝐷
Group By𝑇 1.𝑃𝐼𝐷,𝑇 1.𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦,𝑇 1.𝑃𝑟𝑖𝑐𝑒,𝑇 1.𝐵𝑟𝑎𝑛𝑑)

When 𝐵𝑟𝑎𝑛𝑑 =′ 𝐴𝑠𝑢𝑠′

Update(𝑃𝑟𝑖𝑐𝑒) = 1.1 × Pre(𝑃𝑟𝑖𝑐𝑒)
Output Avg(𝑃𝑂𝑆𝑇 (𝑅𝑡𝑛𝑔))
For Pre(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦) = ‘𝐿𝑎𝑝𝑡𝑜𝑝′ And Pre(𝐵𝑟𝑎𝑛𝑑) = ‘𝐴𝑠𝑢𝑠′

And Post(𝑆𝑒𝑛𝑡𝑖) > 0.5

Figure 4: What-if query asking “If the prices of all Asus prod-
ucts is increased by by 10%, what would the effect on average

ratings of Asus laptops having average sentiments in the

reviews > 0.5 after the update?”

the following holds:

Pr𝐷,𝑈 (𝑌 = 𝑦 | 𝐵 = 𝑏,C = c) = Pr𝐷 (𝑌 = 𝑦 | 𝐵 = 𝑓 (𝑏),C = c) (1)

Where, the RHS of (1) can be estimated from 𝐷 using standard
techniques in causal inference and Machine Learning. Equation (1)
also extends to multi-relation databases (see Section A).

Background knowledge on causal DAG. While in this pa-
per we assume the underlying causal model is available, HypeR
is designed to work with any level of background knowledge. If
the causal DAG is not available, HypeR assumes a canonical causal
model in which all attributes affect both the output and the updated
attribute. In other words,HypeR assumes (1) holds for C = Attr(𝑅),
i.e., all attributes are considered in the backdoor set in Equation 1,
ensuring that the ground truth backdoor set is a subset of Attr(𝑅).
We also examine this case experimentally in Section 5.

3 PROBABILISTIC WHAT-IF QUERIES

In this sectionwe describe the syntax of probabilistic what-if queries
supported by HypeR (Section 3.1), describe their semantics as ex-
pected value from the post-update distribution on possible worlds
(Section 3.2), and present efficient algorithms and optimizations to
compute the answers to what-if queries (Section 3.3).

3.1 Syntax of Probabilistic What-If Queries

A what-if query has two parts (see Figure 4):
• The required Use operator in the first part defines a single table
as the relevant view with relevant attributes including the up-
date and the output attribute to be used in the second part. The

Use operator can simply mention the table name if no transfor-
mation is needed, and both update and output attributes belong
to this table (e.g., ‘Use Review’). Otherwise, a standard SQL
query within the Use operator can define this relevant view as
discussed below.
• The second part includes the new operators for hypothetical
what-if queries supported by HypeR: the required Update and
Output clauses for specifying the update and outcome attribute
from the relevant view, and optionalWhen and For clauses.

The second part takes as input the relevant view, denoted V𝑟𝑒𝑙
(named as RelevantView in Figure 4), as defined by the required
Use operator in the first part containing all relevant attributes,
and therefore does not mention any table name for disambiguation
in its operators. Recall that a hypothetical update in HypeR is of the
form𝑈 = 𝑢𝑅,𝐵,𝑓 ,𝑆 , where the updated attribute 𝐵 ∈ Attr(𝑅) in 𝐷 ,
and is changed for all tuples 𝑡 ∈ 𝑆 in 𝑅 according to the function 𝑓
(Definition 2). In the what-if query, the relevant viewV𝑟𝑒𝑙 defined
by the first part combines the update and outcome attributes (Price
and Rating in Figure 4) along with other attributes used in the
second part. In particular, the SQL query definingV𝑟𝑒𝑙 includes
the update attribute 𝐵 in the Select clause along with the key of
𝑅 (here PID), and other attributes from 𝑅 and (in aggregated form)
from other relations in 𝐷 that are used in the second part of the
query. A group-by is performed on the attributes coming from
relation 𝑅 Note that the first part always outputs a view having the
same number of tuples as in 𝑅, which is ensured as the Select and
Group By clauses include the key of 𝑅.

The required Update operator mentions the update attribute
𝐵 along with the function 𝑓 . HypeR allows hypothetical update
functions 𝑓 of the form 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐵) =< 𝑐𝑜𝑛𝑠𝑡 >, 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐵) =<
𝑐𝑜𝑛𝑠𝑡 > × Pre(𝐵), and 𝑈𝑝𝑑𝑎𝑡𝑒 (𝐵) =< 𝑐𝑜𝑛𝑠𝑡 > + Pre(𝐵), where
< 𝑐𝑜𝑛𝑠𝑡 > is a constant specified by the user (here 1.1 models a 10%
price increase). Pre(𝐴) and Post(𝐴) respectively denote the value
of an attribute𝐴 before the hypothetical update (i.e., as given in the
database instance 𝐷) and after the update according to the PRCM
(see Sections 2.2 and 3.2); except in the operator as ‘Update(𝐵)’
which defines updating the value of 𝐵, Pre is assumed by default
if Pre or Post is not explicitly mentioned in the query. Update is
always performed w.r.t. the Pre value of an attribute, rather than
the Post value which is the result of the update. The optional SQL
query in the Use operator defining the relevant view can only have
Pre values of attributes, so Pre is omitted in the query. Note that
for immutable attributes 𝐴, Pre(𝐴) = Post(𝐴).

The optionalWhen operator specifies the set 𝑆 in Definition
2; any valid SQL predicate can be used here that is defined for each
tuple in the relevant viewV𝑟𝑒𝑙 , and allows selection of a subset of
tuples from V𝑟𝑒𝑙 , e.g., 𝐴 =< 𝑐𝑜𝑛𝑠𝑡 >, 𝐴 ∈ (Select · · ·As 𝐴 · · ·)
etc. If the When operator is not specified we assume 𝑆 = 𝑅 and the
hypothetical update is applied to all tuples in 𝑅. Since the update
is applied to the original attribute values, it can only use Pre(𝐴)
value for an attribute 𝐴, and therefore Pre is omitted.

The requiredOutput operatormentions the output attribute𝑌
(here Rtng) onwhichwewant tomeasure the effect of the hypotheti-
cal update. If𝑌 belongs to another table𝑅′ ≠ 𝑅, the SQL query in the
Use operator describes how 𝑅 and 𝑅′ are combined in the join condi-
tion, and a SQL aggregate operator 𝑎𝑔𝑔𝑟1 (𝑆𝑈𝑀,𝐴𝑉𝐺,𝐶𝑂𝑈𝑁𝑇) is

used to aggregate 𝑌 (here Avg(𝑇 2.𝑅𝑎𝑡𝑖𝑛𝑔)) to have a unique value
for each tuple in 𝑅 identified by its key in the relevant view. Note
that the effect of an update is outputted as a single value, so another
SQL aggregate operator 𝑎𝑔𝑔𝑟 is used in the Output clause (here
again Avg). If the user wants to measure effects on different subsets
of tuples, it can be achieved by the use of the optional For opera-
tor described below. The Output operator can only use Post(𝐴)
values of attributes after the update.

The output specified in the Output operator is computed only
considering the tuples in the relevant view V𝑟𝑒𝑙 that satisfy the
conditions in the optional For operator (details in Section 3.2). If
no For operator is provided, all tuples inV𝑟𝑒𝑙 are used to compute
the output. For can contain both Pre(𝐴) and Post(𝐴) values of
attributes, and Pre can be optionally provided for clarity. Further,
like When, any valid SQL predicate can be used that is defined on
individual tuples in relevant viewV𝑟𝑒𝑙 .

Example 6. Consider the what-if query statement shown in Figure

4. It checks the effect of hypothetically updating the price by 10%

(Update) on Brand = ’Asus’ (When). The effect is measured on their

average of average ratings (Output) – the first average on ratings of

the same type of Asus products, and the second average is on different

types of Asus products, but only for Category = ‘Laptop’ (i.e., does
not include phones for instance), and where the post-update average

sentiment is still above 0.5. Since Rating and Sentiment come from

the Review table whereas the update attribute Price belongs to the
Product table, they are aggregated in the SQL query in the Use

operator for each Product tuple.

HypeR supports multiple updates in a what-if query with at-
tributes𝐵1, 𝐵2, · · · , e.g.,Update(𝑃𝑟𝑖𝑐𝑒) = 500AndUpdate(𝐶𝑜𝑙𝑜𝑟) =
𝑅𝑒𝑑 , provided there are no paths from any 𝐵𝑖 [𝑡] to any 𝐵 𝑗 [𝑡 ′] for
any two tuples 𝑡, 𝑡 ′ - a fact that we will use in Section 4 for how-to
queries; we discuss other extensions in Section 7. Here, we discuss
single-attribute updates for simplicity.

3.2 Semantics of Probabilistic What-If Queries

Here we define the semantics of what-if queries described in Sec-
tion 3.1 as the expected value of the output attribute over possible
worlds consistent with a what-if queries.

The operators in the what-if queries are evaluated in this order:
Use→When→ Update→ For→ Output.

(1) The Use operator outputs the relevant viewV𝑟𝑒𝑙 that con-
tains all relevant attributes for the what-if query by a standard
group-by SQL query.

(2) The When operator takes V𝑟𝑒𝑙 as input, and defines the
set 𝑆 in the update 𝑈 = 𝑢𝑅,𝐵,𝑓 ,𝑆 . Suppose this operator uses an
SQL predicate 𝜇When defined on a subset of attributes of V𝑟𝑒𝑙 .
Then the output of theWhen operator is the viewV𝑟𝑒𝑙 𝑤 = {𝑡 ∈
V𝑟𝑒𝑙 : 𝜇When (𝑡) = 𝑡𝑟𝑢𝑒}. Note that in both Use and When
operators, the pre-update values (Pre values are assumed by default)
from the given database 𝐷 are used.

(3) Then the ‘Update 𝐵 = 𝑓 (Pre(𝐵))’ operation is applied to
the tuples 𝑡 ∈ V𝑟𝑒𝑙 𝑤 on attribute 𝐵. As described in Section 2.2,
this update is equivalent to modifying the structural equation 𝜙𝐵 [𝑡]
in the PRCM by replacing them with a constant value 𝑓 (Pre(𝐵)).
Due to uncertainty induced by the noise variables, at this point, we

get a set of possible worlds 𝑃𝑊𝐷 (𝐷) (Definition 1) along with a
post-update distribution Pr𝐷,𝑈 on 𝑃𝑊𝐷 (𝐷) induced by the update
𝑈 . Clearly, some possible worlds 𝐼 have Pr𝐷,𝑈 (𝐼) = 0, e.g., if for a
tuple 𝑡 in relation 𝑅 of 𝐼 such that 𝑡 corresponds to a tuple inV𝑟𝑒𝑙 𝑤
with the same key, 𝐵 [𝑡] ≠ 𝑓 (Pre(𝐵 [𝑡])).

(4 and 5) For the remaining For and Output operators, let us
first fix a possible world 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) obtained from the previous
step. LetV𝐼 𝑟𝑒𝑙 be the output of the SQL query in the Use operator
on 𝐼 . Suppose the predicate in the For operator is 𝜇 For, which may
include Pre(𝐴) and Post(𝐴′) values for different attributes 𝐴,𝐴′.
For every tuple 𝑡 (in any relation in𝐷) and attribute𝐴, consider two
values of 𝐴[𝑡]: Pre(𝐴[𝑡]) of 𝑡 in 𝐷 and Post(𝐴[𝑡]) of 𝑡 in 𝐼 (some
values remain the same in Pre and Post, e.g., if𝐴 is immutable or if
there is no effect of updating 𝐵 for 𝑆 tuples on𝐴). Using these values,
we evaluate the predicate 𝜇 For, and using tuples from 𝑅 that satisfy
this predicate, we compute the aggregate 𝑎𝑔𝑔𝑟𝑄 (Avg(𝑅𝑎𝑡𝑖𝑛𝑔) in
Figure 4) mentioned in the Output operator using their values in 𝐼
(i.e., Post values).

This aggregate 𝑎𝑔𝑔𝑟𝑄 is computed on attribute values 𝑌 [𝑡] for
𝑡 ∈ V𝐼 𝑟𝑒𝑙 , where 𝑌 itself can be an aggregated attribute 𝑌 =

𝑎𝑔𝑔𝑟Use (𝑌 ′) if it is coming from a different relation than the one
containing the update attribute as defined by the SQL query in the
Use operator (in Figure 4, 𝑌 = 𝑅𝑡𝑛𝑔, 𝑅𝑡𝑛𝑔 = Avg(𝑅𝑒𝑣𝑖𝑒𝑤 .𝑅𝑎𝑡𝑖𝑛𝑔),
and both 𝑎𝑔𝑔𝑟𝑄 and 𝑎𝑔𝑔𝑟Use areAvg). Hence, when a possible world
𝐼 ∈ 𝑃𝑊𝐷 (𝐷) is fixed, the what-if query answer is computed as
follows:

Definition 4 (What-if qery result on a possible world).
Given a what-if query 𝑄 and a database 𝐷 , the answer to 𝑄 on a

given possible world 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) is the aggregate 𝑎𝑔𝑔𝑟𝑄 over 𝑌𝐼 [𝑡]
values using the notations above:

valwhatif (𝑄,𝐷, 𝐼) = 𝑎𝑔𝑔𝑟 ({𝑌𝐼 [𝑡] : 𝜇 For (𝑡) = 𝑡𝑟𝑢𝑒, 𝑡 ∈ V𝑟𝑒𝑙 }) (2)

where 𝑌𝐼 [𝑡] denotes the value of attribute 𝑌 for tuple 𝑡 in the possi-

ble world 𝐼 . Here 𝑡 is tuple in the relevant view V𝑟𝑒𝑙 and therefore

corresponds to a unique tuple in relation 𝑅.

Then the final value of the what-if query is the expected query
result on all possible worlds of 𝐷 :

Definition 5 (What-if qery result). Given a what-if query

𝑄 and a database 𝐷 , the result of 𝑄 (𝐷) is the expected value of

valwhatif (𝑄, 𝐷, 𝐼) over all possible worlds 𝐼 ∈ 𝑃𝑊𝐷 (𝐷), using the
post-update probability distribution Pr𝐷,𝑈 :

valwhatif (𝑄,𝐷) = E𝐼∈𝑃𝑊𝐷 (𝐷) [valwhatif (𝑄,𝐷, 𝐼)]

=
∑︁

𝐼∈𝑃𝑊𝐷 (𝐷)
valwhatif (𝑄,𝐷, 𝐼) · Pr𝐷,𝑈 (𝐼) (3)

3.3 Computation of What-If Queries

The semantics presented in Section 3.2 does not directly lead to
an efficient algorithm to compute the answer to what-if queries
by Definition 5, since (1) the number of possible worlds can be
exponential in the size of the database 𝐷 , and (2) computation of
post-update distribution Pr𝐷,𝑈 is non-trivial. In this section, we
present our algorithm for computingwhat-if query answers that use
two key ideas to address these challenges: (a) Instead of computing
the what-if query over the entire database, we decompose it into
smaller problems and compute modified queries on subsets of tuples
that are ‘independent’ of each other (as fewer tuples make the

computation more efficient). Then we combine the results to get
the result of the original query over the entire database. (b) To
compute the distribution Pr𝐷,𝑈 needed for estimating the query
result, we use techniques from the observational causal inference
and the graphical causal model literature [38] when the post-update
distribution is determined by a PRCM.

Decomposing the computation. The decomposition, and subse-
quently the composition of answers, is achieved by the use of block-
independent databases and decomposable aggregate functions sup-
ported by HypeR (SUM, COUNT, AVERAGE) described below.
Block-independent database decomposition. We adapt the no-
tion of block-independent database model that has been used in
probabilistic databases [14, 42] and hypothetical reasoning [29]. First,
we need the notion of independence in our context. We say that
two tuples 𝑡, 𝑡 ′ ∈ 𝐷 are independent if there are no paths in the
ground causal graph 𝐺 (ref. Section 2.2) between 𝐴[𝑡] and 𝐴′[𝑡 ′]
for any two attributes 𝐴,𝐴′.

Given a database 𝐷 and a PRCM with a ground causal graph 𝐺 ,
B = {𝐷1, . . . , 𝐷ℓ } is called a block-independent decomposition

of 𝐷 if (i) {𝐷1, . . . , 𝐷ℓ } forms a partition of 𝐷 , i.e., each 𝐷𝑖 ⊆ 𝐷 ,
∪𝑙
𝑖=1𝐷𝑖 = 𝐷 , and 𝐷𝑖 ∩ 𝐷 𝑗 = ∅ for 𝑖 ≠ 𝑗 , and (ii) for each 𝑡 ∈ 𝐷𝑖

and 𝑡 ′ ∈ 𝐷 𝑗 where 𝑖 ≠ 𝑗 , 𝑡 and 𝑡 ′ are independent. Note that these
tuples 𝑡 and 𝑡 ′ can come from the same or different relations of 𝐷 .

We compute block-independent decomposition of database 𝐷
given a causal graph𝐺 as follows. The block decomposition process
performs a topological ordering of the nodes in the causal graph
and then performing a DFS or BFS on it, and is therefore linear
in the size of the causal DAG. The causal DAG has at most 𝑛 × 𝑘
nodes where 𝑛 is the number of tuples in 𝐷 and 𝑘 = |Attr(𝐷) |. In
particular, the decomposition does not depend on the structure or
complexity of the query. Block-independent decomposition pro-
vides an optimization in our algorithms; in the worst case, all tuples
may be included in a single block.

Example 7. Consider the causal graph of the PRCM (Figure 3)

defined on the database presented in Figure 1. The procedure first

performs a topological sort of the nodes. For example, in Figure 2, the

node 𝐵𝑟𝑎𝑛𝑑 [𝑝1] is first, and then the node 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 [𝑝1] etc. Then,
the algorithm performs a BFS to detect the connected components

of the graph which are all tuples belonging to the same category,

along with their reviews. The block-independent decomposition of

the database 𝐷 in Figure 1 is then B = {𝐷1, 𝐷2, 𝐷3} where 𝐷1 =

{𝑝1, 𝑝2, 𝑝3, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5},𝐷2 = {𝑝4, 𝑟6}, and𝐷3 = {𝑝5} correspond-
ing to laptops, camera, and books along with their reviews.

Decomposable functions. The aggregate functions supported
by HypeR are decomposable as defined below, which allows us
to combine results from each block after a block-independent de-
composition to compute the answer to a what-if query. Since the
immutable attributes include keys that are unchanged in all possible
worlds 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) of 𝐷 (Definition 1), given a block-independent
decomposition B of 𝐷 , we will use the corresponding decomposi-
tion B𝐼 of 𝐼 where the same tuples identified by their keys go to
the same blocks in B and B𝐼 . The aggregate functions 𝑓𝑄,𝐷 , 𝑓 ′𝑄,𝐷
below map a set of tuples to a real number whereas 𝑔 maps a set of
real numbers to another real number.

Definition 6 (Decomposable aggregate function). Given a

database 𝐷 , a block-independent decomposition B = {𝐷1, . . . , 𝐷ℓ } of
𝐷 , a what-if query 𝑄 , and any possible world 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) of 𝐷 , an
aggregate function 𝑓𝑄,𝐷 is decomposable if there exist aggregate

functions 𝑓 ′
𝑄,𝐷

and 𝑔 such that:

• 𝑓𝑄,𝐷 (𝐼) = 𝑔({𝑓 ′𝑄,𝐷 (𝐷𝑖) | ∀𝐷𝑖 ∈ B𝐼 }) where B𝐼 is the block
partition of 𝐼 corresponding to B,
• 𝛼𝑔({𝑥1, . . . , 𝑥𝑙 }) = 𝑔({𝛼𝑥1, . . . , 𝛼𝑥𝑙 }), ∀𝛼 ≥ 0, and
• 𝑔({𝑥1, . . . , 𝑥𝑙 }) + 𝑔({𝑦1, . . . , 𝑦𝑙 }) = 𝑔({𝑥1 + 𝑦1, . . . , 𝑥𝑙 + 𝑦𝑙 })

When the aggregate function 𝑎𝑔𝑔𝑟 given in Equation (2):
valwhatif (𝑄, 𝐷, 𝐼) = 𝑎𝑔𝑔𝑟 ({𝑌𝐼 [𝑡] : 𝜇 For (𝑡) = 𝑡𝑟𝑢𝑒, 𝑡 ∈ V𝑟𝑒𝑙 }) is
decomposable, we show that the computation can be performed on
the blocks B𝐼 and then aggregated to compute valwhatif (𝑄,𝐷, 𝐼).
We note that every supported aggregate function in this paper (Sum,
Avg, Count) is decomposable. We demonstrate this for Avg below.

Example 8. Reconsider the what-if query in Figure 4. Suppose

the database can be partitioned into blocks by Category as demon-

strated in Example 7. In this case, 𝑎𝑔𝑔𝑟 = Avg and 𝑌 = 𝑅𝑡𝑛𝑔 =

Avg(𝑇2.𝑅𝑎𝑡𝑖𝑛𝑔), and for any 𝐼 ∈ 𝑃𝑊𝐷 (𝐷), valwhatif (𝑄, 𝐷, 𝐼) =
Avg({𝑅𝑡𝑛𝑔𝐼 [𝑡] | 𝑡 ∈ V𝑟𝑒𝑙 ,𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 [𝑡] = 𝐿𝑎𝑝𝑡𝑜𝑝, 𝐵𝑟𝑎𝑛𝑑 [𝑡] =

𝐴𝑠𝑢𝑠, Post(𝑆𝑒𝑛𝑡𝑖 [𝑡]) > 0.5}) We use the standard formula for de-

composing average: Avg(𝐷) = 1
|𝐷 |

∑ℓ
𝑖=1 Sum(𝐷𝑖). For each block

𝐷𝑖 ∈ B𝐼 , 𝑓 ′𝑄,𝐷 (𝐷𝑖) =
1
|𝐷 | Sum({𝑅𝑡𝑛𝑔𝐼 [𝑡] | 𝑡 ∈ V𝐼

𝑟𝑒𝑙 ∩ 𝐷𝑖 ,
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 [𝑡] = 𝐿𝑎𝑝𝑡𝑜𝑝 , 𝐵𝑟𝑎𝑛𝑑 [𝑡] = 𝐴𝑠𝑢𝑠 , Post(𝑆𝑒𝑛𝑡𝑖 [𝑡]) > 0.5})
Here, 𝑔 = Sum, and Sum satisfies the properties in Definition 6.

In the proof of the following proposition, we leverage the ability
to marginalize the distribution Pr𝐷,𝑈 over the possible worlds of
the database 𝐷 (Definition 3) given a what-if query𝑄 to get a distri-
bution and a set of possible worlds for any block 𝐷𝑖 ∈ B, which we
denote by 𝑃𝑊𝐷 (𝐷𝑖) ⊆ 𝑃𝑊𝐷 (𝐷). 𝑃𝑊𝐷 (𝐷𝑖) are all instances where
all tuples 𝑡 ′ ∉ 𝐷𝑖 remain unchanged and all mutable attributes of
𝑡 ∈ 𝐵𝑖 get all possible values from their respective domains. We
further denote 𝑃𝑊𝐷 (𝐷𝑖) as the set of possible worlds of 𝐷𝑖 that
only includes the tuples in 𝐷𝑖 ; i.e., 𝑃𝑊𝐷 (𝐷𝑖) is the projection of
𝑃𝑊𝐷 (𝐷𝑖) on 𝐷𝑖 . All proofs are deferred to the appendix (Section
A) due to space constraints.

Proposition 1 (Decomposed computation). Given a database

𝐷 , its block-independent decomposition B = {𝐷1, . . . , 𝐷ℓ }, and a

what-if query 𝑄 whose result on a possible world 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) is
valwhatif (𝑄, 𝐷, 𝐼) = 𝑎𝑔𝑔𝑟 ({𝑌𝐼 [𝑡] : 𝜇 For (𝑡) = 𝑡𝑟𝑢𝑒, 𝑡 ∈ V𝑟𝑒𝑙 })
(Definition 4), if 𝑎𝑔𝑔𝑟 is a decomposable function, i.e., if there exist

functions 𝑔 and 𝑓 ′
𝑄,𝐷

according to Definition 6, then

valwhatif (𝑄,𝐷) = 𝑔 ({valwhatif (𝑄′, 𝐷𝑖) | ∀𝐷𝑖 ∈ B}) (4)

where 𝑄 ′ is the same query as 𝑄 with 𝑓 ′
𝑄,𝐷

replacing 𝑎𝑔𝑔𝑟 and

valwhatif (𝑄′, 𝐷𝑖) = E𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖) [valwhatif (𝑄
′, 𝐷𝑖 , 𝐼 𝑗)] (5)

Computing results with causal inference. We show the connection
between the what-if query results and techniques in observational
causal inference. This connection will allow us to compute the
results for each block as given in Equation (5). Specifically, we
show how the computation in each block is done by the post-update
probabilities, which we further reduce to pre-update probabilities.

Proposition 2 (Connection to causal inference for Count).
Given a database 𝐷 with its block independent decomposition B𝐷 , a
block 𝐷𝑖 ∈ B𝐷 , a ground causal graph 𝐺 , a what-if query 𝑄 ′ where
𝐴𝑔𝑔 = Count, and the For operator is denoted by 𝜇 For, the following

holds.

valwhatif (𝑄′, 𝐷𝑖) =
∑︁
𝑡∈𝐷𝑖

©«
∑︁
𝑘

(
Pr𝐷𝑖 ,𝑈

(𝜇𝑘
For,Post (𝑡) = true |𝜇𝑘

For,Pre (𝑡) = true)
)ª®¬

In this equation, Pr𝐷𝑖 ,𝑈 (𝜇𝑘For,Post (𝑡) = true|𝜇𝑘
For,Pre

(𝑡) = true)
denotes the sum of probabilities of all possible worlds of 𝐷𝑖 such that

the tuple 𝑡 that satisfied 𝜇𝑘
For,Pre

(𝑡) = true before the update𝑈 also

satisfies 𝜇𝑘
For,Post

(𝑡) after the update.

The proof of the proposition relies on the fact that the sum of
probabilities of all possible worlds is 1 and the fact that a For
clause can be represented as a CNF of Pre and Post conditions.
Proposition 2 assumes 𝐴𝑔𝑔 = Count, however, a similar result for
𝐴𝑔𝑔 = Sum/Avg can be found in the appendix (Section A).
Estimating the probability values. The expression in Proposi-
tion 2 relies on the post-update distribution to evaluate conditional
probability of certain attribute values. For example, we need a way
to estimate Pr𝐷,𝑈 (𝐴𝑖 = 𝑎𝑖 | 𝐴 𝑗 = 𝑎 𝑗 , 𝜇When) when 𝑎𝑔𝑔𝑟 = Count.
Our goal is to find a way to estimate these probability values from
the input database 𝐷 , assuming we have a PRCM.

To do so, we leverage the notion of backdoor criterion from
causal inference [38]. A set of attributes C satisfies the backdoor
criterion w.r.t.𝐴𝑖 and 𝐵 if no attribute𝐶 ∈ C is a descendant of𝐴𝑖 or
𝐵 and all paths from 𝐵 to𝐴𝑖 which contain an incoming edge into𝐴𝑖
are blocked by C. For example, in Figure 3, Brand[𝑝1], Quality[𝑝1],
and Category[𝑝1] satisfy the backdoor criterion with respect to
Sentiment[𝑝1] and Rating[𝑝1]. Using this criterion, we show (in the
full version) that the element Pr𝐷,𝑈 (𝐴𝑖 = 𝑎𝑖 | 𝐵 = 𝑏,𝐶 = 𝑐, 𝐴 𝑗 =

𝑎 𝑗 , 𝜇When) in the query result expression in Proposition 2 can be
estimated from Pr𝐷 using the following calculations.

Pr𝐷,𝑈 (𝐴𝑖 = 𝑎𝑖 | 𝐴𝑗 = 𝑎 𝑗 , 𝜇When) =∑︁
𝑐∈Dom(𝐶)

Pr𝐷,𝑈 (𝐴𝑖 = 𝑎𝑖 | 𝐶 = 𝑐,𝐴 𝑗 = 𝑎 𝑗 , 𝜇When)Pr𝐷 (𝐶 = 𝑐 |𝐴𝑗 = 𝑎 𝑗 , 𝜇When)

The first probability term can be simplified as follows.

Pr𝐷,𝑈 (𝐴𝑖 = 𝑎𝑖 | 𝐶 = 𝑐,𝐴 𝑗 = 𝑎 𝑗 , 𝜇When) =∑︁
𝑏∈Dom(𝐵)

Pr𝐷,𝑈 (𝐴𝑖 = 𝑎𝑖 | 𝐵 = 𝑏,𝐶 = 𝑐,𝐴𝑗 = 𝑎 𝑗 , 𝜇When) ·

Pr𝐷 (𝐵 = 𝑏 |𝐶 = 𝑐,𝐴 𝑗 = 𝑎 𝑗 , 𝜇When)

This shows that the query output relies on Pr𝐷,𝑈 (𝐴𝑖 = 𝑎𝑖 | 𝐵 =

𝑏,𝐶 = 𝑐, 𝐴 𝑗 = 𝑎 𝑗 , 𝜇When), which can be estimated from Pr𝐷 using
equation (1). Using these probability calculations, we estimate the
query output from the input data distribution Pr𝐷 . The equations
require that we iterate over the values in the domain of B and C,
which can be inefficient as the domain set size increases exponen-
tially with the number of attributes in the set. However, the majority
of the values in Dom(C) would have zero-support in the database
𝐷 , implying Pr𝐷 (𝐶 = 𝑐 |𝐴 𝑗 = 𝑎 𝑗 , 𝜇When) = 0 for C = 𝑐 . Therefore,
we build an index of values in Dom(C) to efficiently identify the
set of values that would generate a positive probability-value. This
optimization ensures that the runtime is linear in the database size.

Use (. . .) /* same as Figure 4 */

When 𝐵𝑟𝑎𝑛𝑑 = ‘𝐴𝑠𝑢𝑠′ And𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘𝐿𝑎𝑝𝑡𝑜𝑝′

HowToUpdate 𝑃𝑟𝑖𝑐𝑒,𝐶𝑜𝑙𝑜𝑟
Limit 500 ≤ 𝑃𝑜𝑠𝑡 (𝑃𝑟𝑖𝑐𝑒) ≤ 800 And

𝐿1(Pre(𝑃𝑟𝑖𝑐𝑒), Post(𝑃𝑟𝑖𝑐𝑒)) ≤ 400
ToMaximize Avg(Post(𝑅𝑡𝑛𝑔))
For (Pre(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦) =′ 𝐿𝑎𝑝𝑡𝑜𝑝′ Or

Pre(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦) =′ 𝐷𝑆𝐿𝑅 𝐶𝑎𝑚𝑒𝑟𝑎′) And 𝐵𝑟𝑎𝑛𝑑 =′ 𝐴𝑠𝑢𝑠′

Figure 5: How-to query asking “how tomaximize the average

rating of Asus laptops and cameras over the determined view

by changing the price and/or color of Asus laptops so that it

will not drop below 500 and increase above 800, and will be

at most 400 away from it original value?”

4 PROBABILISTIC HOW-TO QUERIES

How-to queries support reverse data management (e.g., [33]), and
suggest how a given mutable attribute can be updated to optimize
the output attributes subject to various constraints. In this section
we describe the syntax of probabilistic how-to queries supported
by HypeR (Section 4.1), describe their semantics (Section 4.2), and
present algorithms to compute their answers (Section 4.3). How-to
queries are computed by solving an optimization problem over
several relevant what-if queries.

4.1 Syntax of Probabilistic How-To Queries

The syntax of how-to queries in HypeR is similar to that of what-if
queries (see Figures 4 and 5, and Section 3.1). How-to queries have
two parts. The first part uses the required Use operator and is iden-
tical to the Use operator in the what-if queries in its functionality
– it defines the relevant view V𝑟𝑒𝑙 that contains the key of the
relation containing the update attribute, and includes all attributes
used in the second part of the query; attributes coming from other
relations are aggregated.

In the second part, the optionalWhen and For operators have
the same functions as the what-if queries. Then When operator
specifies the set 𝑆 on which an update 𝑈 = 𝑢𝑅,𝐵,𝑓 ,𝑆 can be applied,
whereas the For operator defines the subset on which the effect
is estimated. Like what-if queries, When only includes pre-update
values Pre(𝐴), whereas For can include both pre- and post-update
values Pre(𝐴), Post(𝐴).

The required HowToUpdate operator corresponds to the
Update operator of what-if queries, and uses Pre(𝐴), but instead
of specifying an attribute (or a set of attributes) to update, it speci-
fies the set of mutable attributes that can be updated. In Figure 5,
‘HowToUpdate Price, Color’ states that any combination of these
three attributes can be updated, and some attributes can be left un-
changed as well. To ensure that the updates on these attributes are
valid, our algorithms assume that, for any pair of the attributes men-
tioned in this clause 𝐴1, 𝐴2, there are no paths in the ground causal
graph of the PRCM between 𝐴1 [𝑡] and 𝐴2 [𝑡 ′] for any 𝑡, 𝑡 ′ ∈ 𝐷 .

Possible outputs of the how-to queries are of these forms
for each attribute 𝐴 specified in the HowToUpdate operator: (i)
Update(𝐵) =< 𝑐𝑜𝑛𝑠𝑡 >, (ii) Update(𝐵) =< 𝑐𝑜𝑛𝑠𝑡 > × Pre(𝐵), (iii)
Update(𝐵) =< 𝑐𝑜𝑛𝑠𝑡 > + Pre(𝐵), and Update(𝐵) = no change,
where < 𝑐𝑜𝑛𝑠𝑡 > is a constant found by our algorithms from the

search space. One example output of this HowToUpdate query is

{Price: 1.1x, Color: no change}

stating the price should be increased by 10%, the color should be
changed to red, and the category should not be changed.

The optional Limit operator states the constraints for optimiza-
tion, i.e., it defines the conditions that restrict the post-update values
of update attributes specified in the HowToUpdateUpdate opera-
tor for tuples inV𝑟𝑒𝑙 that satisfy the When operator. In particular,
if an attribute 𝐴 is numeric, its updates can be bounded by numeric
limits, e.g., 𝑙 ≤ Post(𝐴) ≤ ℎ, 𝑙 ≤ Post(𝐴), Post(𝐴) ≤ Pre(𝐴)+ <
𝑐𝑜𝑛𝑠𝑡 >, Post(𝐴) ≤ Pre(𝐴)× < 𝑐𝑜𝑛𝑠𝑡 >, etc., and if 𝐴 is categor-
ical or numeric, the user can specify the permissible values as a
set, e.g., Post(𝐴) In (𝑣1, 𝑣2, 𝑣3). Furthermore, this operator allows
users to specify the maximal or minimal 𝐿1 distance between the
original attribute values (Pre(𝐴)) and the updated ones (Post(𝐴))
for attributes 𝐴 in the HowToUpdate operator for the tuples satis-
fying the condition in the When operator: 𝐿1(Post(𝐴), Pre(𝐴))
takes a vector of values 𝑉𝑢 and 𝑉𝑢 [𝑖] is an update value of the 𝑖’th
attribute mentioned in the Limit operator, and returns the normal-
ized 𝐿1 distance between the original value vector the vector of
update values |𝑉𝑢 −𝑉𝑜𝑟𝑖𝑔 |. The 𝐿1 operator helps model the cost
of an update (with suitable weights) as some updates can be more
expensive than the others.

Finally, the how-to query needs to include a requiredToMaximize

or ToMinimize operator, which specifies an aggregated value
of an attribute from the relevant view V𝑟𝑒𝑙 that is to be maxi-
mized or minimized using the updates on the attributes specified
in the HowToUpdate operator. Only post-update values Post(𝐴)
of attributes are allowed in ToMaximize and ToMinimize.

Example 9. Consider the query in Figure 5. It asks for the max-

imum value of the average value of Rtng (HowToUpdate) by up-

dating the tuples with Brand = ‘Asus’, Category = ‘Laptop’
(When). The attributes allowed to be updated are Price, Color
(HowToUpdate). The update to the Price attribute is restricted to

[500, 800], where distance between the original values and the up-

dated values in this attribute has to be ≤ 400. The average of Rtng is
computed over the view defined by the For operator.

4.2 Semantics of Probabilistic How-To Queries

We next define the results of how-to queries in terms of what-if
queries. Intuitively, every how-to query optimizes over a set of what-
if queries, where each what-if query contains a possible update
allowed in the how-to query. Assuming, without losing generality,
that the how-to query contains aToMaximize operator, the result of
the how-to query is then the what-if query that yields the maximum
result of the output attribute in the ToMaximize operator of the
how-to query, subject to the constraints on post-update values of
attributes specified in the Limit operator.

Definition 7 (Candidate what-if qery). Given a how-to

query𝑄𝐻𝑇 that includes (i) a ToMaximize operator of𝐴𝑔𝑔(𝑃𝑜𝑠𝑡 (𝑌)),
(ii) a HowToUpdate operator with update attributes 𝐵1, . . . , 𝐵𝑐 , and
(iii) a Limit operator that without loss of generality specifies permis-

sible ranges R𝑖 and 𝐿1(Pre(𝐵𝑖), Post(𝐵𝑖)) < 𝜃𝑖 for all 𝑖 ∈ [1, 𝑐] (if
there are no constraints on the range in 𝑄𝐻𝑇 for 𝐵𝑖 , R𝑖 = Dom(𝐵𝑖)

and if no 𝐿1 constraint is specified, 𝜃𝑖 = ∞), a candidate what-if

query is a what-if query 𝑄𝑊𝐼 such that:

• The Use, When, and For operators in 𝑄𝑊𝐼 are identical to

the ones in 𝑄𝐻𝑇 ,

• 𝑄𝑊𝐼 containsUpdate𝐵 𝑗1 = 𝑏1, . . . , 𝐵 𝑗𝑘 = 𝑏𝑘 , where { 𝑗1, . . . , 𝑗𝑘 }
⊆ {1, . . . , 𝑐}, 𝑏𝑖 ∈ R 𝑗𝑖 , and 𝐿1(Pre(𝐵 𝑗𝑖), Post(𝐵 𝑗𝑖)) < 𝜃 𝑗𝑖 .
• TheOutput operator in𝑄𝑊𝐼 specifies the attribute𝐴𝑔𝑔(𝑃𝑜𝑠𝑡 (𝑌))
from the ToMaximize operator in 𝑄𝐻𝑇 .

This query is denoted as𝑄𝑊𝐼 ((𝐵𝑖1 , 𝑏1), . . . , (𝐵𝑖𝑐 , 𝑏𝑐)). The set of all
candidate what-if queries for a how-to query 𝑄𝐻𝑇 is denoted by

Q𝑤ℎ𝑎𝑡𝑖 𝑓 (𝑄𝐻𝑇).

Example 10. A candidate what-if query 𝑄𝑊𝑇 ((𝑃𝑟𝑖𝑐𝑒, 500)) for
the how-to query depicted in Figure 5 is given below (Use operator is

the same as that in Figure 4):

Use (. . .)
When 𝐵𝑟𝑎𝑛𝑑 = ‘𝐴𝑠𝑢𝑠′ And𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦 = ‘𝐿𝑎𝑝𝑡𝑜𝑝′

Update 𝑃𝑟𝑖𝑐𝑒 = 500
Output Avg(Post(𝑅𝑎𝑡𝑖𝑛𝑔))
For (Pre(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦) =′ 𝐿𝑎𝑝𝑡𝑜𝑝′ Or

Pre(𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦) =′ 𝐷𝑆𝐿𝑅 𝐶𝑎𝑚𝑒𝑟𝑎′) And 𝐵𝑟𝑎𝑛𝑑 =′ 𝐴𝑠𝑢𝑠′

In particular, the update on the Price attribute is in [500, 800] and
satisfies the L1 distance since the original price of the Asus laptop is

529, and the rest of the query is identical to the query in Figure 5.

We now define the result if a how-to query that optimizes over
the result of all candidate what-if queries.

Definition 8 (How-to qery result). Given a database 𝐷 and

a how-to query 𝑄𝐻𝑇 with a ToMaximize operator, the result of 𝑄𝐻𝑇
is defined as follows:

𝑎𝑟𝑔𝑚𝑎𝑥𝑄𝑊𝐼 ∈Q𝑤ℎ𝑎𝑡𝑖 𝑓 (𝑄𝐻𝑇)valwhatif (𝑄𝑊𝐼 , 𝐷) (6)

where valwhatif (𝑄𝑊𝐼 , 𝐷) denotes the result of the what-if query𝑄𝑊𝐼

on D as defined in Definition 5; ToMinimize is defined similarly.

We take the argmax of Q𝑤ℎ𝑎𝑡𝑖 𝑓 (𝑄𝐻𝑇) since a how-to query asks
about the manner in which the database needs to be updated and
not about the result. This corresponds to the output we defined
and demonstrated in Section 4.1. Definition 8 requires taking the
maximum over a large set of candidate what-if queries, which can
even be infinite if the domain is continuous. In the next section, we
provide optimizations to make their computation feasible.

4.3 Computation of How-to queries

The naive approach to computing the result of a how-to query by
Definition 8 is inefficient as it evaluates a large number of candidate
what-if queries. Instead, we model the problem of computing the
result of how-to queries as an Integer Program (IP). Denote by
U = {𝐵1, · · · , 𝐵𝑐 } the set of update attributes in theHowToUpdate
operator. For each attribute 𝐵𝑖 ∈ U, we enumerate all permissible
updates (denoted by 𝑆𝐵𝑖) and define an indicator variable 𝛿𝑏𝑖 for
every 𝑏𝑖 which denotes the potential updated value of attribute 𝐵𝑖 .
For example, the set 𝑆𝑃𝑟𝑖𝑐𝑒 can consist of the following updates:

𝑆𝐴 ≡{1.1xPre(Price), 1.2xPre(Price), . . . , 2.5xPre(Price)
100+Pre(Price), 200+Pre(Price), . . . , 500+Pre(Price),

250 , 300, . . . , 600}

The elements of set 𝑆𝐴 are defined such that all these updates
satisfy the constraints mentioned in Limit operator. If the set of
potential updates is continuous, we bucketize them so that we can
treat their values as discrete. Given a set 𝑆𝐵𝑖 and variables 𝛿𝑏𝑖 for all
𝑏𝑖 ∈ 𝑆𝐵𝑖 , we add a constraint for each attribute that

∑
𝑏𝑖 ∈𝑆𝐵𝑖 𝛿𝑏𝑖 ≤ 1

to ensure that at most one of the updates is performed. If 𝛿𝑏𝑖 is zero
for all values in 𝑆𝐵𝑖 , then 𝐵𝑖 is not updated. Given this formulation,
the corresponding what-if query is estimated as a linear expression
by using Proposition 2 and training a regression function over the
dataset 𝐷 . Let this linear function be 𝜙 : Dom(U) → 𝑂 , where 𝑂 is
the range of the output of candidate what-if queries. The following
IP models the solution to the how-to query using the variables 𝛿𝑏𝑖 .

argmax 𝜙 (𝐷,
∑︁

𝑏1∈𝑆𝐵1

𝛿𝑏1𝑏1, . . . ,
∑︁

𝑏𝑐 ∈𝑆𝐵𝑐

𝛿𝑏𝑐𝑏𝑐) (7)

subject to
∑︁

𝑏𝑖 ∈𝑆𝐵𝑖

𝛿𝑏𝑖 ≤ 1, ∀𝑖 = 1 𝑡𝑜 𝑐 (8)

𝛿𝑏𝑖 ∈ {0, 1}, ∀𝑏𝑖 ∈ 𝑆𝐵𝑖
, ∀𝑖 = 1 𝑡𝑜 𝑐 (9)

In addition to these constraints, additional constraints are added
to the IP based on the constraints in the Limit operator. Since all
constraints and the objective function are linear equations, we lever-
age standard IP solvers to calculate the output of the HowToUpdate
query3. Note that the number of constraints in the IP grows linearly
with the number of attributes in U and the number of variables
grows linearly in the number of possible updates for each attribute.
Extension to preferential multi-objective optimization. Hy-
peR can be adapted to the settings where an user aims to optimize
multiple objectives that are lexicographically ordered based on pref-
erence. Consider a ordered set of preferences 𝑝1, . . . , 𝑝𝑡 where each
preference 𝑝𝑖 is less important than 𝑝 𝑗 for 𝑗 < 𝑖 . In this case, we
propose to solve IP iteratively as follows. First, we can solve the
single objective optimization problem for the first preference 𝑝1 as
described above, ignoring other preferences. In the subsequent iter-
ation, the identified objective value of the first considered objective
is added as a constraint to maximize the second preference 𝑝2. In
this way, all previously solved objectives are added as constraints
while optimizing for a preference 𝑝𝑖 . The solution to the last integer
program that optimizes for 𝑝𝑡 where all other preferences are added
as constraints is returned as the final solution to the preferential
multi-objective optimization.

Example 11. Consider the database in Figure 1 and a how-to query
that aims to maximize the average ratings as a first priority and the

average sentiment as a second priority. In the first IP, we will solve

for the clause ToMaximize Avg(Post(𝑅𝑡𝑛𝑔)), where 𝑅𝑡𝑛𝑔 are the

ratings. Suppose the maximum average rating we get is 𝑐 . We then

solve the IP for the clause ToMaximize Avg(Post(𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡)) and
add the constraint that (Avg(Post(𝑅𝑡𝑛𝑔))) will equal 𝑐 .

5 EXPERIMENTS

We evaluate the effectiveness of HypeR and its variants on vari-
ous real-world and synthetic datasets and answer the following
questions:

3As an alternate formulation, our framework allows to optimize the cost (L1 distance
between the original attribute and the updated value) while adding a constraint on
the aggregated attribute. We discuss more details in Section A.

(1) Do the results provided by HypeR make sense in real-world
scenarios?

(2) How doesHypeR compare to other baselines for hypothetical
reasoning when the ground truth is available?

(3) How does the runtime of HypeR depend on query complexity
and dataset properties like number of tuples, the causal graph
structure, discretization of continuous attributes, and the
number of attributes in different operators of the query?

(4) How does combining a sampling approach with HypeR in-
fluences runtime performance and the quality of the results?

Our experimental study includes 5 datasets and 3 baselines that are
either inspired by previous approaches or simulate the absence of
a causal model. We provide a qualitative and quantitative evalua-
tion of HypeR, showing that it gives logical results in real-world
scenarios and achieves interactive performance in most cases.
Implementation and setup.We implemented the algorithms in
Python. HypeR was run on a MacOS laptop with 16GB RAM and
2.3 GHz Dual-Core Intel Core i5 processor. We used random forest
regressor [53] to estimate conditional probabilities.

5.1 Datasets and Baselines

We give a short description of the datasets and baselines used in
this section.
Datasets. The following datasets and causal models were used.

• TheAdult income dataset [31] comprises demographic infor-
mation of individuals along with their education, occupation,
hours of work, annual income, etc. It is composed of a single
table. We used the causal graph from prior studies [11].
• German dataset [20] contains details of bank account hold-
ers including demographic and financial information along
with their credit risk. It composed of a single table and the
causal graph was used from [11].
• Amazon dataset [27] is a relational database consisting of
two types of tables, as described in Figure 1, and the causal
graph is presented in Figure 2. We identified product brand
from their description, used Spacy [2] for sentiment analysis
of reviews and estimated quality score from expert blogs [1].
• German-Syn is a synthetically generated dataset using the
same causal graph as German dataset [20]. It consists of a sin-
gle table. We consider two different versions for our analysis,
one with 20K records and the other with 1 million records.
• Student-Syn dataset contains two different tables (a) Stu-
dent information consisting of their age, gender, country
of origin and their attendance. (b) Student participation at-
tributes like discussion points, assignment scores, announce-
ments read and overall grade. Each student was considered
to enroll in 5 different courses and their overall grade is an
average over respective courses. This data was generated
keeping in mind the effect of attendance on class discussions,
announcements and grade. The causal model has student age,
gender and country of origin as the root nodes, which affect
their attendance and other performance related attributes.

Variations. In the experiments, HypeR is run assuming that back-
ground knowledge about the causal graph is known a priori. We

1K 50K 100K 200K
Sample Size

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Qu
er

y
ou

tp
ut

Hyper
Hyper-sampled

(a) Solution quality

0.00 0.25 0.50 0.75 1.00
Sample Size (in millions)

0

100

200

300

400

Ti
m

e
(in

 se
co

nd
s)

HypeR
HypeR-sampled

(b) Running time

Figure 6: Effect of varying sample size on HypeR-sampled

output and running time for German-Syn (1M) dataset

consider one variation where the causal model is not available (de-
noted by HypeR-NB), and another where we perform sampling for
training the regressor (denoted HypeR-sampled).
• HypeR-NB:when no causal model is available, all attributes
are assumed to affect the updated attribute and the output.
• HypeR-sampled: is an optimized version of HypeR that
considers a randomly chosen subset of 100k records for the
calculation of conditional probabilities of Proposition 2. The
choice of sample size is discussed in Section 5.2

Baselines..We consider two different baselines of HypeR to evalu-
ate hypothetical queries:
• Indep: baseline inspired by previous work on provenance
updates [16]: this approach ignores the causal graph and
assumes that there is no dependency between different at-
tributes and tuples.
• Opt-HowTo: baseline for how-to analysis where we com-
pute the optimal solution by enumerating all possible up-
dates, evaluating what-if query output for each update and
choosing the one that returns the optimal result.

5.2 HypeR and its sampling variant

First, we evaluate the effectiveness of HypeRwith its variantHypeR-
sampled to understand the tradeoff between quality and running
time. Figure 6 compares the effect of changing the sample size on the
quality of output generated (Figure 6a) and running time (Figure 6b)
by HypeR-sampled. Figure 6a shows that the standard deviation
in query output of HypeR-sampled reduces with an increase in
sample size and is within 1% of the mean whenever more than
100𝑘 samples are considered. In terms of running time, we observe
a linear increase in time taken to calculate query output. Due to
low variance of HypeR-sampled for 100𝑘 samples and reasonable
running time, we consider 100k as the sample-size for subsequent
analysis.

5.3 What-If Real World Use Cases

In this experiment, we evaluate the output of HypeR on a diverse of
hypothetical queries on various real-world datasets. Due to the ab-
sence of ground-truth, we discuss the coherence of our observations
with intuitions from existing literature.
German. We considered a hypothetical update of fixing attributes
‘Status’, ‘Credit history’, and ‘housing’ to their respective minimum
and maximum values to evaluate the effect of these attributes on
individual credit. Figure 7a demonstrates the query template where

Use 𝐷 Update(𝐵) = 𝑏 Output Count(𝐶𝑟𝑒𝑑𝑖𝑡 = 𝐺𝑜𝑜𝑑) For Pre(𝐴) = 𝑎

(a) What-if query (German dataset): What fraction of individuals

will have good credit if 𝐵 is updated to 𝑏?

Use 𝐷 Update(𝐵) = 𝑏 Output Count(∗)
For Post(𝐼𝑛𝑐𝑜𝑚𝑒) > 50𝑘 And Pre(𝐴) = 𝑎

(b) What-if query (Adult dataset): How many individuals with at-

tribute 𝐴 = 𝑎 will have income ≥ 50𝐾 if 𝐵 is updated to 𝑏?

Figure 7: What-if queries for real world use cases

Table 1: Average Runtime in seconds for Count query to evaluate
the effect of a hypothetical update on target for what-if queries. The
time in (..) in the last row is by HypeR(-NB)-sampled, which takes
the same time as HypeR(-NB) on all other datasets with < 100𝑘
tuples.
Dataset Att. [#] Rows[#] HypeR HypeR-NB Indep

Adult [31] 15 32k 45s 105s 3s
German [20] 21 1k 1.2s 12.5s 0.4s
Amazon [27] 5,3 3k, 55k 1.7s 10.5s 0.8s
Student-syn 3,6 10k,50k 4.5s 12.3s 1.2s
German-Syn (20k) 6 20k 7.2s 22.45s 1.4s
German-Syn (1M) 6 1M 390s (44.5s) 1173s (132s) 73s

0.0 0.5 1.0 1.5
Query Output

Status

Credit History

Housing

Investment Minimum
Maximum

(a) German

0.0 0.5 1.0
Query Output

Marital

Occupation

Education

Class Minimum
Maximum

(b) Adult

Figure 8: What-if query output for German and Adult datasets
on updating each attribute to their min and max values; a

larger gap denotes higher attribute importance.

𝑋, 𝑥, 𝑋2, 𝑥2 are varied to evaluate the effect of different updates.
Whenever status or credit history are updated to the maximum
value, more than 81% of the individuals have good credit. Similarly,
updating these attributes to the minimum value reduces the credit
rating of more than 30% individuals. On the other hand, updating
other attributes like ‘housing’ and ‘investment’ affects the credit
score of less than 20% individuals. Figure 8a presents the effect of
updating these attributes to their minimum and maximum value.
Larger gap in the query output for Status and credit history shows
that these attributes have a higher impact on credit score. We also
tested the effect of updating pairs of attributes and observed that
updating ‘credit history’ and ‘status’ at the same time can

affect the credit score of more than 70% individuals. These
observations are consistent with our intuitions that credit history
and account status have the maximum impact of individual credit.
Adult. This dataset has been widely studied in the fairness lit-
erature to understand the impact of individual’s gender on their
income. It has a peculiar inconsistency where married individu-
als report total household income demonstrating a strong causal

impact of marital status on their income [46, 52, 59]. We ran a hy-
pothetical what-if query to analyze the fraction of high-income
individuals when everyone is married (Figure 7b). We observed
that 38% of the individuals have more than 50K salary. Similarly,
if all individuals were unmarried or divorced, less than 9%
individuals have salary more than 50K. This wide gap in the
fraction of high-income individuals for two different updates of
marital status demonstrate its importance to predict household
income. Figure 8b shows the effect of updating the attributes with
the minimum or the maximum value in their domain. Additionally,
updating class of all individuals has a smaller impact on the fraction
with higher income. These observations match the observations
of existing literature [22], where marital status, occupation and
education have the highest influence on income.
Amazon. We evaluated the effect of changing price of products of
different brands on their rating. When all products have price more
than the 80𝑡ℎ percentile, around 32% of the products have average
rating of more than 4. On further reducing the laptop prices

to 60𝑡ℎ and 40𝑡ℎ percentiles, more than 60% of the products

get an average rating of more than 4. This shows that reducing
laptop price increases average product ratings. Among different
brands, we observed that Apple laptops have the maximum increase
in rating on reducing laptop prices, followed by Dell, Toshiba, Acer
and Asus. These observations are consistent with previous studies
on laptop brands [3], which mention Apple as the top-quality brand
in terms of quality, customer support, design, and innovation.

5.4 Solution Quality Comparison

In this experiment, we analyzed the quality of the solution gener-
ated by HypeR with respect to the ground truth and baselines over
synthetic datasets. The ground truth values are calculated using
the structural equations of the causal DAG for the synthetic data.
What-if. For the German-Syn (1M) dataset, Figure 10a presents
the output of a query that updates different attributes related to
individual income and evaluates the probability of achieving good
credit. For all attributes, HypeR, HypeR-sampled, and HypeR-NB
estimate the query output accurately with an error margin of less
than 5%. In contrast, Indep baseline ignores the causal structure
and relies on correlation between attributes to evaluate the output.
Since, the individuals with high status are highly correlated with
good credit, Indep incorrectly outputs that updating Status would
automatically improve credit for most of the individuals.

For the Student-Syn dataset, Figure 10b presents the average
grade of individuals on updating different attributes that are an
indicator of their academic performance. In all cases, HypeR and
HypeR-NB output is accurate while Indep is confused by correla-
tion between attributes and outputs noisy results. In addition to
these hypothetical updates, we considered complex what-if queries
that analyzed the effect of assignment and discussion attributes on
individuals that read announcements and have high attendance. In
these individuals, we observed that improving assignment score
has the maximum effect on overall grade of individuals.
How-to. For the German-Syn (20k) dataset, we considered a how-
to query that aims to maximize the fraction of individuals receiv-
ing good credit. We provided Status, Savings, Housing and Credit

1 2 4 6 8 10
Number of buckets

0.0

0.5

1.0

So
lu

tio
n

Qu
al

ity

Hyper
Opt-discrete

(a) Solution quality

1 2 4 6 8 10
Number of buckets

101

102

103

104

Ru
nn

in
g

Ti
m

e
(s

ec
on

ds
)

Hyper
Opt-discrete

(b) Running time

Figure 9: How-to Query output for German-Syn (20k) with

varying number of buckets.

amount as the set of attributes in the HowToUpdate operator. Hy-
peR returned that updating two attributes i) account status, and ii)
housing attributes is sufficient to achieve good credit. This showed
that updating a single attribute would not maximize the fraction of
individuals with good credit. We evaluated the ground truth (Opt-
HowTo) by enumerating all possible update queries and used the
structural equations of the causal graph to evaluate the post-update
value of the objective function for each update. We identified that
HypeR’s output matches the ground truth update.

For the Student-Syn dataset, we evaluated a how-to query to
maximize average grades of individuals with a budget of updating
atmost one attribute. HypeR returned that improving individual
attendance provide the maximum benefit in average grades. This
output is consistent with ground truth calculated by evaluating the
effect of all possible updates (Opt-HowTo).
Effect of discretization. HypeR bucketizes all continuous at-
tributes before solving the integer program. In this experiment, we
evaluate the effect of number of buckets on the solution quality and
running time on a modified version of German-Syn (20k) dataset
that contains continuous attributes. We partitioned the dataset
into equi-width buckets and compared the solution returned by
HypeR and the optimal solution calculated after discretization (Opt-
discrete) with the ground truth solution (OptHowTo). Figure 9a
compares the quality of HypeR and Opt-discrete as a ratio of the
optimal value. We observe that the solution quality improves with
the increase in the number of buckets and the returned solution is
within 10% of the optimal value whenever we consider more than
4 buckets. The solution returned by Opt-discrete is similar to that
of HypeR. The time taken by Opt-discrete increases exponentially
with the number of buckets. In contrast, time taken by HypeR does
not increase considerably as the number of variables in the integer
program depends linearly on the number of buckets. This shows
that running HypeR over a bucketized version of the dataset leads
to competitive quality in reasonable amount of time.

5.5 Runtime Analysis and Comparison

In this section, we evaluate the effect of different facets of the
input on the runtime of HypeR. Note that our approach comprises
two steps: (a) creating the aggregate view on which the query
should be computed (done using a join-aggregate query), and (b)
training regression functions to calculate conditional probability
in the calculation of query output (the mathematical expression is

0.0 0.5 1.0
Query Output

Status

Savings

Housing

Credit
 Amount

Ground Truth
Hyper-sampled
Hyper
Hyper-NB
Indep

(a) German-Syn (1M)

0 50 100
Query Output

Assignment

Attendance

Announcement

Hand Raised

Discussion
Ground Truth
Hyper
Hyper-NB
Indep

(b) Students-Syn

Figure 10: What-If Query output.

in Proposition 2). This training is performed over a subset of the
attributes of the view computed in the previous step. Training a
regression function is more time-consuming than computing the
aggregate view in step (1). Therefore, HypeR is as scalable as prior
techniques for regression (we use a random forest regressor from
the sklearn package). Hence the parameters we consider include (1)
database size, (2) backdoor set size (see Section 3.3), and (3) query
complexity. Since the effect of (1), (2) on the runtime of what-if
query evaluation is directly translated to an effect on the runtime
of how-to query evaluation, for how-to queries, we focus on the
effect of the number of attributes in the HowToUpdate operator
which will change the optimization function 𝜙 (see Section 4.3). We
use the synthetic datasets German-Syn and Student-Syn.
What-if: database size. Table 1 presents the average running
time to evaluate the response to a what-if query in seconds. To
further evaluate the effect of database size on running time, we
considered German-Syn dataset and varied the number of tuples
from 10𝐾 to 1𝑀 . In this experiment we consider a new variation of
HypeR, denoted by HypeR-sampled, which considers a randomly
chosen subset of 100𝐾 records for the calculation of conditional
probabilities of Proposition 2. Figure 12 compares the average time
taken byHypeR,HypeR-sampled with Indep for five different What-
If queries and Opt-HowTo for How-to queries. We observed a linear
increase in running time with respect to the dataset size for all
techniques except HypeR-sampled. The increase in running time is
due to the time taken to train a regressor which is used to estimate
conditional probabilities for query output calculation To answer
a what-if (or how-to) queries, aggregate view calculation requires
less than 1% of the total time. The majority of the time is spent
on calculating the query output using the result in Proposition 2.
Therefore, the time taken by HypeR-sampled does not increase
considerably when the dataset size is increased beyond 100K.
What-if: backdoor set size. This experiment changed the back-
ground knowledge to increase the backdoor set from 2 attributes to
6 attributes. The running time to calculate expected fraction of high
credit individuals on updating account status increased from 7.2
seconds when backdoor set contains age and sex to 22.45 seconds
when the backdoor set contains all attributes.
What-if: query complexity. In this experiment, we synthetically
addmultiple attributes in the Student-syn dataset and the different
operators of the query to estimate their on running time.

On adding multiple attributes in the Use operator, the time taken
to compute the relevant view increases minutely. For Student-Syn,

(a) What-if (For operator) (b) How-to (HowToUpdate)

Figure 11: Running Time comparison on varying number of

attributes in different operators for Student-Syn dataset.

0.00 0.25 0.50 0.75 1.00
Dataset Size (in millions)

0

100

200

300

400

Ti
m

e
(in

 se
co

nd
s)

HypeR
HypeR-sampled
Indep

(a) What-if query

0.00 0.25 0.50 0.75 1.00
Dataset Size (in millions)

0

1000

2000

3000

4000

Ti
m

e
(in

 se
co

nd
s)

HypeR
HypeR-sampled
Opt-HowTo

(b) How-to query

Figure 12: Running Time comparison on varying dataset size

for German-Syn dataset averaged over five different queries.

Use operator was evaluated in less than 0.5 seconds when 5 different
attributes are added from other datasets. The increase in these
attributes do not affect the running time of subsequent steps unless
the attributes in For operator increase.

We now compare the effect of adding multiple attributes in the
For operator of a Count query. Adding conditions involving Pre
value of randomly chosen attributes increases the number of at-
tributes used to train the regressor, which increases the running
time (Figure 11a). Running time increased from 4.2 seconds when
For operator is empty to 12.1 seconds and 17.7 seconds when it
contains 5 and 10 attributes, respectively. In contrast, Indep is more
efficient as it does not use additional attributes to compute query
output. However, if the added attribute is in the backdoor set, then
the output is evaluated faster. To understand the effect of adding
such attributes, we considered a query where the backdoor set
contained 10 binary attributes. To evaluate the output, probability
calculation iterated over the domain of backdoor attributes and re-
quired 49.7 seconds. The running time reduced to 7.4 seconds when
5 conditions on these attributes are added to the For operator.
How-to: query complexity. Figure 11b presents the effect of the
number of attributes in HowToUpdate operator on the time taken
to process the query. Increasing attributes leads to a linear increase
in the number of variables in the integer program. Therefore, the
time taken by HypeR increases from 7 seconds for 5 attributes in
HowToUpdate operator to 20 seconds for 10 attributes. In contrast,
Opt-HowTo considers all possible combinations of attribute values
in the domain of attributes in the HowToUpdateoperator. It takes
around 4minutes for 5 attributes and more than 90 minutes for 10
attributes. This shows that the Integer Program based optimization
provides orders of magnitude improvement in running time.

6 RELATEDWORK

Here we review relevant literature in hypothetical reasoning in
databases, probabilistic databases, and causality. The main distinc-

tion of this paper from previous work is a framework that allows for

hypothetical reasoning over relational databases using a post-update

distribution over possible worlds that is able to capture both direct

and indirect probabilistic dependencies between attributes and tuples

using a probabilistic relational causal model.

Previous work has focused on What-if and How-to analysis
mainly in terms of provenance and view updates. Due to its prac-
ticality, and real applications like evaluating business strategies,
there have been several works that developed support for hypothet-
ical what-if reasoning in SQL, OLAP, and map-reduce environments
[9, 28, 30, 36, 58]. What-if reasoning through provenance updates
have been studied in [7, 16–18] to efficiently measure the direct
effect of updating values in the database on a view created by the
query. Nguyen et. al. [35] study the problem of efficiently perform-
ing what-if analysis with conflicting goals using data grids. Other
works have considered models for hypothetical reasoning in tem-
poral databases [8, 26], where Arenas et. al. [8] focused on a logical
model in which each transaction updates the database and the goal
is to answer a query about the generated sequence of states, without
performing the update on the whole database, and GreyCat [26] fo-
cused on time-evolving graphs. Christiansen et. al. [12] propose an
approach that considers a single possible world and then modifies
the query evaluation procedure within a logic-based framework.
Another part of hypothetical reasoning is how-to queries which
have been explored mostly in terms of provenance updates [32–34]
that compute their results with hypothetical updates modeled as
a Mixed Integer Program. MCDB [29] allows users to create an
uncertain database that has randomly generated values in the at-
tributes or tuples (that may be correlated with other attributes or
tuples). These are generated using variable generation functions
that can be arbitrarily complex. It then evaluates queries over this
database using Monte Carlo simulations. Eisenreich et. al. [21] pro-
pose a data analysis system allowing users to input attribute-level
uncertainty and correlations using histograms and then perform
operations on the data such as aggregating or filtering uncertain
values. We note that uncertainty in databases has been studied in
previous work on probabilistic databases [4, 6, 14, 15, 50] where
each tuple or value has a probability or confidence level attached
to it, and in stochastic package queries [10] that allow for optimiza-
tion queries on stochastic attributes. We adapt and use the concept
of block-independent database model from probabilistic databases
[14, 42] in this paper. The framework suggested in this paper uses a
probabilistic relational causal model [47] to model updates as inter-
ventions and generate the post-update distribution that describes
the dependencies between the attributes and tuples. There is a vast
literature on observational causal inference on stored data in AI and
Statistics (e.g., [5, 13, 24, 25, 38, 43–45, 51]), and we use standard
techniques from this literature to compute query output.

7 CONCLUSIONS

We have defined a probabilistic model for hypothetical reason-
ing in relational databases. While the post-update distribution can
stem from any probabilistic model, we focus here on causal models.
We develop HypeR: a novel framework that supports what-if and

how-to queries and performs hypothetical updates on the database,
measures their effect, and computes the query results. Our frame-
work includes new SQL-like operators to support these queries for
testing a wide variety of hypothetical scenarios. We prove that the
results of our queries can be computed using causal inference and
we further devise an optimizations by block-independent decom-
positions. We show that our approach provides query results that
are rational and account for implicit dependencies in the database.
In future work, we plan to add support for multi-attribute updates
consisting of dependent attributes and also account for database
constraints and other semantic constraints. Extensions to cyclic
dependencies of attributes in causal graphs is an intriguing future
work. One idea that can be explored is ‘unfolding’ cyclic depen-
dencies between attributes A and B by using a time component on
attributes, and adding edges from 𝐴[𝑡] to 𝐵 [𝑡 ′] and 𝐵 [𝑡] to 𝐴[𝑡 ′]
where time 𝑡 ′ > 𝑡 (called ‘chain graphs’, e.g., [37, 48]). We also
plan to develop an interactive UI where users can pose and explore
hypothetical queries.

REFERENCES

[1] Pcmag ({https://www.pcmag.com/}).
[2] Spacy https://spacy.io/.
[3] Top laptop brands in the world https://www.globalbrandsmagazine.com/top-

laptop-brands-in-the-world/, 2021.
[4] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar, T. Sugihara,

and J. Widom. Trio: A system for data, uncertainty, and lineage. In VLDB, pages
1151–1154, 2006.

[5] J. D. Angrist, G. W. Imbens, and D. B. Rubin. Identification of causal effects
using instrumental variables. Journal of the American statistical Association,
91(434):444–455, 1996.

[6] L. Antova, C. Koch, and D. Olteanu. Maybms: Managing incomplete information
with probabilistic world-set decompositions. In ICDE, pages 1479–1480, 2007.

[7] B. S. Arab and B. Glavic. Answering historical what-if queries with provenance,
reenactment, and symbolic execution. In USENIX, 2017.

[8] M. Arenas and L. E. Bertossi. Hypothetical temporal reasoning in databases. J.
Intell. Inf. Syst., 19(2):231–259, 2002.

[9] A. Balmin, T. Papadimitriou, and Y. Papakonstantinou. Hypothetical queries in
an OLAP environment. In VLDB, pages 220–231, 2000.

[10] M. Brucato, N. Yadav, A. Abouzied, P. J. Haas, and A. Meliou. Stochastic package
queries in probabilistic databases. In SIGMOD, pages 269–283, 2020.

[11] S. Chiappa. Path-specific counterfactual fairness. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 33, pages 7801–7808, 2019.
[12] H. Christiansen and T. Andreasen. A practical approach to hypothetical database

queries. In DYNAMICS, volume 1472, pages 340–355, 1998.
[13] L. A. Cox Jr. Probability of causation and the attributable proportion risk. Risk

Analysis, 4(3):221–230, 1984.
[14] N. N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in the dirt.

Commun. ACM, 52(7):86–94, 2009.
[15] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.

VLDB J., 16(4):523–544, 2007.
[16] D. Deutch, Z. G. Ives, T. Milo, and V. Tannen. Caravan: Provisioning for what-if

analysis. In CIDR, 2013.
[17] D. Deutch, Y. Moskovitch, and N. Rinetzky. Hypothetical reasoning via prove-

nance abstraction. In SIGMOD, pages 537–554, 2019.
[18] D. Deutch, Y. Moskovitch, and V. Tannen. Provenance-based analysis of data-

centric processes. VLDB J., 24(4):583–607, 2015.
[19] H. Donner, K. Eriksson, and M. Steep. Digital cities: Real estate development

driven by big data. Technical report, Working Paper. 2018. Available online:
https://gpc. stanford. edu . . . , 2018.

[20] D. Dua and C. Graff. UCI machine learning repository, 2017.
[21] K. Eisenreich and P. Rösch. Handling uncertainty and correlation in decision

support. In Proceedings of the Fourth International VLDB workshop on Management

of Uncertain Data (MUD 2010), volume WP10-04, pages 145–159, 2010.
[22] S. Galhotra, R. Pradhan, and B. Salimi. Explaining black-box algorithms using

probabilistic contrastive counterfactuals. In SIGMOD, pages 577–590, 2021.
[23] M. Golfarelli and S. Rizzi. What-if simulation modeling in business intelligence.

Int. J. Data Warehous. Min., 5(4):24–43, 2009.
[24] S. Greenland. Relation of probability of causation to relative risk and doubling

dose: a methodologic error that has become a social problem. American journal

of public health, 89(8):1166–1169, 1999.
[25] S. Greenland and J. M. Robins. Epidemiology, justice, and the probability of

causation. Jurimetrics, 40:321, 1999.
[26] T. Hartmann, F. Fouquet, A. Moawad, R. Rouvoy, and Y. L. Traon. Greycat:

Efficient what-if analytics for data in motion at scale. Inf. Syst., 83:101–117, 2019.
[27] R. He and J. J. McAuley. Ups and downs: Modeling the visual evolution of fashion

trends with one-class collaborative filtering. In WWW, pages 507–517, 2016.
[28] H. Herodotou and S. Babu. Profiling, what-if analysis, and cost-based optimization

of mapreduce programs. Proc. VLDB Endow., 4(11):1111–1122, 2011.
[29] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. M. Jermaine, and P. J. Haas. MCDB: a

monte carlo approach to managing uncertain data. In SIGMOD, pages 687–700,
2008.

[30] L. V. S. Lakshmanan, A. Russakovsky, and V. Sashikanth. What-if OLAP queries
with changing dimensions. In ICDE, pages 1334–1336, 2008.

[31] M. Lichman. Uci machine learning repository, 2013.
[32] A. Meliou, W. Gatterbauer, and D. Suciu. Bringing provenance to its full potential

using causal reasoning. In TaPP, 2011.

[33] A. Meliou, W. Gatterbauer, and D. Suciu. Reverse data management. Proc. VLDB
Endow., 4(12):1490–1493, 2011.

[34] A. Meliou and D. Suciu. Tiresias: the database oracle for how-to queries. In
SIGMOD, pages 337–348, 2012.

[35] Q. V. H. Nguyen, K. Zheng, M. Weidlich, B. Zheng, H. Yin, T. T. Nguyen, and
B. Stantic. What-if analysis with conflicting goals: Recommending data ranges
for exploration. In ICDE, pages 89–100, 2018.

[36] S. Nieva, F. Sáenz-Pérez, and J. Sánchez-Hernández. HR-SQL: extending SQL with
hypothetical reasoning and improved recursion for current database systems.
Inf. Comput., 271:104485, 2020.

[37] E. L. Ogburn, I. Shpitser, and Y. Lee. Causal inference, social networks and chain
graphs. Journal of the Royal Statistical Society: Series A (Statistics in Society),
183(4):1659–1676, 2020.

[38] J. Pearl et al. Causal inference in statistics: An overview. Statistics surveys,
3:96–146, 2009.

[39] J. Pearl, M. Glymour, and N. P. Jewell. Causal inference in statistics: A primer.
John Wiley & Sons, 2016.

[40] B. Qureshi. Towards a digital ecosystem for predictive healthcare analytics. In
MEDES, pages 34–41, 2014.

[41] S. Ramakrishnan, K. Nagarkar, M. DeGennaro, K. Srihari, A. K. Courtney, and
F. Emick. A study of the CT scan area of a healthcare provider. In Proceedings of

the conference on Winter simulation, pages 2025–2031, 2004.
[42] C. Ré and D. Suciu. Materialized views in probabilistic databases for information

exchange and query optimization. In VLDB, pages 51–62, 2007.
[43] D. W. Robertson. Common sense of cause in fact. Tex. L. Rev., 75:1765, 1996.
[44] J. Robins and S. Greenland. The probability of causation under a stochastic model

for individual risk. Biometrics, pages 1125–1138, 1989.
[45] D. B. Rubin. Causal inference using potential outcomes: Design, modeling,

decisions. Journal of the American Statistical Association, 100(469):322–331, 2005.
[46] B. Salimi, J. Gehrke, and D. Suciu. Bias in OLAP queries: Detection, explanation,

and removal. In Proceedings of the 2018 International Conference on Management

of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages
1021–1035, 2018.

[47] B. Salimi, H. Parikh, M. Kayali, L. Getoor, S. Roy, and D. Suciu. Causal relational
learning. In SIGMOD, pages 241–256, 2020.

[48] E. Sherman and I. Shpitser. Intervening on network ties. In A. Globerson and
R. Silva, editors, UAI, volume 115 of Proceedings of Machine Learning Research,
pages 975–984. AUAI Press, 2019.

[49] S. K. Singh and J. B. Lee. How to use what-if analysis in sales and operations
planning. The Journal of Business Forecasting, 32(3):4, 2013.

[50] D. Suciu. Probabilistic databases for all. In PODS, pages 19–31, 2020.
[51] J. Tian and J. Pearl. Probabilities of causation: Bounds and identification. Annals

of Mathematics and Artificial Intelligence, 28(1-4):287–313, 2000.
[52] F. Tramèr, V. Atlidakis, R. Geambasu, D. Hsu, J.-P. Hubaux, M. Humbert, A. Juels,

and H. Lin. Fairtest: Discovering unwarranted associations in data-driven appli-
cations. In IEEE European Symposium on Security and Privacy (EuroS&P). IEEE,
2017.

[53] https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestRegressor.html. Random forest regression – sklearn python
library.

[54] T. J. VanderWeele and W. An. Social networks and causal inference. Handbook of
causal analysis for social research, pages 353–374, 2013.

[55] M. Y. Vardi. The complexity of relational query languages (extended abstract). In
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing,
STOC ’82, page 137–146, 1982.

[56] Y. Zhang, H. Chen, H. Sheng, and Z. Wu. Applying hypothetical queries to
e-commerce systems to support reservation and personal preferences. In IDEAS,
pages 46–53, 2007.

[57] E. Zheleva and D. Arbour. Causal inference from network data. In Proceedings of

the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages
4096–4097, 2021.

[58] G. Zhou and H. Chen. What-if analysis in MOLAP environments. In FSKD, pages
405–409, 2009.

[59] I. Zliobaite, F. Kamiran, and T. Calders. Handling conditional discrimination. In
Proceedings of the 2011 IEEE 11th International Conference on Data Mining, page
992–1001, 2011.

({https://www.pcmag.com/})
https://spacy.io/
https://www.globalbrandsmagazine.com/top-laptop-brands-in-the-world/
https://www.globalbrandsmagazine.com/top-laptop-brands-in-the-world/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

A APPENDIX: COMPUTATION OF WHAT-IF QUERIES AND PROOFS

The computation of what-if queries in the most general form uses a number of techniques including decomposable aggregates, block-
independent decompositions (when available), and causal graphs (when available) and backdoor condition from the causal inference literature.
For readability, we decompose the computations and their correctness proofs in the following steps:

(1) (Section A.1) Computation of what-if queries for a single-relation database with a block-independent decomposition can be reduced to
computation of (modified) what-if queries on individual blocks using properties of decomposble aggregate functions (see Proposition 3).
This step is omitted if there are no block-independent decomposition, i.e., if the entire database forms a single block.

(2) (Section A.2) Computation of what-if queries for a single block within a single-relation database. This calculation leverages the
causal graph 𝐺 and the set of attributes that satisfy the backdoor criterion to estimate the query output for a block.

(3) (Section A.3) Extends the analysis of single-relation database to multi-relation database.
(4) (Section A.4) Presents the key ideas used to estimate the conditional probability distribution from the original database 𝐷 in our

algorithms.

A.1 Reduction from Block-Independent Decomposition to Individual Blocks

First we give a proof that the computation of a what-if query can be computed as the aggregate of the results of what-if queries over each
block where the database 𝐷 has a single relation 𝑅, such that both the update attribute 𝐵 and the outcome attribute 𝑌 belong to Attr(𝑅) for
any given what-if query 𝑄 . In particular, on such a database, we can assume without loss of generality that the relevant viewV𝑟𝑒𝑙 = 𝑅 = 𝐷 ,
although some of the attributes of 𝑅 may not be used in the second part of query 𝑄 . Further, both the update attribute 𝐵 and the outcome
attribute 𝑌 belong to Attr(𝑅). In Section A.2 we show how what-if queries are answered on each block that cannot be decomposed further.

Proposition 3. Given a single-relation database 𝐷 = 𝑅 = V𝑟𝑒𝑙 containing both the update attribute 𝐵 and outcome attribute 𝑌 , its

block-independent decomposition B = {𝐷1, . . . , 𝐷ℓ }, and a what-if query𝑄 whose result on a possible world 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) is valwhatif (𝑄, 𝐷, 𝐼) =
𝑎𝑔𝑔𝑟 ({𝑌𝐼 [𝑡] : 𝜇 For (𝑡) = 𝑡𝑟𝑢𝑒, 𝑡 ∈ V𝑟𝑒𝑙 }) (Definition 4), if 𝑎𝑔𝑔𝑟 is a decomposable function, i.e., if there exist functions 𝑔 and 𝑓 ′

𝑄,𝐷
according to

Definition 6, then

valwhatif (𝑄,𝐷) = 𝑔 ({valwhatif (𝑄′, 𝐷𝑖) : ∀𝐷𝑖 ∈ B}) (10)

where 𝑄 ′ is the same query as 𝑄 with 𝑓 ′
𝑄,𝐷

replacing 𝑎𝑔𝑔𝑟 , 𝑃𝑊𝐷 (𝐷𝑖) denotes the possible worlds for tuples in 𝐷𝑖 , and

valwhatif (𝑄′, 𝐷𝑖) = E𝐼𝑖 ∈𝑃𝑊𝐷 (𝐷𝑖) [valwhatif (𝑄
′, 𝐷𝑖 , 𝐼𝑖)] (11)

Proof. Recall the query result in Definition 5:

valwhatif (𝑄,𝐷) = E𝐼 ∈𝑃𝑊𝐷 (𝐷) [valwhatif (𝑄, 𝐷, 𝐼)]

=
∑︁

𝐼 ∈𝑃𝑊𝐷 (𝐷)
Pr𝐷,𝑈 (𝐼) × valwhatif (𝑄,𝐷, 𝐼) (12)

Using the assumption that valwhatif (𝑄, 𝐷, 𝐼) = 𝑔({valwhatif (𝑄 ′, 𝐷𝑖 , 𝐼𝑖) : 𝐼𝑖 ∈ B𝐼 }), we get the following.

valwhatif (𝑄,𝐷) =
∑︁

𝐼 ∈𝑃𝑊𝐷 (𝐷)

(
Pr𝐷,𝑈 (𝐼) · 𝑔({valwhatif (𝑄 ′, 𝐷𝑖 , 𝐼𝑖) : 𝐼𝑖 ∈ B𝐼 })

)
(13)

Assuming block-level independence, we substitute Pr𝐷,𝑈 (𝐼) for
∏
𝐼𝑖 ∈B𝐼 Pr𝐷𝑖 ,𝑈 (𝐼𝑖), where Pr𝐷𝑖 ,𝑈 denotes the post-update probability

distribution of 𝐷𝑖 . Therefore,

(13) =
∑︁

𝐼 ∈𝑃𝑊𝐷 (𝐷)

©«
©«
∏
𝐼 𝑗 ∈B𝐼

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬
(
𝑔({valwhatif (𝑄 ′, 𝐷𝑖 , 𝐼𝑖) : 𝐼𝑖 ∈ B𝐼 })

)ª®®®¬ =
∑︁

𝐼 ∈𝑃𝑊𝐷 (𝐷)
𝑔

©«

©«
∏
𝐼 𝑗 ∈B𝐼

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬ valwhatif (𝑄 ′, 𝐷𝑖 , 𝐼𝑖) : 𝐼𝑖 ∈ B𝐼

ª®®®¬

(14)

Note that for the second transition, we used the property of function 𝑔 in Definition 6: 𝛼𝑔({𝑥1, . . . , 𝑥𝑙 }) = 𝑔({𝛼𝑥1, . . . , 𝛼𝑥𝑙 }), ∀𝛼 ≥ 0.
Now, suppose that for the block 𝐼𝑖 ∈ B𝐼 of 𝐼 ∈ 𝑃𝑊𝐷 (𝐷), the corresponding block in 𝐷 is 𝐷𝑖 ∈ B𝐷 , with tuples having the same key.

Separating out Pr𝐷𝑖 ,𝑈 (𝐼𝑖) from
∏
𝐼 𝑗 ∈B𝐼 Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗), we get the following.

=
∑︁

𝐼 ∈𝑃𝑊𝐷 (𝐷)
𝑔

©«
©«

∏
𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 }

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬ × Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
ª®®®¬ : 𝐼𝑖 ∈ B𝐼

 (15)

=
∑︁

𝐼 ∈𝑃𝑊𝐷 (𝐷)
𝑔

©«
©«

∏
𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 }

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬ × Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
ª®®®¬ : ∀𝐷𝑖 ∈ B𝐷

 (16)

= 𝑔

∑︁

𝐼 ∈𝑃𝑊𝐷 (𝐷)

©«
©«

∏
𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 }

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬ × Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
ª®®®¬ : ∀𝐷𝑖 ∈ B𝐷

 (17)

In the last step, we used the property of function 𝑔 from Definition 6: 𝑔({𝑥1, . . . , 𝑥𝑙 }) + 𝑔({𝑦1, . . . , 𝑦𝑙 }) = 𝑔({𝑥1 + 𝑦1, . . . , 𝑥𝑙 + 𝑦𝑙 }).
Substituting 𝑃𝑊𝐷 (𝐷) as the Cartesian product of 𝑃𝑊𝐷 (𝐷𝑘) over blocks, 𝑃𝑊𝐷 (𝐷) = >

𝐷𝑘 ∈B𝐷 𝑃𝑊𝐷 (𝐷𝑘), hence,

(17) = 𝑔

∑︁

𝐼 ∈>𝐷𝑘 ∈B𝐷 𝑃𝑊𝐷 (𝐷𝑘)

©«
©«

∏
𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 }

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬ × Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
ª®®®¬ : ∀𝐷𝑖 ∈ B𝐷

 (18)

Substituting
>
𝐷𝑘 ∈B𝐷 𝑃𝑊𝐷 (𝐷𝑘) = 𝑃𝑊𝐷 (𝐷𝑖) ×

(>
𝐷𝑘 ∈B𝐷\{𝐷𝑖 } 𝑃𝑊𝐷 (𝐷𝑘)

)

= 𝑔

∑︁

𝐼 ∈𝑃𝑊𝐷 (𝐷𝑖)×(>
𝐷𝑘 ∈B𝐷 \{𝐷𝑖 } 𝑃𝑊𝐷 (𝐷𝑘)

)
©«
©«

∏
𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 }

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬ × Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
ª®®®¬ : ∀𝐷𝑖 ∈ B𝐷

(19)

Let 𝐼 = 𝐼𝑖 ∪ 𝐼 ′𝑖 where 𝐼
′
𝑖
∈
(>

𝐷𝑘 ∈B𝐷\{𝐷𝑖 } 𝑃𝑊𝐷 (𝐷𝑘)
)
.

= 𝑔

∑︁
𝐼𝑖 ∈

𝑃𝑊𝐷 (𝐷𝑖)

∑︁
𝐼 ′𝑖 ∈(>

𝐷𝑘 ∈B𝐷 \{𝐷𝑖 } 𝑃𝑊𝐷 (𝐷𝑘)
)
©«
©«

∏
𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 }

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬ × Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
ª®®®¬ : ∀𝐷𝑖 ∈ B𝐷

(20)

Separating out the terms that depend on 𝐷𝑖 and 𝐼𝑖 from the rest.

= 𝑔

∑︁
𝐼𝑖 ∈

𝑃𝑊𝐷 (𝐷𝑖)

©«
(
Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
)
×

∑︁
𝐼 ′𝑖 ∈(>

𝐷𝑘 ∈B𝐷 \{𝐷𝑖 } 𝑃𝑊𝐷 (𝐷𝑘)
)
©«

∏
𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 }

Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
ª®®¬
ª®®®®®®®¬

: ∀𝐷𝑖 ∈ B𝐷

(21)

Blocks 𝐼 𝑗 ∈ B𝐼 \ {𝐼𝑖 } are independent. Therefore,
(∏

𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 } Pr𝐷 𝑗 ,𝑈 (𝐼 𝑗)
)
= Pr𝐷\𝐷𝑖 ,𝑈 (𝐼 ′𝑖), where 𝐼

′
𝑖
= ∪𝐼 𝑗 ∈B𝐼 \{𝐼𝑖 }𝐼 𝑗 , which denotes the

post-update probability of all blocks except 𝐼𝑖 . Hence,

(21) = 𝑔

∑︁
𝐼𝑖 ∈

𝑃𝑊𝐷 (𝐷𝑖)

©«
(
Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
)
×

∑︁
𝐼 ′𝑖 ∈(>

𝐷𝑘 ∈B𝐷 \{𝐷𝑖 } 𝑃𝑊𝐷 (𝐷𝑘)
)
(
Pr𝐷\𝐷𝑖 ,𝑈 (𝐼

′
𝑖)
)ª®®®®®®®¬

: ∀𝐷𝑖 ∈ B𝐷

(22)

Since
∑
𝐼 ′𝑖 ∈

(>
𝐷𝑘 ∈B𝐷 \{𝐷𝑖 } 𝑃𝑊𝐷 (𝐷𝑘)

) (Pr𝐷\𝐷𝑖 ,𝑈 (𝐼 ′𝑖)
)
is 1 (the sum of probabilities of possible worlds of all blocks except 𝐷𝑖),

(22) = 𝑔({
∑︁

𝐼𝑖 ∈𝑃𝑊𝐷 (𝐷𝑖)

(
Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)
)

: ∀𝐷𝑖 ∈ B𝐷 }) (23)

Notice that the term
∑
𝐼𝑖 ∈𝑃𝑊𝐷 (𝐷𝑖)

(
Pr𝐷𝑖 ,𝑈 (𝐼𝑖) × valwhatif (𝑄 ′, 𝐷𝑖 , 𝐼𝑖)

)
denotes the expected value of 𝑓 ′

𝑄,𝐷𝑖
over the post-update distribution,

denoted by E
𝐼𝑖 ∈𝑃𝑊𝐷 (𝐷𝑖) [valwhatif (𝑄

′, 𝐷𝑖 , 𝐼𝑖)], and thus valwhatif (𝑄 ′, 𝐷𝑖) = E𝐼𝑖 ∈𝑃𝑊𝐷 (𝐷𝑖) [valwhatif (𝑄
′, 𝐷𝑖 , 𝐼𝑖)], and valwhatif (𝑄, 𝐷) =

𝑔({valwhatif (𝑄 ′, 𝐷𝑖) : ∀𝐷𝑖 ∈ B}) as stated in the proposition. □

A.2 Computation for a single-block

In this section we show how to compute valwhatif (𝑄 ′, 𝐷𝑖) using the causal graph of the block 𝐷𝑖 given a (possibly modified) what-if
query 𝑄 ′. First, in Section A.2.1, we consider the case where the predicate in the For operator (𝜇 For) is a disjunction of different For
sub-operators explained below. We then show that a For clause that does not satisfy a disjoint property can be modified using the principle
of inclusion-exclusion. Lastly, we show that any For clause can be represented as a disjunction that satisfies these properties in Section A.2.4.

A.2.1 For operator has Disjunction of Conjunctions of Pre and Post operators, and 𝐴𝑔𝑔 = Count in the what-if query. Here we assume that
the aggregate operator 𝐴𝑔𝑔 = Count in the what-if query. Further, we assume that the For operator (𝜇 For) is a disjunction of different
For sub-operators denoted by ∨𝑘𝜇𝑘For and these sub-operators satisfy the following conditions.

(1) Each sub-operator 𝜇𝑘For can be decomposed into a conjunction over two For clauses, one denoting For condition on pre-update
values of the tuples, and the other referring to the post-update values of the tuples. This condition is required to separate out the
conditions applied by the For operator on the original/pre-update value of a tuple 𝑡 ∈ 𝐷 and its post-update values.

(2) Disjointness: Each pair of tuple (t,t’), where 𝑡 ∈ 𝐷, 𝑡 ′ ∈ 𝐼 for any 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) satisfies at most one of the sub-operators 𝜇𝑘For.
For example, consider a For clause,(

Pre(𝐴1) = 1
)
∨
(
Pre(𝐴1) ∈ {2, 3, 4} ∧ Post(𝐴2) = 2

)
∨
(
Pre(𝐴1) > 4 ∧ Post(𝐴2) = 5

)
.

It consists of three different sub-clauses separated by disjunctions: (a) Pre(𝐴1) = 1, (b) Pre(𝐴1) ∈ {2, 3, 4} ∧ Post(𝐴2) = 2, and (c)
Pre(𝐴1) > 4 ∧ Post(𝐴2) = 5. In this case a tuple 𝑡 ∈ 𝐷 and its post-update tuple 𝑡 ′ ∈ 𝐼 can satisfy only one of the three sub-clauses.

(A) Computation of what-if query in a block in terms of the post-update probabilities of tuples. Proposition 4 shows how the
computation in each block is done by the post-update probabilities, which we further reduce to pre-update probabilities in step (B) below. To
prove Proposition 4, we augment the notation presented in Definition 4 for the For operator to be more fine-grained and define 𝜇 For,Pre and
𝜇 For,Post as the conditions in the For operator that are defined with the Pre and Post operators, respectively. The Boolean representation
of disjoint For clauses is denoted as ∨𝑘 (𝜇𝑘For,Pre ∧ 𝜇

𝑘
For,Post) where any tuple 𝑡 ∈ 𝐷 and the corresponding tuple 𝑡 ′ sharing the same key

(denoted by key[𝑡] = key[𝑡 ′], where key refers to all attributes defining the primary key of the tuple) in any possible world 𝐼 ∈ 𝑃𝑊𝐷 (𝐷)
satisfies at most one of the sub-clauses (𝜇𝑘For,Pre ∧ 𝜇

𝑘
For,Post).

Proposition 4. Given a single-relation database 𝐷 with its block independent decomposition B𝐷 , a block 𝐷𝑖 ∈ B𝐷 , a ground causal graph𝐺 ,
a what-if query 𝑄 ′ where 𝐴𝑔𝑔 = Count, and For operator is denoted by 𝜇 For where 𝜇 For can be represented as a disjunction of conjunction of

disjoint For conditions, ∨𝑘 (𝜇𝑘For,Pre ∧ 𝜇
𝑘
For,Post

), the following holds.

valwhatif (𝑄′, 𝐷𝑖) =
∑︁
𝑡∈𝐷𝑖

©«
∑︁
𝑘

(
Pr𝐷𝑖 ,𝑈 (𝜇

𝑘
For,Post (𝑡) = true |𝜇𝑘

For,Pre (𝑡) = true)
)ª®¬ (24)

In this equation, Pr𝐷𝑖 ,𝑈 (𝜇𝑘For,Post (𝑡) = true|𝜇𝑘
For,Pre

(𝑡) = true) denotes the sum of probabilities of all possible worlds of 𝐷𝑖 such that the

tuple 𝑡 that satisfied 𝜇𝑘
For,Pre

(𝑡) = true before the update𝑈 also satisfies 𝜇𝑘
For,Post

(𝑡) after the update.

Proof. Using equation (5) in Proposition 1, we expand valwhatif (𝑄 ′, 𝐷𝑖) as follows. Here 1 denotes the indicator function.

valwhatif (𝑄 ′, 𝐷𝑖) = E𝐼𝑖 ∈𝑃𝑊𝐷 (𝐷𝑖) [valwhatif (𝑄
′, 𝐷𝑖 , 𝐼𝑖)] (25)

=
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

(
Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) × valwhatif (𝑄

′, 𝐷𝑖 , 𝐼 𝑗)
)

(26)

=
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

©«Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) ×
∑︁

𝑡 ∈𝐷𝑖 ,𝑡
′∈𝐼 𝑗 : key[𝑡]=key[𝑡 ′]

(
1{∨𝑘

(
𝜇𝑘For,Pre (𝑡) = true ∧ 𝜇𝑘For,Post (𝑡

′) = true
)
}
)ª®®¬ (27)

Since ∨𝑘 (𝜇𝑘For,Pre ∧ 𝜇
𝑘
For,Post) consists of disjoint For conjunctive predicates, a pair of tuples (𝑡, 𝑡 ′) having the same key can satisfy atmost

one of the sub-predicates. Therefore,
(
1{∨𝑘

(
𝜇𝑘For,Pre (𝑡) = true ∧ 𝜇𝑘For,Post (𝑡

′) = true
)
}
)
can be written as a sum of different indicator

random variables.

=
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

©«Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) ×
∑︁

𝑡 ∈𝐷𝑖 ,𝑡
′∈𝐼 𝑗 : key[𝑡]=key[𝑡 ′]

©«
∑︁
𝑘

1

{
𝜇𝑘For,Pre (𝑡) = true ∧ 𝜇𝑘For,Post (𝑡

′) = true
}ª®¬
ª®®¬ (28)

By splitting the inner indicator into a product of the indicators of the two conjunctions and extracting the sum over 𝑘 :

=
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

∑︁
𝑘

©«Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) ×
∑︁
𝑡 ∈𝐷𝑖

(
1{𝜇𝑘For,Pre (𝑡) = true} × 1{𝜇𝑘For,Post (𝑡

′) = true,where key[𝑡] = key[𝑡 ′], 𝑡 ′ ∈ 𝐼 ′}
)ª®¬ (29)

=
∑︁
𝑡 ∈𝐷𝑖

∑︁
𝑘

©«1{𝜇
𝑘
For,Pre (𝑡) = true} ×

∑︁
𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

©«Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) ×
∑︁

𝑡 ′∈𝐼 𝑗 : key[𝑡]=key[𝑡 ′]
1{𝜇𝑘For,Post (𝑡

′) = true}
ª®®¬
ª®®®¬ (30)

=
∑︁
𝑡 ∈𝐷𝑖

©«
∑︁
𝑘

1{𝜇𝑘For,Pre (𝑡) = true} ×

©«
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)
𝑡 ′∈𝐼 𝑗 ,key[𝑡]=key[𝑡 ′]

(
Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) × 1{𝜇

𝑘
For,Post (𝑡

′) = true}
)ª®®®®®®¬
ª®®®®®®®¬

(31)

=
∑︁
𝑡 ∈𝐷𝑖

©«
∑︁
𝑘

©«
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)
𝑡 ′∈𝐼 𝑗 ,key[𝑡]=key[𝑡 ′]

(
Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) × 1{𝜇

𝑘
For,Pre (𝑡) = true ∧ 𝜇𝑘For,Post (𝑡

′) = true}
)ª®®®®®®¬
ª®®®®®®®¬

(32)

=
∑︁
𝑡 ∈𝐷𝑖

©«
∑︁
𝑘

(
Pr𝐷𝑖 ,𝑈 (𝜇

𝑘
For,Post (𝑡) = true|𝜇𝑘For,Pre (𝑡) = true)

)ª®¬ (33)

Note that if a tuple 𝑡 is not affected by the update, Pr𝐷𝑖 ,𝑈 (𝜇𝑘For,Post (𝑡) = true|𝜇𝑘For,Pre (𝑡) = true) = 1{𝜇𝑘For,Pre (𝑡) = true ∧
𝜇𝑘For,Post (𝑡) = true}.

□

(B) Reduction of post-update probability in equation (24) of Proposition 4 in terms of the causal graph of given database 𝐷 . The
expression in equation (24) in Proposition 4 relies on the post-update probability distribution of the block 𝐷𝑖 , denoted by Pr𝐷𝑖 ,𝑈 . We now
use the backdoor criterion from causal inference literature [38] to simplify these expressions and estimate the probability from the input
database 𝐷 , which we review briefly. A set of attributes C satisfies the backdoor criterion w.r.t. 𝐵 and 𝑌 if no attribute 𝐶 ∈ C is a descendant
of 𝑌 or 𝐵 and all paths from 𝐵 to 𝑌 which contain an incoming edge into 𝑌 are blocked by C. A path is considered to be blocked by C if there
is a non-collider attribute4 on the path that is present in C or if a collider attribute is not in C then none of the descendant of the collider is
in C. With the help of the backdoor criterion, we leverage the following property for our simplification [38], which reduces post-update
probability Pr𝐷,𝑈 to the pre-update distribution Pr𝐷 .

Pr𝐷,𝑈 (𝑌 = 𝑦 | 𝐵 = 𝑏,C = c) = Pr𝐷 (𝑌 = 𝑦 | 𝐵 = 𝑓 (𝑏),C = c) (34)

where 𝑓 (𝑏) denotes the post-update value of 𝐵 = 𝑏.
Computation of blocking set 𝐶 : Let C denote a set of attributes that satisfy the backdoor criterion with respect to the update attribute

𝐵 and the attributes in 𝜇𝑘For,Post. We use the ground causal graph𝐺 to identify the minimal subset of all ancestors of 𝐵 and attributes in
𝜇𝑘For,Post that block all backdoor paths [38] by a greedy procedure: we start with all non-descendants of 𝐵,𝑌 excluding 𝐵,𝑌 as C, and the
remove one node at a time until we reach a minimal set for blocking that cannot be reduced further. In case𝐺 is not known, we consider all
attributes of all tuples in the block 𝐷𝑖 to satisfy the backdoor criterion5.

4A collider is a vertex in the causal graph with two incoming edges. For example,𝐴→ 𝐵 ← 𝐶 has 𝐵 as a collider.
5This design choice guarantees that the set C is always a superset of the optimal set of backdoor attributes and is commonly used as a proxy in causal inference [22]

Computation of post-update probability for𝐴𝑔𝑔 = CountWe will use C𝑘 to denote the backdoor set for sub-predicate 𝜇𝑘 , and c𝑘 ∈ Dom(C𝑘)
to denote a combination of values from the domain of these nodes. Then

Pr𝐷𝑖 ,𝑈 (𝜇
𝑘
For,Post (𝑡) = true |𝜇𝑘For,Pre (𝑡) = true) (35)

=
∑︁

c𝑘 ∈ Dom(C𝑘)

(
Pr𝐷𝑖 ,𝑈 (𝜇

𝑘
For,Post (𝑡) = true | 𝜇𝑘For,Pre (𝑡) = true,C𝑘 [𝑡] = c𝑘) × Pr𝐷𝑖 ,𝑈 (C𝑘 [𝑡] = c𝑘 | 𝜇𝑘For,Pre (𝑡) = true)

)
(36)

Since the second component only involves non-descendants of the update attribute 𝐵 in the set C𝑘 , therefore for these C𝑘 [𝑡], post-update probability Pr𝐷𝑖 ,𝑈

is the same as the pre-update probability Pr𝐷𝑖
. Hence,

(36) =
∑︁

c𝑘 ∈ Dom(C𝑘)

(
Pr𝐷𝑖 ,𝑈 (𝜇

𝑘
For,Post (𝑡) = true | 𝜇𝑘For,Pre (𝑡) = true,C𝑘 [𝑡] = c𝑘) × Pr𝐷𝑖

(C𝑘 [𝑡] = c𝑘 | 𝜇𝑘For,Pre (𝑡) = true)
)

(37)

We now use the same simplification to split the first term into two terms, using conditional probabilities with respect to the value 𝑏 of 𝐵 before the update.

(37) =
∑︁

c𝑘 ∈ Dom(C𝑘)
(

∑︁
𝑏∈ Dom(𝐵)

(
Pr𝐷𝑖 ,𝑈 (𝜇

𝑘
For,Post (𝑡) = true | 𝜇𝑘For,Pre (𝑡) = true, 𝐵 [𝑡] = 𝑏,C𝑘 [𝑡] = c𝑘) × Pr𝐷𝑖 ,𝑈 (𝐵 [𝑡] = 𝑏 | 𝜇

𝑘
For,Pre (𝑡) = true,C𝑘 = c𝑘)

)
× Pr𝐷𝑖

(
C𝑘 [𝑡] = c𝑘 | 𝜇𝑘For,Pre (𝑡) = true

)
) (38)

Since 𝐵 [𝑡] = 𝑏 refers to the pre-update value of attribute 𝐵, the second term Pr𝐷𝑖 ,𝑈 (𝐵 [𝑡] = 𝑏 | 𝜇𝑘For,Pre (𝑡) = true,C𝑘 = c𝑘) is the same as Pr𝐷𝑖
(𝐵 [𝑡] =

𝑏 | 𝜇𝑘For,Pre (𝑡) = true,C𝑘 = c𝑘) . Hence,

(38) =
∑︁

c𝑘 ∈ Dom(C𝑘)
(

∑︁
𝑏∈ Dom(𝐵)

(
Pr𝐷𝑖 ,𝑈 (𝜇

𝑘
For,Post (𝑡) = true | 𝜇𝑘For,Pre (𝑡) = true, 𝐵 [𝑡] = 𝑏,C𝑘 [𝑡] = c𝑘) × Pr𝐷𝑖

(𝐵 [𝑡] = 𝑏 | 𝜇𝑘For,Pre (𝑡) = true,C𝑘 = c𝑘)
)

× Pr𝐷𝑖

(
C𝑘 [𝑡] = c𝑘 |𝜇𝑘For,Pre (𝑡) = true

)
) (39)

Using, equation (34), we replace the post-update probability Pr𝐷𝑖 ,𝑈 in the first term with Pr𝐷𝑖
and 𝐵 [𝑡] = 𝑏 with 𝐵 [𝑡] = 𝑓 (𝑏) as specified in the update𝑈 :

(39) =
∑︁

c𝑘 ∈ Dom(C𝑘)
(

∑︁
𝑏∈ Dom(𝐵)

(
Pr𝐷𝑖
(𝜇𝑘For,Post (𝑡) = true | 𝜇𝑘For,Pre (𝑡) = true, 𝐵 [𝑡] = 𝑓 (𝑏),C𝑘 [𝑡] = c𝑘) × Pr𝐷𝑖

(𝐵 [𝑡] = 𝑏 | 𝜇𝑘For,Pre (𝑡) = true,C𝑘 = c𝑘)
)

× Pr𝐷𝑖

(
C𝑘 [𝑡] = c𝑘 |𝜇𝑘For,Pre (𝑡) = true

)
) (40)

Replacing (40) in equation (33) and summing over all tuples 𝑡 in 𝐷𝑖 and all disjoint sub-predicates 𝜇𝑘For,Pre ∧ 𝜇
𝑘
For,Post, we get the final

expression for computing the post-update probability for 𝐴𝑔𝑔 = Count.

Complexity The computation of (40) iterates over all values in the domain of attributes C𝑘 ∪ {𝐵} and computes three different probability
values for each value of these attributes. Each probability calculation expression is estimated from the input database 𝐷 using regression
analysis and runs in time linear in the number of records under the homogeneity assumption (please see Section A.4 for more details).
Additionally, Pr𝐷𝑖

(
𝐵 [𝑡] = 𝑏 |C𝑘 [𝑡] = 𝑐𝑘 , 𝜇𝑘For,Pre (𝑡) = true

)
is 0 if the original database contains no tuple with the value 𝑐𝑘 for C𝑘 and 𝑏

for 𝐵 [𝑡]. Therefore, the expression contains non-zero terms only when the support of attribute values 𝑐𝑘 ∈ Dom(C𝑘) and 𝑏 is non-zero.
Using this property, our implementation first identifies all values in C𝑘 ∪ {𝐵} that have non-zero support and ignores the rest. Therefore,
the overall complexity is 𝑂 (𝑛 × 𝛾 (𝐵 ∪ C𝑘)) where the 𝛾 function identifies values with non-zero support. This shows that 𝛾 (𝐵 ∪ C𝑘) < 𝑛
(because each value has non-zero support) and 𝛾 (𝐵 ∪ C𝑘) < |Dom(𝐵) | ×𝐴∈C𝑘

|Dom(𝐴) | (because 𝛾 denotes a subset of all possible values in
the domain of the attributes), simplifying the overall complexity to 𝑂 (𝑛 ×min{𝑛, |Dom(𝐵) | ×𝐴∈C𝑘

|Dom(𝐴) |}). Hence, the computation can
be done in time polynomial in data complexity [55] (when the size of the schema and the query is fixed), but can be exponential in query
complexity depending on the size of the backdoor set C𝑘 .

Probability distribution Pr𝐷𝑖
denotes the probability distribution of constructing 𝐷𝑖 which is dependent on the causal graph 𝐺 . Even

though the initial database 𝐷 is fixed, we assume that all tuples are generated homogeneously according to the causal graph.

A.2.2 Computation for 𝐴𝑔𝑔 = 𝑆𝑈𝑀 and 𝐴𝑉𝐺 . Proposition 4 showed that a disjunction of disjoint For sub-predicates translates to a
summation of probability values when 𝐴𝑔𝑔 = Count. The condition for 𝐴𝑔𝑔 = 𝑆𝑈𝑀 and its proof are similar. We now simplify valwhatif
when 𝐴𝑔𝑔 = 𝑆𝑈𝑀 for a single sub-predicate which consists of a conjunction of Pre and Post predicates (𝜇 For,Pre ∧ 𝜇 For,Post). In general,
the final value is obtained by summing over all sub-predicates (𝜇𝑘For,Pre ∧ 𝜇

𝑘
For,Post) similar to (33).

Proposition 5. Given a single-relation database 𝐷 and a block 𝐷𝑖 ∈ B𝐷 and a what-if query 𝑄 ′ with aggregate 𝐴𝑔𝑔 = Sum, where the

predicate in the For operator is 𝜇 For = (𝜇 For,Pre ∧ 𝜇 For,Post), the following holds.

valwhatif (𝑄′, 𝐷𝑖) =
∑︁
𝑡∈𝐷𝑖

©«
∑︁

𝑦∈Dom(𝑌)

(
𝑦 × Pr𝐷𝑖 ,𝑈 (𝑌 [𝑡] = 𝑦, 𝜇 For,Post (𝑡) = true | 𝜇 For,Pre (𝑡) = true)

)ª®®¬ (41)

Proof. Similar to (25)-(26),

valwhatif (𝑄 ′, 𝐷𝑖) =
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

(
Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) × valwhatif (𝑄

′, 𝐷𝑖)
)

(42)

=
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

©«Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) ×
∑︁

𝑡 ∈𝐷𝑖 ,𝑡
′∈𝐼 𝑗 : key[𝑡]=key[𝑡 ′]

(
𝑌 [𝑡 ′] × 1{𝜇 For,Pre (𝑡) = true ∧ 𝜇 For,Post (𝑡 ′) = true}

)ª®®¬ (43)

=
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

©«Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) ×
∑︁
𝑡 ∈𝐷𝑖

(
𝑌 [𝑡 ′] × 1{𝜇 For,Pre (𝑡) = true} × 1{𝜇 For,Post (𝑡 ′) = true,where key[𝑡] = key[𝑡 ′], 𝑡 ′ ∈ 𝐼 ′}

)ª®¬
(44)

=
∑︁
𝑡 ∈𝐷𝑖

©«1{𝜇 For,Pre (𝑡) = true} ×
∑︁

𝐼 𝑗 ∈𝑃𝑊𝐷 (𝐷𝑖)

©«Pr𝐷𝑖 ,𝑈 (𝐼 𝑗) ×
∑︁

𝑡 ′∈𝐼 𝑗 : key[𝑡]=key[𝑡 ′]
𝑌 [𝑡 ′] × 1{𝜇 For,Post (𝑡 ′) = true}

ª®®¬
ª®®®¬

(45)

=
∑︁
𝑡 ∈𝐷𝑖

©«
1{𝜇 For,Pre (𝑡) = true} ×

∑︁
𝐼 ′∈𝑃𝑊𝐷𝐷𝑖

𝑡 ′∈𝐼 ′,key[𝑡]=key[𝑡 ′]

𝑌 [𝑡 ′] ×
(
Pr𝐷𝑖 ,𝑈 (𝐼

′) × 1{𝜇 For,Post (𝑡 ′) = true}
)ª®®®®®®¬

(46)

=
∑︁
𝑡 ∈𝐷𝑖

©«
∑︁

𝑦∈Dom(𝑌)

(
𝑦 × Pr𝐷𝑖 ,𝑈 (𝑌 [[𝑡] = 𝑦, 𝜇 For,Post (𝑡) = true | 𝜇 For,Pre (𝑡) = true)

)ª®®¬ (47)

□

The post-update probability distribution Pr𝐷𝑖 ,𝑈 can be estimated from the input database 𝐷𝑖 using the backdoor criterion, as shown above
in equations (35)-(40). Proposition 5 extends to the case where 𝐴𝑔𝑔 = Avg as Avg is equivalent to dividing the output of Sum by the number
of tuples, |𝐷𝑖 |, which remains constant in all possible worlds of 𝐷𝑖 . Similarly, Proposition 5 extends to any aggregate function that can be
expressed as 𝑐 × Sum for some constant 𝑐 .

A.2.3 Relaxing the disjointness property of the For predicate expressed as a Boolean formula. When the For operator cannot be directly
expressed as a disjunction of disjoint sub-predicates but is an arbitrary Boolean formula, it can be translated into an equivalent formulation
that satisfies disjointness by using the principle of inclusion-exclusion. For example, consider 𝜇 For = 𝜇1

For ∨ 𝜇
2
For. that does not satisfy

disjoint property. Using principle of inclusion exclusion, 𝜇 For = (𝜇1
For ∧ 𝜇

2
For) ∨ (𝜇

2
For ∧ 𝜇

1
For) ∨ (𝜇

1
For ∧ 𝜇

2
For) where 𝜇 denotes the

negation of the For operator. In this way, any general Boolean formula can be split into different components that satisfy disjoint property.
Complexity: If the Boolean formula consists of 𝑡 sub-predicates separated by disjunction, the disjoint sub-predicates identified by the principle
of inclusion-exclusion is 2𝑡 where each sub-predicate contains the same set of attributes as the ones in the original For predicate. Note
that this translation of the Boolean formula does not affect the dependence of our algorithm on the dataset size, hence the complexity still
remains polynomial in data complexity.

A.2.4 Extension to general For predicates. In the two previous propositions, we considered the case where For can be represented as
a Boolean formula over different sub-predicates involving single tuples 𝑡 . In this section, we analyze more complex For operators. For
example, consider a for clause 𝜇 For ≡ Pre(𝐴𝑖) − Post(𝐴𝑖) < 2, where the Pre and the Post conditions are immediately not separable and
we cannot decompose the For operator directly. Instead, we construct a different For predicate which captures the same set of tuples but
can be represented as a disjunction of disjoint sub-predicates over Pre and Post attribute values of tuples.

Proposition 6. Given a what-if query 𝑄 with For operator 𝜇𝐹𝑜𝑟 , the output of the query is equivalent to that of a what-if query 𝑄 ′, where
𝑄 ′ and 𝑄 differ only in that the 𝜇 For predicate of 𝑄

′
can be written as a disjunction of different For operators ∨𝑘 (𝜇𝑘For,Pre ∧ 𝜇

𝑘
For,Post

) such
that every tuple 𝑡 ∈ 𝐷 or 𝑡 ′ ∈ 𝐼 , where key[𝑡] = key[𝑡 ′], satisfies a single 𝜇𝑘

For,Pre
∧ 𝜇𝑘

For,Post
sub-predicate.

Proof. The For operator defines a subset of 𝐷 containing a single relation 𝑅, and the instances 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) to evaluate the query
response. Let 𝑇𝐼 denote the set of pairs of tuples in 𝐷 and corresponding tuples in an instance 𝐼 ∈ 𝑃𝑊𝐷 (𝐷) that satisfy the complex 𝜇 For
operator. Formally, 𝑇𝐼 = {(𝑡, 𝑡 ′) : ∀𝑡 ∈ 𝐷,∀𝑡 ′ ∈ 𝐼 , key[𝑡] = key[𝑡 ′] and 𝜇 For (𝑡, 𝑡 ′) = true}. We consider 𝑇 =

⋃
𝐼 ∈𝑃𝑊𝐷 (𝐷) 𝑇𝐼 and use these

tuples to construct an alternative 𝜇 For operator that is a disjunction of disjoint sub-operators, where each sub-operator 𝜇𝑖For uniquely
captures a tuple (𝑡, 𝑡 ′) ∈ 𝑇 , i.e., 𝜇𝑖For (𝑡, 𝑡

′) = true and false for any other pair of tuples. This sub-operator is defined as a conjunction of

attribute values of the tuples 𝑡 and 𝑡 ′, i.e., ∧𝐴𝑖 ∈Dom(𝑅)Pre(𝐴𝑖) = 𝐴𝑖 [𝑡] ∧𝐴 𝑗 ∈Dom(𝑅) Post(𝐴 𝑗) = 𝐴 𝑗 [𝑡] In this way, any complex For operator
can be represented as a disjunction of at most |𝑇 | For sub-operators, where each sub-operator consists of conjunction of Pre and Post
conditions. □

We demonstrate the construction of 𝜇 For for an example non-boolean predicate, Pre(𝐴𝑖) − Post(𝐴𝑖) < 2 ∧ Pre(𝐴𝑖) ≥ Post(𝐴𝑖),
where Dom(𝐴𝑖) = {1, 2, 3, 4}. In this case, we iterate over the values to identify values that satisfy the condition. Different sets of values
that satisfy the For predicate are Pre(𝐴𝑖) = 4 ∧ Post(𝐴𝑖) = 3, Pre(𝐴𝑖) = 4 ∧ Post(𝐴𝑖) = 4, Pre(𝐴𝑖) = 3 ∧ Post(𝐴𝑖) = 2, Pre(𝐴𝑖) =
3 ∧ Post(𝐴𝑖) = 3, Pre(𝐴𝑖) = 2 ∧ Post(𝐴𝑖) = 1, Pre(𝐴𝑖) = 2 ∧ Post(𝐴𝑖) = 2, Pre(𝐴𝑖) = 1 ∧ Post(𝐴𝑖) = 1. Therefore, we represent
𝜇 For ≡ (Pre(𝐴𝑖) − Post(𝐴𝑖) < 2) ∧ (Pre(𝐴𝑖) ≥ Post(𝐴𝑖)) as a disjunction of seven different For sub-predicates, each constraining the
Pre and Post values of attributes in the original For clause. In this way, we can represent the original For predicate as a disjunction of
multiple sub-operator where each sub-operator contains a conjunctive condition on Pre and Post values of different attributes. The number
of sub-operators in this decomposition is dependent on the domain of attributes involved in the original For clause, which is exponential in
the query complexity.

A.3 Extension to Multi-Relation Database

Recall from Section 3.1 that, when we have multiple relations in the what-if query 𝑄 , we have a relevant viewV𝑟𝑒𝑙 containing the primary
keys of the tuples from the relation 𝑅 (= 𝐷 for a single-relation database) containing the update attribute 𝐵, and having other relevant
attributes as well as an aggregated form of the output attribute 𝑌 . Here we argue that our analysis so far extends to what-if queries with
multiple relations because of following reasons.

• V𝑟𝑒𝑙 has the same blocks as the relation 𝑅 containing the update attribute 𝐵 (Proposition 7 below). This shows that the query output
by aggregating the output from individual blocks in 𝑅 is equivalent to aggregating the output from individual blocks inV𝑟𝑒𝑙 .
• The backdoor criterion analysis presented in (1) extends to multi-relation databases where attributes from different relations are
embedded according to an aggregate function. To prove this condition, we leverage the analysis from prior literature on causal
inference on multi-relation database [47].

A.3.1 Proof thatV𝑟𝑒𝑙 Has the Same Blocks as the Multi-Relation Database. We next prove that the block decomposition procedure that we
describe in Section 3.3 places two tuples in the same block in a multi-relation database 𝐷 if and only if it places their aggregated version in
V𝑟𝑒𝑙 in the same block if it was performed onV𝑟𝑒𝑙 .

Recall that our procedure for dividing the database 𝐷 into independent blocks, which includes taking a tuple 𝑡1, identifying all tuples with
paths to and from 𝑡1 in the causal graph and add them to the same block as 𝑡1.This is repeated until all tuples are included in some block.

Proposition 7. Given a (multi-relation) database 𝐷 , its block-independent decomposition B = {𝐷1, . . . , 𝐷ℓ }, and a what-if query 𝑄 creating

update view V𝑟𝑒𝑙 , then 𝑡, 𝑡 ′ ∈ 𝐷 are placed in the same block by the above procedure of computing blocks in Section 3.3 if and only if their

corresponding tuples inV𝑟𝑒𝑙 , i.e., 𝑡𝑣, 𝑡 ′𝑣 ∈ V𝑟𝑒𝑙 would have been placed in the same block, if the block decomposition procedure was performed on

V𝑟𝑒𝑙 . where 𝑡𝑣 corresponds to 𝑡 if it contains a subset of its attributes or an aggregated form thereof (i.e., key[𝑡] = key[𝑡𝑣]).

Proof. (⇐) Assume 𝑡, 𝑡 ′ ∈ 𝐷 are not placed in the same block 𝐷𝑖 by our procedure in Section 3.3. Assume further that the block 𝐷𝑖 ⊆ 𝐷
contains 𝑡 (and not 𝑡 ′). If 𝑡, 𝑡 ′ do not have primary key-foreign key relationship, then we know that 𝑡𝑣 ≠ 𝑡 ′𝑣 inV𝑟𝑒𝑙 (since they cannot be
summarized to the same tuple) and the attributes of 𝑡𝑣 and 𝑡 ′𝑣 are still independent inV𝑟𝑒𝑙 or dropped fromV𝑟𝑒𝑙 . Therefore 𝑡𝑣 and 𝑡 ′𝑣 will be
in different blocks if we apply our procedure on V𝑟𝑒𝑙 . Assume 𝑡, 𝑡 ′ are independent but have a key relationship possibly through other
tuples. According to our procedure, 𝐷𝑖 contains all tuples that have a path to or from 𝑡 in the causal graph. In particular, 𝐷𝑖 contains all tuples
that have a primary key-foreign key relationship with 𝑡 , as the causal graph contains edges between such tuples. Since 𝑡 ′ ∉ 𝐷𝑖 , in particular,
it does not share a primary key-foreign key relationship with 𝑡 . As mentioned in Section 3.1,V𝑟𝑒𝑙 is created over the relation 𝑅 containing
the update attribute 𝐵 in 𝑄 , and other attributes from different relations that are aggregated to 𝑅 with respect to the tuples in 𝑅. Suppose
𝑡𝑣, 𝑡
′
𝑣 ∈ V𝑟𝑒𝑙 are the tuples generated from the (possibly aggregated) attributes of 𝑡, 𝑡 ′ and 𝑡 ∈ 𝑅 w.l.o.g. Here 𝑡𝑣 ∈ V𝑟𝑒𝑙 can only contain

summarized attributes of tuples that have a primary key-foreign key relationship with 𝑡 , and thus cannot include attributes with the key of
𝑡 ′ and vice versa. Furthermore, if the attributes of 𝑡 and 𝑡 ′ were placed in different blocks in 𝐷 , and they were summarized to 𝑡𝑣 ≠ 𝑡 ′𝑣 ∈ V𝑟𝑒𝑙 ,
then the attributes of 𝑡𝑣 and 𝑡 ′𝑣 are will also be placed in different blocks if the procedure is performed onV𝑟𝑒𝑙 . So inV𝑟𝑒𝑙 , 𝑡𝑣, 𝑡 ′𝑣 ∈ V𝑟𝑒𝑙 will
also be placed in different blocks.

(⇒) Assume 𝑡, 𝑡 ′ ∈ 𝐷 share the same block 𝐷𝑖 , then there is a tuple 𝑡 ′′ ∈ 𝑅 ∩ 𝐷𝑖 (it may be the case that 𝑡 = 𝑡 ′′ or 𝑡 ′ = 𝑡 ′′) and attributes
𝐴,𝐴′, 𝐴′′ such that there is a path to/from 𝐴[𝑡] to/from 𝐴′′[𝑡 ′′] to/from 𝐴′[𝑡 ′]. If inV𝑟𝑒𝑙 , 𝑡 and 𝑡 ′ are aggregated to the same tuple with the
key of 𝑡 ′′ (e.g., 𝑟2, 𝑟3 are summarized to the same tuple using 𝑝2 in the view created by the what-if query in Figure 4 in our running example),
then, denote this tuple by 𝑡 ′′𝑣 ∈ V𝑟𝑒𝑙 . 𝑡 ′′𝑣 has the same key as 𝑡 ′′ so, in particular, 𝑡 ′′𝑣 will be in the same block with itself. Otherwise, both 𝑡
and 𝑡 ′ are in 𝑅, and clearly they will be placed in the same block if the procedure is performed onV𝑟𝑒𝑙 since they were placed in the same
block when the procedure was performed on 𝐷 . □

A.3.2 Backdoor Criterion for a multi-relation database. First, we discuss the construction of an augmented causal graph 𝐺 ′ which contains
new nodes denoting aggregated values of attributes collected from different relations. Then, we present the analysis that backdoor criterion
presented in equation 1 holds with respect to 𝐺 ′, extending the previous analysis to this setting.
Augmented causal graph. Given the ground causal graph 𝐺 , we construct an augmented causal graph 𝐺 ′ following the procedure from
prior literature [47]. The augmented graph contains all nodes from the ground causal graph along with new nodes denoting aggregated
attributes from different relations. These aggregated attribute nodes are a superset of the aggregated attributes in the Use clause of the query.
Aggregated node 𝐴′ ≡ 𝐴𝑔𝑔(𝐴1, . . . , 𝐴𝑡) is added as a child of every 𝐴𝑖 for all 𝑖 ∈ {1, . . . , 𝑡} and 𝐴′ is added as a parent of all children of 𝐴𝑖 in
𝐺 . Notice that each 𝐴𝑖 has same set of children under the homogeneity assumption. In addition to these new edges, all edges between 𝐴𝑖 and
its children in the ground causal graph are removed.

Using this augmented causal graph, we show the backdoor criterion mentioned in equation 1 holds for multi-relation database using two
different properties. For this analysis, we define a ®𝑏 to denote a vector of attribute values 𝐵 of all units in an augmented causal graph. Under
this notation, we first use the counterfactual interpretation of backdoor set [39] to simplify Pr𝐷,𝑈 (𝑌 |𝐵 = ®𝑏,C = c) = Pr

𝐷,𝑓 (®𝑏) (𝑌 |C = c)

(Proposition 8) where 𝑓 maps each value 𝑏𝑖 ∈ ®(𝑏) according to the update. Second, we use the backdoor set analysis from [47] to reduce
Pr
𝐷,𝑓 (®𝑏) (𝑌 |C = c) to Pr𝐷 (𝑌 |𝐵 = 𝑓 (®𝑏),C = c).

Proposition 8 (Counterfactual Interpretation of Backdoor [39]). Given an augmented causal graph 𝐺 ′ with an update 𝐵 ← 𝑓 (®𝑏),
the following holds.

Pr𝐷,𝑈 (𝑌 |𝐵 = ®𝑏,C = c) = Pr
𝐷,𝑓 (®𝑏) (𝑌 |C = c),

where C denotes a set of attributes that satisfy the backdoor criterion in the augmented causal graph 𝐺 ′.

Now, we re-state the result from [47] which is then used to simplify Pr
𝐷,𝑓 (®𝑏) (𝑌 |C = c).

Theorem 1 (Relational Adjustment Formula [47]). Given an augmented relational causal graph 𝐺 ′, treatment and updated attribute 𝑇

with the update𝑈 ≡ (𝐵 ← 𝑓 (®𝑏)) where all units that are not in a set 𝑆 are not updated (equivalent to 𝑓 denoting an identity function). Note that

𝑆 is defined by the Use clause of the query. We have the following relational adjustment formula:

Pr𝐷,𝑈 [𝑌 [𝑥 ′] |Z = 𝑧] = Pr𝐷 [𝑌 [𝑥 ′] |Z = z, 𝐵 = 𝑓 (®𝑏)]

where Z is the set of nodes in 𝐺 ′ corresponding to the groundings of a subset of attributes such that

𝑌 [𝑥 ′]⊥⊥ ©«
⋃
𝑥 ∈𝑆

𝑃𝑎(𝐵 [𝑥])ª®¬ |𝐺′ ©«Z,
⋃
𝑥 ∈𝑆

𝐵 [𝑥]ª®¬
To use this theorem, we show that the set of backdoor variables C satisfies the condition 𝑌 [𝑥 ′]⊥⊥

(
∪𝑥 ∈𝑆𝑃𝑎(𝑇 [𝑥])

)
|𝐺′C,∪𝑥 ∈𝑆𝑇 [𝑥].

Proposition 9. Given an augmented relational causal graph 𝐺 ′, with an update 𝐵 ← 𝑓 (®𝑏), the following holds.

Pr
𝐷,𝑓 (®𝑏) (𝑌 |C = c) = Pr𝐷 (𝑌 |𝑓 (®𝑏),C = c)

where C denotes a set of attributes that satisfy the backdoor criterion in the augmented causal graph 𝐺 ′.

Proof. Let C denote the set of backdoor variables for the update with respect to the augmented causal graph 𝐺 ′. This means that all
backdoor paths from 𝐵 to 𝑌 are blocked by C. This means either of the two conditions hold

(1) A variable 𝑋 ∈ Pa(𝐵) is in the set C,
(2) A variable 𝑋 ∈ Pa(𝐵) is not in the backdoor set 𝑋 ∉ C but the path from 𝑋 to 𝑌 is blocked by the set C.

Now consider all paths from Pa(𝐵) \ C to 𝑌 . Among these paths, all paths through 𝐵 are blocked by 𝐵 and other paths are blocked by C
(because of the second point above). Therefore, 𝑌 is independent of Pa(𝐵) when conditioned on 𝐵 and C. Using C as the set of variables 𝑍 in
Theorem 1, we get the following.

Pr
𝐷,𝑓 (®𝑏) (𝑌 |C = c) = Pr𝐷 (𝑌 |𝑓 (®𝑏),C = c) (48)

□

Using Propositions 8 and 9, equation (1) extends to the multi-relation database.

A.4 Algorithm Implementation

Previous analysis showed that the query output can be decomposed into conditional probability distribution over the original database 𝐷
(or a block 𝐷𝑖). For implementation purpose, we assume that all tuples are homogeneously generated according to a causal graph 𝐺 (as
mentioned in Section 2.2). For example, a probability value Pr𝐷 (𝐴𝑖 [𝑡] = 𝑎𝑖 |𝐴 𝑗 [𝑡] = 𝑎 𝑗),∀𝑡 ∈ 𝐷 is assumed to be distributed according to a
distribution Pr𝐷 (𝐴𝑖 |𝐴 𝑗). In this case, HypeR uses the input database 𝐷 to learn a single regression function (with the conditioning set as
features and 𝐴𝑖 as the prediction variable) to estimate the conditional probability distribution Pr𝐷 (𝐴𝑖 |𝐴 𝑗) This assumption is commonly
used in causal inference to estimate conditional effects of specific attributes on the outcome [47, 54].

Our algorithms crucially rely on the domain of the set of attributes that satisfy the backdoor criterion (say C). Naively, the Dom(C) grows
exponentially in the number of attributes |C|. However, majority of the values in the domain would have zero-support in the database 𝐷 . To
efficiently ignore such values 𝑐 ∈ Dom(C), we construct an index to process the database 𝐷 to store all values that have non-zero support. In
this way, our algorithm complexity remains linear in the database size and does not grow exponentially with the size of C.

	Abstract
	1 Introduction
	2 Probabilistic Updates in HypeR
	2.1 Probabilistic Hypothetical Updates
	2.2 Causal Model for Probabilistic Updates

	3 Probabilistic What-If queries
	3.1 Syntax of Probabilistic What-If Queries
	3.2 Semantics of Probabilistic What-If Queries
	3.3 Computation of What-If Queries

	4 Probabilistic How-To queries
	4.1 Syntax of Probabilistic How-To Queries
	4.2 Semantics of Probabilistic How-To Queries
	4.3 Computation of How-to queries

	5 experiments
	5.1 Datasets and Baselines
	5.2 HypeR and its sampling variant
	5.3 What-If Real World Use Cases
	5.4 Solution Quality Comparison
	5.5 Runtime Analysis and Comparison

	6 related work
	7 conclusions
	References
	A Appendix: Computation of What-if queries and Proofs
	A.1 Reduction from Block-Independent Decomposition to Individual Blocks
	A.2 Computation for a single-block
	A.3 Extension to Multi-Relation Database
	A.4 Algorithm Implementation

