Summarized Causal Explanations For Aggregate Views

Abstract

SQL queries with group-by and average are frequently used and plotted as bar charts in several data analysis applications. Understanding the reasons behind the results in such an aggregate view may be a highly non-trivial and time-consuming task, especially for large datasets with multiple attributes. Hence, generating automated explanations for aggregate views can allow users to gain better insights into the results while saving time in data analysis. When providing explanations for such views, it is paramount to ensure that they are succinct yet comprehensive, reveal different types of insights that hold for different aggregate answers in the view, and, most importantly, they reflect reality and arm users to make informed data-driven decisions, i.e., the explanations do not only consider correlations but are causal. In this paper, we present CauSumX, a framework for generating summarized causal explanations for the entire aggregate view. We formally define the framework and the optimization problem, study its complexity, and devise an efficient algorithm using the Apriori algorithm, LP rounding, and several optimizations. We experimentally show that our system generates useful summarized causal explanations compared to prior work and scales well for large high-dimensional data.

Publication
In SIGMOD

Related