
Computing Inconsistency Measures Under Differential Privacy
Shubhankar Mohapatra

shubhankar.mohapatra@uwaterloo.ca

University of Waterloo

Canada

Amir Gilad
∗

amirg@cs.huji.ac.il

Hebrew University

Israel

Xi He
∗

xi.he@uwaterloo.ca

University of Waterloo

Canada

Benny Kimelfeld
∗

bennyk@cs.technion.ac.il

Technion

Israel

Abstract
Assessing data quality is crucial to knowing whether and how to

use the data for different purposes. Specifically, given a collection of

integrity constraints, various ways have been proposed to quantify

the inconsistency of a database. Inconsistency measures are partic-

ularly important when we wish to assess the quality of private data

without revealing sensitive information. We study the estimation of

inconsistency measures for a database protected under Differential

Privacy (DP). Such estimation is nontrivial since some measures

intrinsically query sensitive information, and the computation of

others involves functions on underlying sensitive data. Among five

inconsistency measures that have been proposed in recent work,

we identify that two are intractable in the DP setting. The major

challenge for the other three is high sensitivity: adding or removing

one tuple from the dataset may significantly affect the outcome.

To mitigate that, we model the dataset using a conflict graph and

investigate private graph statistics to estimate these measures. The

proposedmachinery includes adapting graph-projection techniques

with parameter selection optimizations on the conflict graph and

a DP variant of approximate vertex cover size. We experimentally

show that we can effectively compute DP estimates of the three

measures on five real-world datasets with denial constraints, where

the density of the conflict graphs highly varies.

Keywords
Differential privacy, Inconsistency measures, Integrity constraints

ACM Reference Format:
ShubhankarMohapatra, Amir Gilad, Xi He, and Benny Kimelfeld. 2018. Com-

puting Inconsistency Measures Under Differential Privacy. In Proceedings
of SIGMOD International Conference on Management of Data (SIGMOD’25).
ACM, New York, NY, USA, 18 pages. https://doi.org/XXXXXXX.XXXXXXX

∗
Authors AG, XH, BK have equal contribution and are listed in alphabetical order

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’25, June 22-27, 2025, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Differential Privacy (DP) [18] has become the de facto standard

for querying sensitive databases and has been adopted by various

industry and government bodies [1, 14, 20]. DP offers high utility

for aggregate data releases while ensuring strong guarantees on

individuals’ sensitive data. The laudable progress in DP study, as

demonstrated by multiple recent works [29, 39, 68–71], has made

it approachable and useful in many common scenarios. A standard

DP mechanism adds noise to the query output, constrained by

a privacy budget that quantifies the permitted privacy leakage.

Once the privacy budget is exhausted, no more queries can be

answered directly using the database. However, while DP ensures

data privacy, it limits users’ ability to directly observe or assess data

quality, leaving them to rely on the data without direct validation.

The utility of such sensitive data primarily depends on its quality.

Therefore, organizations that build these applications spend vast

amounts of money on purchasing data from private data market-

places [43, 61, 64, 67]. These marketplaces build relationships and

manage monetary transactions between data owners and buyers.

These buyers are often organizations that want to develop applica-

tions such as machine learning models or personalized assistants.

Before the buyer purchases a dataset at a specific cost, they may

want to ensure the data is suitable for their use case, adhere to

particular data quality constraints, and be able to profile its quality

to know if the cost reflects the quality.

To address such scenarios, we consider the problem of assessing
the quality of databases protected by DP. Such quality assessment

will allow users to decide whether they can rely on the conclusions

drawn from the data or whether the suggested data is suitable for

them. To solve this problem, we must tackle several challenges.

First, since DP protects the database, users can only observe noisy

aggregate statistics, which can be challenging to summarize into a

quality score. Second, if the number of constraints is large (e.g., if

they were generated with an automatic system [7, 45, 56]), translat-

ing each constraint to an SQL COUNT query and evaluating it over

the database with a DP mechanism may lead to low utility since

the number of queries is large, allowing for only a tiny portion of

the privacy budget to be allocated to each query.

Hence, our proposed solution employs inconsistency measures [5,
26, 27, 44, 46, 48, 54, 63] that quantify data quality with a single

number for all constraints, essentially yielding a data quality score.
This approach aligns well with DP, as such measures give a single

aggregated numerical value representing data quality, regardless of

the given number of constraints. As inconsistency measures, we

ar
X

iv
:2

50
2.

11
00

9v
2

 [
cs

.D
B

]
 2

7
Fe

b
20

25

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

DP Algorithms Adult [4] Flight [52] Stock [53]
R2T [15] 0.17 ± 0.01 0.12 ± 0.03 123.19 ± 276.73
This work 0.10 ± 0.05 0.10 ± 0.20 0.07 ± 0.08

Table 1: Relative errors for a SQL approach vs our approach
to compute the minimal inconsistency measure at 𝜀 = 1

adopt the ones studied by Livshits et al. [48] following earlier work

on the topic [5, 26, 54, 63]. This work discusses and studies five

measures, including (1) the drastic measure, a binary indicator for

whether the database contains constraint violations, the (2)maximal
consistency measure, counting the number of maximal tuple sets for

which addition of a single tuple will cause a violation, the (3) mini-
mal inconsistency measure, counting the number of minimal tuple

sets that violate a constraint, the (4) problematic measure, counting
the number of constraint violations, the (5) minimal repair measure,
counting the minimal tuple deletions needed to achieve consistency.

These measures apply to various inconsistency measures that have

been studied in the literature of data quality management, including

functional dependencies, the more general conditional functional

dependencies [9], and the more general denial constraints [10]. We

show that the first two measures are incompatible for computation

in the DP setting (Section 3), focusing throughout the paper on the

latter three.

An approach that one may suggest to computing the inconsis-

tency measures in a DP manner is to translate the measure into

an SQL query and then compute the query using an SQL engine

that respects DP [15, 32, 39, 62]. Specifically relevant is R2T [15],

the state-of-the-art DP mechanism for SPJA queries, including self-

joins. Nevertheless, when considering the three measures of incon-

sistency we focus on, this approach has several drawbacks. One of

these measures (number of problematic tuples) requires the SQL

DISTINCT operator that R2T cannot handle. In contrast, another

measure (minimal repair) cannot be expressed at all in SQL, making

such engines irrelevant.

Contrasting the first approach, the approach we propose and

investigate here models the violations of the integrity constraints

as a conflict graph and applies DP techniques for graph statistics. In

the conflict graph, nodes are tuple identifiers, and there is an edge

between a pair of tuples if this pair violates a constraint. Then, each

inconsistency measure can be mapped to a specific graph statistic.

Using this view of the problem allows us to leverage prior work on

releasing graph statistics with DP [13, 30, 37] and develop tailored

mechanisms for computing inconsistency measures with DP.

To this end, we harness graph projection techniques from the

state-of-the-art DP algorithms [13] that truncate the graph to achieve

DP. While these algorithms have proven effective in prior studies

on social network graphs, they may encounter challenges with

conflict graphs arising from their unique properties. To overcome

this, we devise a novel optimization for choosing the truncation

threshold. We further provide a DP mechanism for the minimal

repair measure that augments the classic 2-approximation of the

vertex cover algorithm [65] to restrict its sensitivity and allow effec-

tive DP guarantees with high utility. Our experimental study shows

that our novel algorithms prove efficacious for different datasets

with various conflict graph sizes and sparsity levels.

Beyond handling the two inconsistency measures that R2T can-

not handle, our approach provides considerable advantages even

for the one R2T can handle (number of conflicts). For illustration,

Table 1 shows the results of evaluating R2T [15] on three datasets

with the same privacy budget of 1 for this measure. Though R2T

performed well for the Adult and Flight datasets, it reports more

than 120% relative errors for the Stock dataset with very few vi-

olations. On the other hand, our approach demonstrates strong

performance across all three datasets.

The main contributions of this paper are as follows. First, we

formulate the novel problem of computing inconsistency measure-

ments with DP for private datasets and discuss the associated chal-

lenges, including a thorough analysis of the sensitivity of each

measure. Second, we devise several algorithms that leverage the

conflict graph and algorithms for releasing graph statistics under

DP to estimate the measures that we have determined are suitable.

Specifically, we propose a new optimization for choosing graph

truncation threshold that is tailored to conflict graphs and augment

the classic vertex cover approximation algorithms to bound its sen-

sitivity to 2 to obtain accurate estimates of the measures. Third, we

present experiments on five real-world datasets with varying sizes

and densities to show that the proposed DP algorithms are efficient

in practice. Our average error across these datasets is 1.3%-67.9%

compared to the non-private measure.

2 Preliminaries
We begin with some background that we need to describe the

concept of inconsistency measures for private databases.

2.1 Database and Constraints
We consider a single-relation schemaA = (𝐴1, . . . , 𝐴𝑚), which is a

vector of distinct attribute names𝐴𝑖 , each associated with a domain

dom(𝐴𝑖) of values. A database 𝐷 over A is a associated with a set

tids(𝐷) of tuple identifiers, and it maps every identifier 𝑖 ∈ tids(𝐷)
to a tuple 𝐷 [𝑖] = (𝑎1, . . . , 𝑎𝑚) in 𝐴1 × · · · ×𝐴𝑚 . A database 𝐷′ is a
subset of 𝐷 , denoted 𝐷′ ⊆ 𝐷 , if 𝐷′ is obtained from 𝐷 by deleting

zero or more tuples, that is, tids(𝐷′) ⊆ tids(𝐷) and 𝐷′ [𝑖] = 𝐷 [𝑖]
for all 𝑖 ∈ tids(𝐷′).

Following previous work on related topics [22, 45], we focus on

Denial Constraints (DCs) on pairs of tuples. Using the formalism

of Tuple Relational Calculus, such a DC is of the form ∀𝑡, 𝑡 ′¬
(
𝜑1 ∧

· · · ∧ 𝜑𝑘
)
where each 𝜑 𝑗 is a comparison 𝜎1 ◦ 𝜎2 so that: (a) each of

𝜎1 and 𝜎2 is either 𝑡 [𝐴𝑖], or 𝑡 ′ [𝐴𝑖], or 𝑎, where 𝐴𝑖 is some attribute

and 𝑎 is a constant value, and (b) the operator ◦ belongs to set

{<, >, ≤, ≥,=,≠} of comparisons. This DC states that there cannot

be two tuples 𝑡 and 𝑡 ′ such that all comparisons 𝜑 𝑗 hold true (i.e.,

at least one 𝜑 𝑗 should be violated).

Note that the class of DCs of the form that we consider gener-

alizes the class of Functional Dependencies (FDs). An FD has the

form 𝑋 → 𝑌 where 𝑋,𝑌 ⊆ {𝐴1, . . . , 𝐴𝑚}, and it states that every

two tuples that agree on (i.e., have the same value in each attribute

of) 𝑋 must also agree on 𝑌 .

In the remainder of the paper, we denote by Σ the given set of

DCs. A database 𝐷 satisfies Σ, denoted 𝐷 |= Σ, if 𝐷 satisfies every

DC in Σ; otherwise, 𝐷 violates Σ, denoted 𝐷 ̸ |= Σ.
A common way of capturing the violations of Σ in 𝐷 is through

the conflict graph G𝐷Σ , which is the graph (𝑉 , 𝐸), where𝑉 = tids(𝐷)
an edge 𝑒 = {𝑖, 𝑗} ∈ 𝐸 occurs whenever the tuples 𝐷 [𝑖] and jointly

Computing Inconsistency Measures Under Differential Privacy SIGMOD’25, June 22-27, 2025, Berlin, Germany

ID Capital Country
1 Ottawa Canada

2 Ottawa Canada

3 Ottawa Canada

4 Ottawa Kanada

1 2

3

4

Figure 1: Toy example dataset to show a worst-case analysis.
An additional row may violate all other rows in the dataset
(left). Easier analysis can be done by instead converting the
dataset into its corresponding conflict graph (right).

𝐷 [𝑗] violate Σ. To simplify the notation, we may write simply G
instead of G𝐷Σ when there is no risk of ambiguity.

Example 1. Consider a dataset that stores information about cap-
ital and country as shown in Figure 1. Assume an FD constraint
𝜎 : Capital→ Country between attributes capital and country that
says that the country of two tuples must be the same if their capital is
the same. Assume the dataset has 3 rows (white color) and a neighbor-
ing dataset has an extra row (grey color) with the typo in its country
attribute. As shown in the right side of Figure 1, the dataset with 4
rows can be converted to a conflict graph with the nodes corresponding
to each tuple and edges referring to conflicts between them. The IMI
measure computes the size of the set of all minimally inconsistent
subsets |𝑀𝐼Σ (𝐷) | (the number of edges in the graph) for this dataset.

2.2 Inconsistency Measures
Inconsistency measures have been studied in previous work [5, 26,

27, 44, 46] as a means of measuring database quality for a set of

DCs. We adopt the measures and notation of Livshits et al. [48].

Specifically, they consider five inconsistency measures that capture

different aspects of the dataset quality. To define these concepts,

we need some notation. Given a database 𝐷 and a set Σ of anti-

monotonic integrity constraints, we denote byMIΣ (𝐷) the set of
all minimally inconsistent subsets, that is, the sets 𝐸 ⊆ 𝐷 such that

𝐸 ̸ |= Σ but 𝐸′ |= Σ for all 𝐸′ ⊊ 𝐸. We also denote by MCΣ (𝐷) the
set of all maximal consistent subsets of 𝐷 ; that is, the sets 𝐸 ⊆ 𝐷

such that 𝐸 |= Σ and 𝐸′ ̸ |= Σ whenever 𝐸 ⊊ 𝐸′ ⊆ 𝐷 .

Definition 1 (Inconsistency measures [48]). Given a database
𝐷 and a set of DCs Σ, the inconsistencymeasures are defined as follows:
• Drastic measure: ID (𝐷, Σ) = 1 if 𝐷 |= Σ and 0 otherwise.
• Minimal inconsistency measure: IMI (𝐷, Σ) = |MIΣ (𝐷) |.
• Problematic measure: IP (𝐷, Σ) = | ∪MIΣ (𝐷) |.
• Maximal consistency measure: IMC (𝐷, Σ) = |MCΣ (𝐷) | 1.
• Optimal repair measure: IR (𝐷, Σ) = |𝐷 | − |𝐷𝑅 |, where |𝐷𝑅 |
is the largest subset 𝐷𝑅 ⊆ 𝐷 such that 𝐷𝑅 |= Σ.

Observe that inconsistency measures also have a graphical in-

terpretation for the conflict graph G𝐷Σ . For instance, the drastic

measure ID (𝐷, Σ) corresponds to a binary indicator for whether

there exists an edge in G𝐷Σ . We summarize the graph interpretation

of these inconsistency measures in Table 2.

2.3 Differential Privacy
Differential privacy (DP) [18] aims to protect private information

in the data. In this work, we consider the unbounded DP setting

1
We drop "-1" from the original definition [48] for simplicity.

where we define two neighboring datasets, 𝐷 and 𝐷′ (denoted by

𝐷 ≈ 𝐷′) if 𝐷′ can be transformed from 𝐷 by adding or removing

one tuple in 𝐷 .

Definition 2 (Differential Privacy [18]). An algorithmM is
said to satisfy 𝜀-DP if for all 𝑆 ⊆ Range(M) and for all 𝐷 ≈ 𝐷′,

Pr[M(𝐷) ∈ 𝑆] ≤ 𝑒𝜀Pr[M(𝐷′) ∈ 𝑆] .

The privacy cost is measured by the parameters 𝜀, often called

the privacy budget. The smaller 𝜀 is, the stronger the privacy is.

Complex DP algorithms can be built from the basic algorithms

following two essential properties of differential privacy:

Proposition 1 (DP Properties [16, 17]). The following hold.
(1) (Sequential composition) IfM𝑖 satisfies 𝜀𝑖 -DP, then the

sequential application ofM1,M2, · · · , satisfies (
∑
𝑖 𝜀𝑖)-DP.

(2) (Parallel composition) If eachM𝑖 accesses disjoint sets of
tuples, they satisfy (max𝑖 𝜀𝑖)-DP together.

(3) (Post-processing) Any function applied to the output of an
𝜀-DP mechanismM also satisfies 𝜀-DP.

Many applications in DP require measuring the change in a

particular function’s result over two neighboring databases. The

supremum over all pairs of neighboring databases is called the

sensitivity of the function.

Definition 3 (Global sensitivity [19]). Given a function 𝑓 :

D → R, the sensitivity of 𝑓 is

Δ𝑓 = max

𝐷 ′≈𝐷
|𝑓 (𝐷) − 𝑓 (𝐷′) |. (1)

Laplace mechanism. The Laplace mechanism [19] is a common

building block in DPmechanisms and is used to get a noisy estimate

for queries with numeric answers. The noise injected is calibrated

to the query’s global sensitivity.

Definition 4 (Laplace Mechanism [19]). Given a database𝐷 , a
function 𝑓 : D → R, and a privacy budget 𝜀, the Laplace mechanism
M𝐿 returns 𝑓 (𝐷) + 𝜈𝑞 , where 𝜈𝑞 ∼ 𝐿𝑎𝑝 (Δ𝑓 /𝜀).

The Laplace mechanism can answer many numerical queries, but

the exponential mechanism can be used in many natural situations

requiring a non-numerical output.

Exponential mechanism. The exponential mechanism [50] ex-

pands the application of DP by allowing a non-numerical output.

Definition 5 (Exponential Mechanism [50]). Given a dataset
𝐷 , a privacy budget 𝜀, a set Θ of output candidates, a quality function
𝑞(𝐷, 𝜃𝑖) ∈ R, the exponential mechanismM𝐸𝑀 outputs a candidate

𝜃𝑖 ∈ Θ with probability proportional to exp
(
𝜀𝑞 (𝐷,𝜃𝑖)

2Δ𝑞

)
, where Δ𝑞 is

the sensitivity of the quality function 𝑞.

DP for graphs.When the dataset is a graph G = (𝑉 , 𝐸), the stan-
dard definition can be translated to two variants of DP [30]. The

first is edge-DP where two graphs are neighboring if they differ on

one edge, and the second is node-DP, when two graphs are neigh-

boring if one is obtained from the other by removing a node (and its

incident edges). The two definitions offer different kinds of privacy

protection. In our work, as we deal with databases and their corre-

sponding conflict graphs, adding or removing a tuple of the dataset

translates to node-DP. The corresponding definition of neighboring

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

Non-private analysis [48] DP analysis (this work)
Inconsistency Measures for 𝐷 Graph Interpretations in G𝐷

Σ (𝑉 , 𝐸) Computation cost Sensitivity Computation cost Utility
Drastic measure ID if exists an edge 𝑂 (|Σ |𝑛2) 1 N.A. N.A.

Minimal inconsistency measure IMI the no. of edges 𝑂 (|Σ |𝑛2) 𝑛 𝑂 (|Σ |𝑛2 + |Θ |𝑚) −�̃�opt (𝐷, 𝜀2) +𝑂 (𝜃max ln |Θ|
𝜀
1

)
Problematic measure IP the no. of nodes with positive degrees 𝑂 (|Σ |𝑛2) 𝑛 𝑂 (|Σ |𝑛2 + |Θ |𝑚) −�̃�opt (𝐷, 𝜀2) +𝑂 (𝜃max ln |Θ|

𝜀
1

)
Maximal consistency measure IMC the no. of maximal independent sets #P-complete 𝑂 (3𝑛) N.A. N.A.

Optimal repair measure IR the minimum vertex cover size NP-hard 1 𝑂 (|Σ |𝑛2 +𝑚) I𝑅 (𝐷, Σ) +𝑂 (1/𝜀)
Table 2: Summary of Inconsistency Measures, 𝑛 = |𝐷 | = |G𝐷Σ .𝑉 |,𝑚 = |G𝐷Σ .𝐸 |, Θ is the candidate set.

datasets changes to neighboring graphs where two graphs G and

G′ are called neighboring G ≈ G′ if G′ can be transformed from

G by adding or removing one node along with all its edges in G.
Node-DP provides a stronger privacy guarantee than edge-DP since

it protects an individual’s privacy and all its connections, whereas

edge-DP concerns only one such connection.

Definition 6 (Node sensitivity). Given a function 𝑓 over a
graph G, the sensitivity of 𝑓 is Δ𝑓 = max

G′≈G
|𝑓 (G) − 𝑓 (G′) |.

The building blocks of DP, such as the Laplace and Exponential

mechanisms, also work on graphs by simply substituting the input

to a graph and the sensitivity to the corresponding node sensitivity.

Graph projection. Graph projection algorithms refer to a family

of algorithms that help reduce the node sensitivity of a graph by

truncating the edges and, hence, bounding the maximum degree

of the graph. Several graph projection algorithms exist [8, 37],

among which the edge addition algorithm [13] stands out for its

effectiveness in preserving most of the underlying graph structure.

The edge addition algorithm denoted by 𝜋Λ
𝜃
, takes as input the

graph G = G𝐷Σ = (𝑉 , 𝐸), a bound on the maximum degree of

each vertex (𝜃), and a stable ordering of the edges (Λ) to output a

projected 𝜃 -bounded graph denoted by G𝜃 = 𝜋Λ
𝜃
(G).

Definition 7 (Stable ordering [13]). A graph edge ordering
Λ is stable if and only if given two neighboring graphs G = (𝑉 , 𝐸)
and G′ = (𝑉 ′, 𝐸′) that differ by only a node, Λ(G) and Λ(G′) are
consistent in the sense that if two edges appear both in G and G′,
their relative ordering are the same in Λ(G) and Λ(G′).

The stable ordering of edges, Λ(G), can be any deterministic

ordering of all the edges 𝐸 in the G. Such stabling edge ordering can
be easily obtained in practice. For example, it could be an ordering

(e.g. alphabetical ordering) based on the node IDs of the graph such

that in the neighboring dataset G′, the edges occur in the same

ordering as G. The edge addition algorithm starts with an empty

set of edges and operates by adding edges in the same order as

Λ so that each node has a maximum degree of 𝜃 . To simplify the

notation, in the remainder of the paper, we drop Λ and denote the

edge addition algorithm 𝜋Λ
𝜃
(G) as 𝜋𝜃 (G).

3 Inconsistency Measures under DP
Problem Setup. Consider a private dataset 𝐷 , a set of DCs Σ,
and a privacy budget 𝜀. For an inconsistency measure I from

the set {ID,IMI,IP,IMC,IR} (Definition 1), we would like to de-

sign an 𝜀-DP algorithmM(𝐷, Σ, 𝜀) such that with high probability,

|M(𝐷, Σ, 𝜀) − I(𝐷, Σ) | is bounded with a small error.

Sensitivity Analysis.We first analyze the sensitivity of the five

inconsistency measures and discuss the challenges to achieving DP.

Algorithm 1: Edge addition algorithm [13]

Data: Graph G(𝑉 , 𝐸), Bound 𝜃 , Stable ordering Λ
Result: 𝜃 -bounded graph 𝜋𝜃 (G)

1 𝐸𝜃 ← ∅;𝑑 (𝑣) ← 0 for each 𝑣 ∈ 𝑉 ;

2 for 𝑒 = (𝑢, 𝑣) ∈ Λ do
3 if 𝑑 (𝑢) < 𝜃&𝑑 (𝑣) < 𝜃 then
4 𝐸𝜃 ← 𝐸𝜃 ∪ {𝑒} 𝑑 (𝑢) ← 𝑑 (𝑢) + 1, 𝑑 (𝑣) ← 𝑑 (𝑣) + 1 ;

5 return 𝐺𝜃 = (𝑉 , 𝐸𝜃);

Proposition 2. Given a database 𝐷 and a set of DCs Σ, where
|𝐷 | = 𝑛, the following holds: (1) The global sensitivity of ID is 1.
(2) The global sensitivity of IMI is 𝑛. (3) The global sensitivity of IP is
𝑛. (4) The global sensitivity of IMC is exponential in 𝑛. (5) The global
sensitivity of IR is 1.

The proof can be found in Appendix A.1.

Inadequacy of ID and IMC. We note that two inconsistency mea-

sures are less suitable for DP. First, the drastic measure ID is a

binary measure that outputs 1 if at least one conflict exists in the

dataset and 0 otherwise. Due to its binary nature, the measure’s

sensitivity is 1, meaning adding or removing a single row can signif-

icantly alter the result. Adding DP noise to such a binary measure

can render it meaningless.

One way to compute theID measure could be to consider a proxy

of ID by employing a threshold-based approach that relies on IP
or IMI. For example, if these measures are below a certain given

number, we return 0 and, otherwise, 1. A recent work [55] addresses

similar problems for synthetic data by employing the exponential

mechanism. However, since we focus on directly computing the

measures under DP, we leave this intriguing subject for future work.

The IMC measure that computes the total number of indepen-

dent sets in the conflict graph has both computational and high

sensitivity issues. First, prior work [44] showed that computing

IMC is #P-complete and even approximating it is an NP-hard prob-

lem [59]. Even for special cases where IMC can be polynomially

computed (when G𝐷Σ is 𝑃4-free [38]), we show in Proposition 2 that

its sensitivity is exponential in the number of nodes of G𝐷Σ . This

significantly diminishes the utility of its DP estimate. Due to these

challenges, we defer the study of ID and IMC to future work.

Challenges for IR, IMI, and IP. Although the IR measure has

a low sensitivity of 1 for its output range [0, 𝑛], it is an NP-hard

problem, and the common non-private solution is to solve a linear

approximation that requires solving a linear program [44]. How-

ever, in the worst case, this linear program again has sensitivity

equal to 𝑛 (number of rows in the dataset) and may have up to(𝑛
2

)
number of constraints (all rows violating each other). Existing

state-of-the-art DP linear solvers [31] are slow and fail for such

Computing Inconsistency Measures Under Differential Privacy SIGMOD’25, June 22-27, 2025, Berlin, Germany

Algorithm 2: Graph projection approach for IMI and IP
Data: Dataset 𝐷 , constraint set Σ, candidate set Θ, privacy

budgets 𝜀1 and 𝜀2
Result: DP inconsistency measure for IMI or IP

1 Construct the conflict graph G𝐷Σ
2 Sample 𝜃∗ from Θ with a 𝜀1-DP mechanism // Basic EM

(Algorithm 3); Optimized EM (Algorithm 4)

3 Compute 𝜃∗-bounded graph G𝜃 ∗ ← 𝜋𝜃 ∗ (G𝐷Σ) // Edge
addition algorithm [13]

4 Return 𝑓 (G𝜃 ∗) + Lap(𝜃
∗

𝜀2
) // 𝑓 (·) returns edge count for

IMI and the number of nodes with positive degrees for IP

a challenging task. Our preliminary experiments to solve such a

linear program timed out after 24 hours with 𝑛 = 1000. For IMI and

IP they have polynomial computation costs and reasonable output

ranges. However, they still have high sensitivity 𝑛. In the upcoming

sections 4 and 5, we show that these problems can be alleviated by

pre-processing the input dataset as a conflict graph and computing

these inconsistency measures as private graph statistics.

4 DP Graph Projection for IMI and IP
Computing graph statistics such as edge count and degree distri-

bution while preserving node-differential privacy (node-DP) is a

well-explored area [8, 13, 37]. Hence, in this section, we leverage

the state-of-the-art node-DP approach for graph statistics to ana-

lyze the inconsistency measures IMI and IP as graph statistics on

the conflict graph G𝐷Σ . However, the effectiveness of this approach

hinges on carefully chosen parameters. We introduce two optimiza-

tion techniques that consider the integrity constraints to optimize

parameter selection and enhance the algorithm’s utility.

4.1 Graph Projection Approach for IMI and IP
Aprimary utility challenge in achieving node-DP for graph statistics

is their high sensitivity. In the worst case, removing a single node

from a graph of 𝑛 nodes can result in removing (𝑛−1) edges. To mit-

igate this issue, the state-of-the-art approach [13] first projects the

graph G onto a 𝜃 -bounded graph G𝜃 , where the maximum degree

is no more than 𝜃 . Subsequently, the edge count of the transformed

graph is perturbed by the Laplace mechanism with a sensitivity

value of less than 𝑛. However, the choice of 𝜃 is critical for accurate

estimation. A small 𝜃 reduces Laplace noise due to lower sensitivity,

but results in significant edge loss during projection. Conversely, a

𝜃 close to 𝑛 preserves more edges but increases the Laplace noise.

Prior work addresses this balance using the exponential mechanism

(EM) to prefer a 𝜃 that minimizes the combined errors arising from

graph projection and the Laplace noise.

We outline this general approach in Algorithm 2. This algorithm

takes in the dataset 𝐷 , the constraint set Σ, a candidate set Θ for

degree bounds, and privacy budgets 𝜀1 and 𝜀2. These privacy bud-

gets are later composed to get a final guarantee of 𝜀-DP. We start

by constructing the conflict graph G𝐷Σ generated from the input

dataset 𝐷 and constraint set Σ (line 1), as defined in Section 2.1.

Next, we sample in a DP manner a value of 𝜃∗ from the candidate

set Θ with the privacy budget 𝜀1 (line 2). A baseline choice is an

exponential mechanism detailed in Algorithm 3 to output a degree

that minimizes the edge loss in a graph and the Laplace noise. In

line 3, we compute a bounded graph G𝜃 ∗ using the edge addition
algorithm [13], we compute a 𝜃∗-bounded graph G𝜃 ∗ (detailed in

Section 2). Finally, we perturb the true measure (either the number

of edges for IMI or the number of positive degree nodes for IP) on
the projected graph, denoted by 𝑓 (G𝜃 ∗), by adding Laplace noise

using the other privacy budget 𝜀2 (line 4).

The returned noisy measure at the last step has two sources

of errors: (i) the bias incurred in the projected graph, i.e., 𝑓 (G) −
𝑓 (G𝜃 ∗), and (ii) the noise from the Laplace mechanism with an

expected square root error

√
2𝜃∗/𝜀2. Both errors depend on the

selected parameter 𝜃∗, and it is vital to select an optimal 𝜃∗ that
minimizes the combined errors. Next, we describe a DP mechanism

that helps select this parameter.

EM-based first try for parameter selection. The EM (Defini-

tion 5) specifies a quality function 𝑞(·, ·) that maps a pair of a

database 𝐷 and a candidate degree 𝜃 to a numerical value. The opti-

mal 𝜃 value for a given database 𝐷 should have the largest possible

quality value and, hence, the highest probability of being sampled.

We also denote 𝜃max the largest degree candidate in Θ and use it as

part of the quality function to limit its sensitivity.

The quality function we choose to compute the inconsistency

measures includes two terms: for each 𝜃 ∈ Θ,

𝑞𝜀2 (G, 𝜃) = −𝑒bias (G, 𝜃) −
√
2𝜃/𝜀2 (2)

where the first term 𝑒
bias

captures the bias in the projected graph,

and the second term

√
2𝜃/𝜀2 captures the error from the Laplace

noise at budget 𝜀2. For the minimum inconsistency measure IMI,

we define the bias term as

𝑒
bias
(G, 𝜃) = |G𝜃max

.𝐸 | − |G𝜃 .𝐸 | (3)

i.e., the number of edges truncated at degree 𝜃 as compared to that

at degree 𝜃max. For the problematic measure IP, we have

𝑒
bias
(G, 𝜃) = |G𝜃max

.𝑉>0 | − |G𝜃 .𝑉>0 | (4)

where G𝜃 .𝑉>0 denote the nodes with positive degrees.

Example 2. Consider the same graph as Example 1 and a candi-
date set Θ = [1, 2, 3] to compute the IMI measure (number of edges)
with 𝜀2 = 1. For the first candidate 𝜃 = 1, as node 4 has degree 3, the
edge addition algorithm would truncate 2 edges, for 𝜃 = 2, 1 edge
would be truncated and for 𝜃 = 3, no edges would be truncated. We
can, therefore, compute each term of the quality function for each
𝜃 given in Table 3. For this example, we see that 𝜃 = 1 has the best
quality even if it truncates the most number of edges as the error from
Laplace noise overwhelms the bias error.

We summarize the basic EM for the selection of the bounded

degree in Algorithm 3. This algorithm has a complexity of𝑂 (|Θ|𝑚),
Algorithm 3: EM-based first try for parameter selection

Data: Graph G, candidate set Θ, quality function 𝑞, privacy

budget 𝜀1, 𝜀2
Result: Candidate 𝜃∗

1 Find the maximum value in Θ as 𝜃max

2 For each 𝜃𝑖 ∈ Θ, compute 𝑞𝜀2 (G, 𝜃𝑖) // See Equation (2)

3 Sample 𝜃∗ with prob ∝ exp(𝜀1𝑞𝜀2 (G,𝜃𝑖)
2𝜃max

)
4 Return 𝜃∗

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

𝜃 𝑒bias
√
2𝜃/𝜀2 q

1 2
√
2 −2 −

√
2

2 1 2

√
2 −1 − 2

√
2

3 0 3

√
2 −3

√
2

Table 3: Quality function computation for IMI for the conflict
graph in Figure 1 when 𝜀2 = 1

where 𝑚 is the edge size of the graph, as computing the qual-

ity function for each 𝜃 candidate requires running the edge ad-

dition algorithm once. The overall Algorithm 2 has a complexity of

𝑂 (|Σ|𝑛2 + |Θ|𝑚), where the first term is due to the construction of

the graph.

Privacy analysis. The privacy guarantee of Algorithm 2 depends

on the budget spent for the exponential mechanism and the Laplace

mechanism, as summarized below.

Theorem 1. Algorithm 2 satisfies (𝜀1 + 𝜀2)-node DP for G𝐷Σ and
(𝜀1 + 𝜀2)-DP for the input database 𝐷 .

Proof sketch. The proof is based on the sequential composi-

tion of two DP mechanisms as stated in Proposition 1. □

As stated below, we just need to analyze the sensitivity of the

quality function in the exponential mechanism and the sensitivity

of the measure over the projected graph.

Lemma 1. The sensitivity of 𝑓 ◦ 𝜋𝜃 (·) in Algorithm 2 is 𝜃 , where
𝜋𝜃 is the edge addition algorithm with the input 𝜃 and 𝑓 (·) counts
edges for IMI and nodes with a positive degrees for IP.

Proof sketch. For IP, we can analyze a worst-case scenario

where the graph is a star with 𝑛 nodes such that there is an internal

node connected to all other 𝑛−1 nodes, and the threshold 𝜃 for edge

addition is 𝑛. The edge addition algorithm would play a minimal

role, and no edges would be truncated. For a neighboring graph

that differs on the internal node, all edges of the graph are removed

(connected to the internal node), and the IP = 0 (no problematic

nodes), making the sensitivity for IP in this worst-case = 𝑛.

For IMI, the proof is similar to prior work [13] for publishing

degree distribution that uses stable ordering to keep track of the

edges for two neighboring graphs. We need to analyze the changes

made to the degree of each node by adding one edge at a time for

two graphs G and its neighboring graph G′ with an additional node
𝑣+. The graphs have the stable ordering of edges (Definition 7)Λ and

Λ′, respectively. Assuming the edge addition algorithm adds a set

of 𝑡 extra edges incident to 𝑣+ for G′, we can create 𝑡 intermediate

graphs and their respective stable ordering of edges that can be

obtained by removing from the stable ordering Λ′ each edge 𝑡

and others that come after 𝑡 in the same sequence as they occur

in Λ′. We analyze consecutive intermediate graphs, their stable

orderings, and the edges actually that end up being added by the

edge addition algorithm. As the edge addition algorithm removes

all edges of a node once an edge incident is added, we observe

that only one of these 𝑡 edges is added. All other edges incident

to 𝑣+ are removed. We prove this extra edge leads to decisions in

the edge addition algorithm that always restricts such consecutive

intermediate graphs to differ by at most 1 edge. This proves the

lemma for IMI as at most 𝑡 (upper bounded by 𝜃) edges can differ

between two neighboring graphs. □

We now analyze the sensitivity of the quality function using

both measures’ sensitivity analysis.

Lemma 2. The sensitivity of the quality function 𝑞𝜀2 (G, 𝜃𝑖) in
Algorithm 3 defined in Equation (2) is 𝜃max = max(Θ).

Proof sketch. We prove the theorem for the IMI measure and

show that it is similar for IP. The sensitivity of the quality func-

tion is computed by comparing the respective quality functions

of two neighboring graphs G and G′ with an extra node. It is up-

per bound by the difference of two terms

(
|G′

𝜃max

.𝐸 | − |G𝜃max
.𝐸 |

)
−(

|G′
𝜃
.𝐸 | − |G𝜃 .𝐸 |

)
. The first term

(
|G′

𝜃max

.𝐸 | − |G𝜃max
.𝐸 |

)
is the sen-

sitivity of the measures, as already proved by Lemma 1 is equal to

𝜃𝑚𝑎𝑥 . The second term

(
|G′

𝜃
.𝐸 | − |G𝜃 .𝐸 |

)
is always ≥ 0 as |G′

𝜃
.𝐸 | ≥

|G𝜃 .𝐸 | as discussed in the proof for Lemma 1. □

Proofs for Theorem 1, Lemma 2, and Lemma 1 can be found in

Appendix A.2.

Utility analysis. The utility of Algorithm 2 is directly encoded by

the quality function of the exponential mechanism in Algorithm 3.

We first define the best possible quality function value for a given

database and its respective graph as

𝑞opt (𝐷, 𝜀2) = max

𝜃 ∈Θ
𝑞𝜀2 (G𝐷Σ , 𝜃) (5)

and the set of degree values that obtain the optimal quality value as

Θopt = {𝜃 ∈ Θ : 𝑞𝜀2 (G𝐷Σ , 𝜃) = 𝑞opt (𝐷, 𝜀2)}. (6)

However, we define 𝑒
bias

as the difference in the number of edges

or nodes in the projected graph G𝜃 compared to that of G𝜃max
,

instead of G. This is to limit the sensitivity of the quality function.

To compute the utility, we slightly modify the quality function

without affecting the output of the exponential mechanism.

𝑞𝜀2 (G, 𝜃) = 𝑞𝜀2 (G, 𝜃) + 𝑓 (G𝜃max
) − 𝑓 (G𝐷Σ), (7)

where 𝑓 (·) returns edge count for IMI and the number of nodes

with positive degrees for IP. This modified quality function should

give the same set of degrees Θopt with optimal values equal to

𝑞opt (𝐷, 𝜀2) = max

𝜃 ∈Θ
𝑞𝜀2 (G𝐷Σ , 𝜃) + 𝑓 (G𝐷Σ 𝜃max

) − 𝑓 (G𝐷Σ) . (8)

Then, we derive the utility bound for Algorithm 2 based on the

property of the exponential mechanism as follows.

Theorem 2. On any database instance𝐷 and its respective conflict
graph G𝐷Σ , let 𝑜 be the output of Algorithm 2 with Algorithm 3 over
𝐷 . Then, with a probability of at least 1 − 𝛽 , we have

|𝑜 − 𝑎 | ≤ −𝑞opt (𝐷, 𝜀2) +
2𝜃max

𝜀1
(ln 2|Θ|
|Θopt | · 𝛽

) (9)

where 𝑎 is the true inconsistency measure over 𝐷 and 𝛽 ≤ 1

𝑒
√
2

.

The proof can be found in Appendix A.2.6.

This theorem indicates that the error incurred by Algorithm 2

with Algorithm 3 is directly proportional to the log of the candidate

size |Θ| and the sensitivity of the quality function. The 𝛽 parameter

in the theorem is a controllable probability parameter. According

to the accuracy requirements of a user’s analysis, one may set 𝛽

as any value less than this upper bound. For example, if we set

𝛽 = 0.01, then our theoretical analysis of Algorithm 2 that says the

Computing Inconsistency Measures Under Differential Privacy SIGMOD’25, June 22-27, 2025, Berlin, Germany

algorithm’s output being close to the true answer will hold with

a probability of 1 − 𝛽 = 0.99. We also show a plot to show the

trend of the utility analysis as a function of 𝛽 in Appendix A.5 [3].

Without prior knowledge about the graph, 𝜃max is usually set as

the number of nodes 𝑛, and Θ includes all possible degree values

up to 𝑛, resulting in poor utility. Fortunately, for our use case, the

edges in the graph arise from the DCs that are available to us. In

the next section, we show how we can leverage these constraints

to improve the utility of our algorithm by truncating candidates in

the set Θ.

4.2 Optimized Parameter Selection
Our developed strategy to improve the parameter selection includes

two optimization techniques. The overarching idea behind these

optimizations is to gradually truncate large candidates from the

candidate set Θ based on the density of the graph. For example,

we observe that the Stock dataset [53] has a sparse conflict graph,

and its optimum degree for graph projection is in the range of

10
0 − 101. In contrast, the graph for the Adult dataset sample [4] is

extraordinarily dense and has an optimum degree 𝜃 greater than

10
3
, close to the sampled data size. Removing unneeded large can-

didates, especially those greater than the true maximum degree of

the graph, can help the high sensitivity issue of the quality function

and improve our chances of choosing a better bound.

Our first optimization estimates an upper bound for the true

maximum degree of the conflict graph and removes candidates

larger than this upper bound from the initial candidate set. The

second optimization is a hierarchical exponential mechanism that

utilizes two steps of exponential mechanisms. The first output, 𝜃1,

is used to truncate Θ further by removing candidates larger than 𝜃1

from the set, and the second output is chosen as the final candidate

𝜃∗. In the rest of this section, we dive deeper into the details of

these optimizations and discuss their privacy analysis.

Estimating the degree upper bound using FDs. Given a conflict
graph G(𝑉 , 𝐸), we use 𝑑 (G, 𝑣) to denote the degree of the node

𝑣 ∈ 𝑉 in G and 𝑑max (G) = max𝑣∈𝑉 𝑑 (G, 𝑣) to denote the maximum

degree in G. We estimate 𝑑max by leveraging how conflicts were

formed for its corresponding dataset 𝐷 under Σ.
The degree for each vertex in G can be found by going through

each tuple 𝑡 in the database 𝐷 and counting the tuples that violate

the Σ jointly with 𝑡 . However, computing this value for each tu-

ple is computationally expensive and highly sensitive, making it

impossible to learn directly with differential privacy. We observe

that the conflicts that arise due to functionality dependencies (FDs)

depend on the values of the left attributes in the FD.

Example 3. Consider the same setup as Example 1 and an FD
𝜎 : Capital → Country. We can see that the number of violations
added due to the erroneous grey row is 3. This number is also one
smaller than the maximum frequency of values occurring in the
Capital attribute, and the most frequent value is “Ottawa”.

Based on this observation, we can derive an upper bound for the

maximum degree of a conflict graph if it involves only FDs, and

this upper bound has a lower sensitivity. We show the upper bound

in Lemma 3 for one FD first and later extend for multiple FDs.

Lemma 3. Given a database 𝐷 and a FD 𝜎 : 𝑋 → 𝑌 as the single
constraint, where 𝑋 = {𝐴1, . . . , 𝐴𝑘 } and 𝑌 is a single attribute. For
its respective conflict graph G𝐷

Σ={𝜎 } , simplified as G𝐷𝜎 , we have the

maximum degree of the graph 𝑑max (G𝐷𝜎) upper bounded by
𝑑
bound

(𝐷,𝑋) = max

®𝑎𝑋 ∈dom(𝐴1)×...×dom(𝐴𝑘)
freq(𝐷, ®𝑎𝑋) − 1, (10)

where freq(𝐷, ®𝑎𝑋) is the frequency of values ®𝑎𝑋 occurring for the
attributes 𝑋 in the database 𝐷 . The sensitivity for 𝑑

bound
(𝐷,𝑋) is 1.

Proof. An FD violation can only happen to a tuple 𝑡 with other

tuples 𝑡 ′ that share the same values for the attributes 𝑋 . Let ®𝑎𝑋 ∗
be the most frequent value for 𝑋 in 𝐷 , i.e.,

®𝑎𝑋 ∗ = argmax ®𝑎𝑋 ∈dom(𝐴1)×...×dom(𝐴𝑘) freq(𝐷, ®𝑎𝑋).

In the worst case, a tuple 𝑡 has the most frequent value ®𝑎𝑋 ∗ for 𝑋
but has a different value in𝑌 with all the other tuples with𝑋 = ®𝑎𝑋 ∗.
Then the number of violations involved by 𝑡 is freq(𝐷, ®𝑎𝑋 ∗) − 1.

Adding a tuple or removing a tuple to a database will change, at

most, one of the frequency values by 1. Hence, the sensitivity of

the maximum frequency values is 1. □

Now, we will extend the analysis to multiple FDs.

Theorem 3. Given a database𝐷 and a set of FDs Σ = {𝜎1, . . . , 𝜎𝑙 },
for its respective conflict graph G𝐷Σ , we have the maximum degree of
the graph 𝑑max (G𝐷Σ) upper bounded by

𝑑
bound

(𝐷, Σ) =
∑︁

(𝜎 :𝑋→𝑌) ∈Σ
𝑑
bound

(𝐷,𝑋) (11)

Proof. By Lemma 3, for each FD 𝜎 : 𝑋 → 𝑌 , a tuple may violate

at most 𝑑
bound

(𝐷,𝑋) number of tuples. In the worst case, the same

tuple may violate all FDs. □
Wewill spend some privacy budget 𝜀0 to perturb the upper bound

𝑑
bound

(𝐷,𝑋) for all FDs with LM and add them together. Each FD is

assigned with 𝜀0/|ΣFD |, where ΣFD is the set of FDs in Σ. We denote

this perturbed upper bound as
˜𝑑
bound

and add it to the candidate

set Θ if absent.

Extension to general DCs. The upper bound derived in Theo-

rem 3 only works for FDs but fails for general DCs. General DCs

have more complex operators, such as “greater/smaller than,” in

their formulas. Such inequalities require the computation of tuple-

specific information, which is hard with DP. For example, consider

the DC 𝜎 : ¬(𝑡𝑖 [𝑔𝑎𝑖𝑛] > 𝑡 𝑗 [𝑔𝑎𝑖𝑛] ∧ 𝑡𝑖 [𝑙𝑜𝑠𝑠] < 𝑡 𝑗 [𝑙𝑜𝑠𝑠]) saying that
if the gain for tuple 𝑡𝑖 is greater than the gain for tuple 𝑡 𝑗 , then the

loss for 𝑡𝑖 should also be greater than 𝑡 𝑗 . We can observe that similar

analyses for FDs do not work here as the frequency of a particular

domain value in 𝐷 does not bound the number of conflicts related

to a tuple. Instead, we have to iterate each tuple 𝑡 ’s gain value and

find how many other tuples 𝑡 ′s violate this gain value. In the worst

case, such a computation may have a sensitivity equal to the data

size. Therefore, estimation using DCs may result in much noise,

especially when the dataset has fewer conflicts, and the noise is

added to correspond to the large sensitivity.

Our experimental study (Section 6) shows that datasets with

general DCs have dense conflict graphs, which favors larger 𝜃s for

graph projection. Hence, if we learn a small noisy upper bound

˜𝑑
bound

based on the FDs with LM, we will first prune all degree

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

𝜃 𝑞 EM 2-EM (𝜃∗
1
= 𝜃3) 2-EM (𝜃∗

1
= 𝜃2)

1 −3.41 0.35 0.51 1

2 −3.82 0.33 0.49 -
3 −4.24 0.31 - -

Table 4: Probabilities of candidates with the exponential
mechanism (EM) vs. the two-step hierarchical exponential
mechanism (2-EM). 𝜃∗

1
refers to the first-step output of 2-EM.

candidates smaller than
˜𝑑
bound

, but then include |𝑉 |, which cor-

responds to the case when no edges are truncated, and Laplace

mechanism is applied with the largest possible sensitivity |𝑉 |, i.e.,
Θ′ = {𝜃 ∈ Θ | 𝜃 ≤ ˜𝑑

bound
} ∪ {|𝑉 |}. (12)

Though the maximum value in Θ′ is |𝑉 |, the sensitivity of the qual-

ity function over the candidate set Θ′ remains
˜𝑑
bound

. For the |𝑉 |
candidate, the quality function only depends on the Laplace error√
2 |𝑉 |
𝜀2

and has no error from 𝑒
bias

as no edges will be truncated. De-

spite being tailored for FDs, we show that, in practice, our approach

is cheap and performs well for DCs. In Section 6, we show that

this approach works well for the dense Adult [42] dataset where

we compute the IP using this strategy in Figure 5. Developing a

specific strategy for DCs is an important direction of future work.

In practice, one may skip this upper bound calculation process

and skip directly to the two-step exponential mechanism if it is

known that the graph is too dense or contains few FDs and more

general DCs. We discuss this in detail in the experiments section.

Hierarchical EM. The upper bound 𝑑
bound

may not be tight as

it estimates the maximum degree in the worst case. The graph

would be sparse with low degree values, and there is still room for

pruning. To further prune candidate values in the set Θ, we use a
hierarchical EM that first samples a degree value 𝜃∗ to prune values
in Θ and then sample again another value 𝜃∗ from the remaining

candidates as the final degree the graph projection. Our work uses

a two-step hierarchical EM by splitting the privacy budget equally

into halves. One may extend this EM to more steps at the cost of

breaking their privacy budget more times, but in practice, we notice

that a two-step is enough for a reasonable estimate.

Example 4. Consider the same setup as Example 1. For this dataset,
we start with Θ = [1, 2, 3] and the 𝜃max for this setup is 3. Assume
no values are pruned in the first optimization phase. We compare a
single versus a two-step hierarchical EM for the second optimization
step. From Table 4 in Example 2, we know that the 𝜃1 has the best
quality. However, as the quality values are close, the probability of
choosing the best candidate is similar, as shown in Table 4 with 𝜀 = 1.
The exponential mechanism will likely choose a suboptimal candidate
in such a scenario as the probabilities are close. But if a two-step
exponential mechanism is used even with half budget 𝜀 = 0.5, the
likelihood of choosing the best candidate 𝜃1 goes up to 0.51 if the first
step chose 𝜃3 or 1 if the first step chosen 𝜃2.

Incorporating the optimizations into the algorithm. Algo-
rithm 4 outlines the two optimization techniques. First, we decide

when to use the estimated upper bound for the maximum degrees,

for example, when the constraint set Σ mainly consists of FDs.

We will spend part of the budget 𝜀0 from 𝜀1 to perturb the upper

bounds 𝑑
bound

(𝐷,𝑋) for all FDs with Laplace mechanism and add

them together (lines 1-3). The noisy upper bound
˜𝑑
bound

prunes the

Algorithm 4: Optimized EM for parameter selection

Data: Graph G(𝑉 , 𝐸), candidate set Θ = {1, . . . , |𝑉 |}, quality
function 𝑞, privacy budget 𝜀1, 𝜀2

Result: Candidate 𝜃∗

1 if Σ mainly consists of FDs then
2 𝜀0 ← 𝜀1/4, 𝜀1 ← 𝜀1 − 𝜀0
3 Compute noisy upper bound

˜𝑑
bound

← ∑
𝜎 :𝑋→𝑌 (𝑑bound (𝐷,𝑋) + Lap(|ΣFD |/𝜀0))

4 Prune candidates Θ← {𝜃 ∈ Θ | 𝜃 ≤ ˜𝑑
bound

} ∪ { ˜𝑑
bound

, |𝑉 |}
5 Set 𝜃max ← min(˜𝑑

bound
, |𝑉 |)

6 for 𝑠 ∈ {1, 2} do
7 For each 𝜃𝑖 ∈ Θ, compute 𝑞𝜀2 (G, 𝜃𝑖) // See Equation (2)

8 Sample 𝜃∗ with prob ∝ exp(
𝜀
1

2
𝑞𝜀

2
(G,𝜃𝑖)

2𝜃max

)
9 Prune candidates Θ← {𝜃 ∈ Θ | 𝜃 ≤ 𝜃∗}

10 Set 𝜃max ← 𝜃∗

11 Return 𝜃∗

candidate set (line 4). We also add |𝑉 | to the candidate set if there

are general DCs in Σ, and then set the sensitivity of the quality

function 𝜃max to be the minimum of the noisy upper bound or |𝑉 |
(line 5). Then, we conduct the two-step hierarchical exponential

mechanism for parameter selection (lines 6-10). Lines 7-8 work

similarly to the previous exponential mechanism algorithm with

half of the remaining 𝜀1, where we choose a 𝜃
∗
based on the quality

function. However, instead of using it as the final candidate, we

use it to prune values in Θ and improve the sensitivity 𝜃max for

the second exponential mechanism (lines 9-10). Then, we repeat

the exponential mechanism and output the sampled 𝜃∗ (line 11).
Algorithm 4 has a similar complexity of 𝑂 (|Θ|𝑚) as Algorithm 3,

where |𝐸 | is the edge size of the graph. The overall Algorithm 2 has

a complexity of 𝑂 (|Σ|𝑛2 + |Θ|𝑚).
Privacy and utility analysis. The privacy analysis of the opti-

mizations depends on the analysis of three major steps: 𝑑
bound

computation with the Laplace mechanism, the two-step exponen-

tial mechanism, and the final measure calculation with the Laplace

mechanism. By sequential composition, we have Theorem 4.

Theorem 4. Algorithm 2 with the optimized EM in Algorithm 4
satisfies (𝜀1 + 𝜀2)-DP.

Proof sketch. The proof is similar to Theorem 1 and is due to

the composition property of DP as stated in Proposition 1. □

We show a tighter sensitivity analysis for the quality function in

EM over the pruned candidate set. The sensitivity analysis is given

by Lemma 4 and is used for 𝜃max in line 8 of Algorithm 4.

Lemma 4. The sensitivity of 𝑞𝜀2 (G, 𝜃𝑖) in the 2-step EM (Algo-
rithm 4) defined in Equation (2) is 𝜃max = min(˜𝑑

bound
, |𝑉 |) for 1st

EM step and 𝜃max = 𝜃∗ for the 2nd EM step.

Proof sketch. The proof follows from Lemma 2, substituting

the 𝜃𝑚𝑎𝑥 with the appropriate threshold values for each EM step.

□

The proofs for the theorem and lemma are at Appendix A.2.4

and Appendix A.2.5.

Computing Inconsistency Measures Under Differential Privacy SIGMOD’25, June 22-27, 2025, Berlin, Germany

B

A

C D

E

F G

𝑒 1
𝑒
2

𝑒3 𝑒4

𝑒
6𝑒 5

𝑒7

Figure 2: Toy graph example G with seven nodes (A to G)
and seven edges. Consider a neighboring graph G′ with the
differing node E (red) and its two edges.

The utility analysis in Theorem 2 for Algorithm 2 with the basic

EM (Algorithm 3) still applies to the optimized EM (Algorithm 4).

The basic EM usually has 𝜃max = |𝐷 | = |𝑉 | and the full budget 𝜀1,

while the optimized EM has a much smaller 𝜃max and slightly lower

privacy budget when the graph is sparse. In practice (Section 6), we

see significant utility improvements by the optimized EM for sparse

graphs. When the graph is dense, we see the utility degrade slightly

due to a smaller budget for each EM. However, the degradation is

negligible with respect to the true inconsistency measure.

5 DP Minimum Vertex Cover for IR
This section details our approach for computing the optimal repair

measure, IR, using the conflict graph. IR is defined as the minimum

number of vertices that must be removed to eliminate all conflicts

within the dataset. For the conflict graph G𝐷Σ , this corresponds to

finding the minimum vertex cover – an NP-hard problem. To ad-

dress this, we apply a well-known polynomial-time algorithm that

provides a 2-approximation for vertex cover [65]. This randomized

algorithm iterates through a random ordering of edges, adding both

nodes of each edge to the vertex cover if they haven’t been encoun-

tered, then removes all incident edges. The process repeats until

the edge list is exhausted. In our setting, we aim to compute the

minimum vertex cover size while satisfying DP. A straightforward

approach would be to analyze the sensitivity of the 2-approximation

algorithm and add the appropriate DP noise. However, determining

the sensitivity of this naive approximation is challenging, as the

algorithm’s output can fluctuate significantly depending on the

order of selected edges. This variability is illustrated in Example 5.

Example 5. Let us consider a graph G with 7 vertices A to G and
7 edges 𝑒1 to 𝑒7 as shown in Figure 2. We can have a neighboring
graph G′ by considering the vertex E as the differing vertex and two
of its edges 𝑒5 and 𝑒6 as the differing edges. This example shows that
according to the vanilla 2-approximate algorithm, the output for the
graphs G and G′ may vary drastically. For G, if 𝑒2 is selected followed
by 𝑒7, then the vertex cover size is 4. However, for graph G′, if 𝑒1 or 𝑒4
is selected first and subsequently after the other one 𝑒6 is selected, then
the output is 6. Moreover, this difference may get significantly large
if the above graph is stacked multiple times and the corresponding
vertex that creates this difference is chosen every time.

To solve the sensitivity issue, we make a minor change in the

algorithm by traversing the edges in a particular order (drawing

on [13]). We use a similar stable ordering Λ defined in Section 2.3.

The new algorithm is shown in Algorithm 5. We initialize an empty

vertex cover set 𝐶 , its size 𝑐 , and an edge list (lines 1–2). We then

start an iteration over all edges in the same ordering as the stable

ordering Λ (line 3). For each edge 𝑒𝑖 = {𝑢, 𝑣} ∈ 𝐸 that is part of the

graph, we add both𝑢 and 𝑣 to𝐶 and correspondingly increment the

size 𝑐 (lines 4–5). We remove all other edges, including 𝑒𝑖 , connected

Algorithm 5: DP approximation of minimum vertex cover

size for IR
Data: Graph G(𝑉 , 𝐸), stable global ordering Λ, privacy

parameter 𝜀

Result: DP minimum vertex cover size for IR
1 Initialize vertex cover set 𝐶 = ∅ and size 𝑐 = 0

2 Initialize edge list 𝐸0 = 𝐸

3 for 𝑖 ∈ {1 . . . |Λ|} do
4 pop edge 𝑒𝑖 = {𝑢, 𝑣} in order from Λ

5 add 𝑢 and 𝑣 to 𝐶 and 𝑐 = 𝑐 + 2
6 𝐸𝑖+1 = remove all edges incident to 𝑢 or 𝑣 from 𝐸𝑖

7 Return 𝑐 + Lap(𝜀/2)

to𝑢 or 𝑣 from 𝐸 and continue the iteration (line 5). Finally, we return

the noisy size of the vertex cover (line 6). The sensitivity of this

algorithm is given by Proposition 3.

Proposition 3. Algorithm 5 obtains a vertex cover, and its size
has a sensitivity of 2.

The proof can be found in Appendix A.3.2.

Example 6. Let us consider our running example in Figure 2 as
input to Algorithm 5 and use it to understand the proof. We have
two graphs – G which has 6 vertices 𝑉 = [A, B, C, D, F, G] and edges
𝐸 = [𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒7] andG′ has 7 vertices𝑉 ′ = [A, B, C, D, E, F, G] and
edges 𝐸′ = [𝑒1, 𝑒2, . . . , 𝑒7]. The total possible number of edges is

(
7

2

)
=

21, and we can have a global stable ordering of the edges Λ depending
on the lexicographical ordering of the vertices as 𝑒1, 𝑒2, 𝑒3, . . . , 𝑒21.
When the algorithm starts, both vertex cover sizes are initialized to
𝑐 = 0, 𝑐′ = 0, and the algorithm’s state is in Case 1 with 𝑣∗ = E.
We delineate the next steps of the algorithm below: • Iteration 1
(Subcase 1b) : 𝑒1 (A, B) is chosen. A and B are both in 𝐸0 and 𝐸′

0
. Hence

𝑐 = 2, 𝑐′ = 2. • Iteration 2, 3 (Subcase 1c) : 𝑒2 (A, C) and 𝑒3 (B, C) are
chosen. Both are removed in iteration 1. Hence 𝑐 = 2, 𝑐′ = 2. • Iteration
4 (Subcase 1b) : 𝑒4 (C, D) is chosen. C and D are both in 𝐸3 and 𝐸′

3
. Hence

𝑐 = 4, 𝑐′ = 4. • Iteration 5 (Subcase 1c) : 𝑒5 (D, E) is chosen, removed
from 𝐸′

4
in Iteration 4, and was never present in 𝐸. Hence 𝑐 = 4, 𝑐′ = 4.

• Iteration 6 (Subcase 1a) : 𝑒6 (E, F) is chosen. It is in 𝐸′
5
but not in

𝐸5. Hence, 𝑐 = 4, 𝑐′ = 6 and the new 𝑣∗ = E. • Iteration 7 (Subcase
2a) : 𝑒7 (F, G) is chosen. It is in 𝐸6 but removed from 𝐸6 in Iteration 6.
Hence, 𝑐 = 6, 𝑐′ = 6, and the algorithm is complete.

Privacy and utility analysis.We now show the privacy and utility

analysis of Algorithm 5 using Theorem 5 below.

Theorem 5. Algorithm 5 satisfies 𝜀-node DP and, prior to adding
noise in line 7, obtains a 2-approximation vertex cover size.

Proof. The Algorithm 5 satisfies 𝜀-node DP as we calculate the

private vertex cover using the Laplace mechanism with sensitivity

2 according to Proposition 3. It is also a 2-approximation as the

stable ordering Λ in Algorithm 5 can be perceived as one particular

random order of the edges and hence has the same utility as the

original 2-approximation algorithm. □

6 Experiments
This section presents our experiment results on computing the

three measures outlined in Section 4 and Section 5. The questions

that we ask through our experiments are as follows:

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

(1) How far are the private measures from the true measures?

(2) How do the different strategies for the degree truncation

bound compare against each other?

(3) How do our methods perform at different privacy budgets?

6.1 Experimental Setup
All our experiments are performed on a server with Intel Xeon Plat-

inum 8358 CPUs (2.60GHz) and 1 TB RAM. Our code is in Python

3.11 and can be found in the artifact submission. All experiments

are repeated for 10 runs, and the mean error value is reported.

Datasets and violation generation. We replicate the exact setup

as Livshits et al. [44] for experimentation. We conduct experiments

on five real-life datasets and their corresponding DCs as described

in Table 5.

• Adult [4]: Annual income results from various factors.

• Flight [52]: Flight information across the US.

• Hospital [57]: Information about different hospitals across

the US and their services.

• Stock [53]: Trading stock information on various dates

• Tax [11]: Personal tax infomation.

These datasets are initially consistent with the constraints. All ex-

periments are done on a subset of 10𝑘 rows, and violations are added

similarly using both their proposed algorithms, namely CONoise

(for Constraint-Oriented Noise) and RNoise (for Random Noise).

CONoise introduces random violations of the constraints by run-

ning 200 iterations of the following procedure:

(1) Randomly select a constraint 𝜎 from the constraint set Σ.
(2) Randomly select two tuples 𝑡𝑖 and 𝑡 𝑗 from the database.

(3) For every predicate 𝜙 = (𝑡𝑖 [𝑎1] ◦ 𝑡 𝑗 [𝑎2]) of 𝜎 :
• If 𝑡𝑖 and 𝑡 𝑗 jointly satisfy 𝜙 , continue to the next predicate.

• If ◦ ∈ {=, ≤, ≥}, change either 𝑡𝑖 [𝑎1] or 𝑡 𝑗 [𝑎2] or vice
versa (the choice is random).

• If ◦ ∈ {<, >,≠}, change either 𝑡𝑖 [𝑎1] or 𝑡2 [𝑎2] (the choice
is again random) to another value from the active domain

of the attribute such that𝜙 is satisfied, if such a value exists,

or a random value in the appropriate range otherwise.

The second algorithm, RNoise, is parameterized by the parameter

𝛼 that controls the noise level by modifying 𝛼 of the values in

the dataset. At each iteration of RNoise, we randomly select a

database cell corresponding to an attribute that occurs in at least

one constraint. Then, we change its value to another value from

the active domain of the corresponding attribute (with probability

0.5) or a typo. The datasets vary immensely in the density of their

conflict graphs as described in the max degree column of Table 5.

For example, the Adult 10𝑘 nodes subset has a maximum degree of

Dataset #Tuple #Attrs #DCs(#FDs)

Max Deg

1% RNoise

Adult [4] 32561 15 3 (2) 9635

Flight [52] 500000 20 13 (13) 1520

Hospital [57] 114919 15 7 (7) 793

Stock [53] 122498 7 1 (1) 1

Tax [11] 1000000 15 9 (7) 373

Table 5: Description of datasets. The max deg column shows
the maximum degree of any node in a 10𝑘 rows subset of the
conflict graph of the dataset with 1% RNoise.

9635, whereas the Stock dataset has a maximum of 1 with the same

amount of conflict addition.

Metrics. Following Livshits et al. [44], we randomly select a sub-

set of 10k rows of each dataset, add violations to the subset, and

compute the inconsistency measures on the dataset with violations.

To measure performance, we utilize the normalized ℓ1 distance

error [18], |I(𝐷, Σ) −M(𝐷, Σ, 𝜀) |/I(𝐷, Σ), whereM(𝐷, Σ, 𝜀) rep-
resents the estimated private value of the measure and I(𝐷, Σ)
denotes the true value. For IR, we use the linear approximation

algorithm from Livshits et al. [44] to estimate the non-private value.

Algorithm variations.We experiment with multiple different vari-

ations of Algorithm 2 forIMI andIP. The initial candidate set for the
degree bound is Θ = [1, 5, 10, 100, 500, 1000, 2000, 3000, . . . , 10000]
with multiples of 1000 along with some small candidates.

• Baseline 1: naively sets the bound 𝜃∗ to the maximum possible

degree |𝑉 | in Algorithm 2 by skipping line 2 and the unused

privacy budget 𝜀1 is used for the final noise addition step.

• Baseline 2: sets the bound 𝜃∗ to the actual maximum degree of

the conflict graph 𝑑max (G𝐷Σ). Note that this is a non-private

baseline that only acts as an upper bound and is one of the best

values that can be achieved without privacy constraints.

• Exponential mechanism: choose 𝜃∗ over the complete candidate

set Θ using the basic EM in Algorithm 3.

• Hierarchical exponential mechanism: chooses 𝜃∗ using a two-

step EM with an equal budget for each step in Algorithm 4, but

skipping Lines 1-5 of the upper bound computation step.

• Upper bound + hierarchical exponential mechanism (our ap-
proach): encompasses both the optimization strategies, includ-

ing the upper bound computation and the hierarchical exponen-

tial mechanism discussed in Section 4.2 (the full Algorithm 4).

By default, we experiment with a total privacy budget of 𝜀 = 1

unless specified otherwise.

6.2 Results
True vs private estimation. In Figures 3 and 4, we plot the true

vs. private estimates at 𝜀 = 1 for all datasets with RNoise (𝛼 = 0.01)

and CONoise (200 iterations) respectively. The datasets are ordered

according to their densities from left to right. Each figure contains

the measured value (IMI, IP, or IR) on the Y-axis and the number of

iterations on the X-axis. For the CONoise, the number of iterations

is set to 200 for every dataset, and for RNoise, the iterations corre-

spond to the number of iterations required to reach 1% (𝛼 = 0.01)

number of random violations. The orange line corresponds to the

true value of the measure, and the blue line corresponds to the

private measure using our approach. For IMI and IP measures, the

blue line represents the upper bound + hierarchical exponential

mechanism strategy described in Section 4.2 along with its stan-

dard deviation in shaded blue. For the IR measure, it represents

the private minimum vertex cover size algorithm. We also add a

baseline approach using a state-of-the-art private SQL approach

called R2T [15]. We add this baseline only for the IMI measure as IR
cannot be written with SQL, and IP requires the DISTINCT/GROUP
BY clause that R2T does not support. Based on the experiments, we

draw three significant observations.

Computing Inconsistency Measures Under Differential Privacy SIGMOD’25, June 22-27, 2025, Berlin, Germany

(a) IP (Positive degree nodes)

(b) IMI (Number of edges)

(c) IR (Size of vertex cover)
Figure 3: True vs Private estimates for all dataset with RNoise 𝛼 = 0.01 at 𝜀 = 1. The IP measure (figure a) and IMI measure
(figure b) are computed using our graph projection approach, and IR measure using our private vertex cover size approach.

(a) IP (Positive degree nodes)

(b) IMI (Number of edges)

(c) IR (Size of vertex cover)
Figure 4: True vs. private estimates for all dataset with CONoise at 𝜀 = 1 for 200 iterations. The IP measure (a) and IMI measure
(b) are computed using our graph projection approach, and the IR measure (c) using our private vertex cover size approach.

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

(a) IP (Positive degree nodes)

(b) IMI (Number of edges)
Figure 5: Computing different strategies for choosing 𝜃 for all datasets with RNoise at 𝛼 = 0.01 and 𝜀 = 1. The datasets are
arranged according to their densities from sparsest (left) to densest (right).

First, compared to the SQL baseline (R2T), our approach has a

better relative error on average across all datasets. However, R2T

is slightly behind for moderate to high dense datasets such as Tax

(0.207 vs. 0.334), Hospital (0.209 vs. 0.386), and Flight(0.202 vs. 0.205)

and Adult (0.187 vs. 0.269) but falls short for sparse datasets such

as Stock (0.492 vs. 137.05). This is because the true value of the

measure is small, and R2T adds large amounts of noise.

Second, our approach for the IMI and IP fluctuates more and has

a higher standard deviation compared to the IR measure. This is

because of the privacy noise due to the relatively high sensitivity of

our upper bound + hierarchical exponential mechanism approach.

On the other hand, the vertex cover size approach for IR has a

sensitivity equal to 2 and, therefore, does not showmuch fluctuation

when the true measure value is large enough.

Third, we observe that our approach generally performs well

across all five datasets and all inconsistency measures. The IMI
and IP measures have average errors of 0.25 and 0.46, respectively,

across all datasets where Stock is the worst performing dataset for

IMI and Adult is the worst performing for IP. The IR performs

the best with an average error of 0.08, with Stock as the worst-

performing dataset. We investigate the performance of each dataset

in detail in our next experiment and find out that the density of the

graphs plays a significant role in the performance of our algorithms.

Comparing different strategies for choosing 𝜃 . In Figure 5,

we present the performance of different algorithm variations in

computingIP andIMI for all datasets using RNnoise at 𝛼 = 0.01 and

𝜀 = 1. The y-axis in each figure shows the logarithmic scaled error,

while the x-axis displays the actual measure value, with different

colors representing the strategies. The graphs are ordered from

most sparse (Stock) to least sparse (Adult) to compare methods for

choosing the 𝜃 value at 𝜀 = 1 (𝜀1 = 0.4, 𝜀2 = 0.6). The methods

include all variations described in the algorithm variation section.

We note all the strategies are private except baseline 2 (orange dash

line) that sets 𝜃 as the true maximum degree of the conflict graph.

Our experimental results, based on error trends and graph den-

sity, reveal several key observations.

First, we consistently observed that the initial error was higher

at smaller iterations across all five datasets and inconsistency mea-

sures. This is because, at smaller iterations, the true value of the

measures is small due to fewer violations, and the privacy noise

dominates the signal of true value.

Second, for the sparsest dataset (Stock), all strategies have errors

of magnitude 3-4 larger, except the non-private baseline (orange)

and our approach using both upper bound and hierarchical ex-

ponential mechanism (purple). This is because the candidate set

contains many large candidates, and it is crucial to prune it using

the upper bound strategy to get meaningful results.

Third, for the moderately sparse graphs (Tax and Hospital), our

approach consistently (purple) consistently outperformed other

private methods. However, the two-step hierarchical exponential

mechanism (red), which had a 3 magnitude higher error for Stock,

demonstrated comparable performance within a 1-magnitude error

difference for Tax and Hospital. This suggests that when the true

max degree is not excessively low, estimating it without the upper

bound strategy can be effective.

Finally, for the densest graphs (Flight and Adult), we observe that

the optimized exponential mechanisms (red and purple) outperform

the private baselines (blue and green) for the IP measure (nodes

with positive degree) plots (above). However, they fail to beat even

the naive baseline (blue) for the IMI (number of edges) measure

(below). This is because the optimal degree bound value IMI over

the dense graphs is close to the largest possible value |𝑉 |. For such
a case, our optimized EM is not able to prune too many candidates

and lower the sensitivity, and hence, it wastes some of the privacy

budget in the pruning process. However, the relative errors of all

the algorithms are reasonably small for dense graphs, and the noisy

answers do preserve the order of the true measures (shown in

previous experiments in Figures 3 and 4).

Varying privacy budget. Figure 6 illustrates how our algorithms

perform at 𝜀 ∈ [0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 5.0] with varying privacy

budgets. The rightmost figure for the repair measure IR has a log

scale on the y-axis for better readability. We experiment with three

Computing Inconsistency Measures Under Differential Privacy SIGMOD’25, June 22-27, 2025, Berlin, Germany

Figure 6: Computing inconsistency measures for different
datasets with RNoise at 𝛼 = 0.005 and varying privacy budgets.
IR plot has a y-axis in the log scale.

Figure 7: Runtime analysis for all measures. Varying graph
size on Tax dataset with RNoise 𝛼 = 0.005 (left) and 𝛼 = 0.01

(center) and varying #DCs for Flight dataset (right). IMI and
IP plots have y-axis in the log scale.

datasets of different density properties (sparsest Stock and densest

Flight) and show that our algorithm gracefully scales with the 𝜀 pri-

vacy budget for all three inconsistency measures. We also observe

that the algorithm has a more significant error variation at smaller

epsilons (< 1) except for Stock, which has a larger variation across

all epsilons. This happens when the true value for this measure

is small, and adding noise at a smaller budget ruins the estimate

drastically. For the IR measure, the private value reaches with 0.05

error at 𝜀 = 3 for Stock and as early as 𝜀 = 0.1 for others.

Runtime and scalability analysis. Figure 7 presents the runtime

of our methods for each measure. We fix the privacy budget 𝜀 = 1

and run three experiments by varying the graph size, numbers

of DCs, and dataset. For the first experiment, we use our largest

dataset, Tax, and vary the number of nodes from 10
2
to 10

6
. RNoise

uses 𝛼 = 0.005 in the left plot and 𝛼 = 0.01 in the center plot. We

observe that the number of edges scales exponentially when we in-

crease the number of nodes, and the time taken by our algorithm is

proportional to the graph size. With a graph of 10
2
nodes and ≤ 10

edges, our algorithm takes 10
−3

seconds and goes up to 4500 sec-

onds with 10
6
nodes and 322million edges. We omit the experiment

with 10
6
nodes and 𝛼 = 0.01 as the graph size for this experiment

went over 30GB and was not supported by the pickle library we

use to save our graph. This is not an artifact of our algorithm and

can be scaled in the future using other graph libraries.

For our second experiment, we choose a subset of 10𝑘 rows of

the Flight dataset and vary the number of DCs to 13 with 𝛼 = 0.005.

With one DC and 𝛼 = 0.005, our algorithm takes approximately

5 seconds for IMI and IP and ≤ 1 second for IR, and goes up

to 25 seconds and 5 seconds, respectively, for 𝛼 = 0.065 and 13

DCs. We also notice some dips in the trend line (e.g., at 10 and 13

constraints) because the exponential mechanism chooses larger

thresholds at those points, and the edge addition algorithm takes

slightly longer with chosen thresholds. Our third experiment on

varying datasets behaves similarly and is deferred to Appendix A.4

in the full version [3] for lack of space.

7 Related Work
We survey relevant works in the fields of DP and data repair.

Differential privacy. DP has been studied in multiple settings [32,

33, 39, 49, 62, 66], including systems that support complex SQL

queries that, in particular, can express integrity constraints [15].

The utilization of graph databases under DP has also been thor-

oughly explored, with both edge privacy [30, 34–36, 60, 69] and

node privacy [8, 13, 37]. Our approach draws on [13] to allow ef-

ficient DP computation of the inconsistency measures over the

conflict graph. In contrast, we have seen worse performance from

alternative approaches for releasing graph statistics that tend to

truncate edges or nodes aggressively. In the context of data qual-

ity, previous work [41] has proposed a framework for releasing a

private version of a database relation for publishing, supporting spe-

cific repair operations, while more recent, work [23] provides a DP

synthetic data generation mechanism that considers soft DCs [10].

Data repair. Various classes of constraints were proposed in the

literature, including FDs, conditional FDs [9], metric FDs [40], and

DCs [10].We focused onDCs, a general class of integrity constraints

that subsumes the aforementioned constraints. While computing

the minimal data repair in some cases has been shown to be poly-

nomial time [47], computing the minimal repair in most general

cases, corresponding to IR, is NP-hard. Therefore, a prominent vein

of research has been devoted to utilizing these constraints for data

repairing [2, 6, 12, 21, 24, 25, 47, 58]. The repair model in these

works varies between several options: tuple deletion, cell value

updates, tuple addition, and combinations thereof. The process of

data repairing through such algorithms can be time consuming due

to the size of the data and the size and complexity of the constraint

set. Hence, previous work [44, 48] proposed to keep track of the

repairing process and ensure that it progresses correctly using in-

consistency measures. In our work, we capitalize on the suitability

of these measures to DP as they provide an aggregate form that

summarizes the quality of the data for a given set of constraints.

8 Future Work
This paper analyzes a novel problem of computing inconsistency

measures privately. There are many interesting directions for the

continuation of this work. This paper shows a naive threshold

bound for general DCs that can be improved for better perfor-

mance of our algorithm. Our proposed conflict graphs algorithm

is intractable for the ID and IMC measures that other heuristic

or approximation-based approaches may solve in the future. The

vertex cover size algorithm using the stable ordering of edges is

general purpose and may be used in other problems outside of

inconsistency measures. It can also be analyzed further in future

work to return the vertex cover set. Another interesting direction

is to develop these measures in a multi-relational database setting.

Our approach can be extended to multi-relational tables as long as

we can create conflict graphs representing the violations. However,

in the multi-table setting, we must consider additional constraints

that require tackling several challenges. In particular, these chal-

lenges may arise when we have non-binary or non-anti-monotonic

constraints. Non-binary constraints with more than two tuples

participating in a constraint lead to hypergraphs, and constraints

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

like foreign key and inclusion constraints are non-anti-monotonic.

Thus, they cannot be represented as conflict graphs, and as such,

are outside the scope of our work. Furthermore, in the context of

DP, constraints on multi-relational tables also have implications for

defining neighboring datasets and sensitivity that must be carefully

considered. Our future work also includes studying the problem of

private inconsistency measures with different privacy notions, such

as k-anonymity, and using these private inconsistency measures in

real-world data cleaning applications.

9 Conclusions
We proposed a new problem of inconsistency measures for private

datasets in the DP setting. We studied five measures and showed

that two are intractable with DP, and the others face a significant

challenge of high sensitivity. To solve this challenge, we leveraged

the dataset’s conflict graph and used graph projection and a novel

approximate DP vertex cover size algorithm to accurately estimate

the private inconsistency measures. We found that parameter se-

lection was a significant challenge and were able to overcome it

using optimization techniques based on the constraint set. To test

our algorithm, we experimented with five real-world datasets with

varying density properties and showed that our algorithm could

accurately calculate these measures across all datasets.

Acknowledgments
Shubhankar Mohapatra was supported by an Ontario graduate,

vector graduate research, and David R. Cheriton scholarships. The

work of Xi He was supported by NSERC through a Discovery Grant,

an alliance grant, and the Canada CIFAR AI Chairs program. The

work of Amir Gilad was funded by the Israel Science Foundation

(ISF) under grant 1702/24, the Scharf-Ullman Endowment, and the

Alon Scholarship.

References
[1] John M Abowd. 2018. The US Census Bureau adopts differential privacy. In

SIGKDD. 2867–2867.
[2] Foto N. Afrati and Phokion G. Kolaitis. 2009. Repair Checking in Inconsistent

Databases: Algorithms and Complexity. In ICDT. 31–41.
[3] Anonymous author(s). [n. d.]. https://anonymous.4open.science/r/DPMeasures-

6348/. Full paper and codebase.

[4] Barry Becker and Ronny Kohavi. 1996. Adult. UCI Machine Learning Repository.

DOI: https://doi.org/10.24432/C5XW20.

[5] Leopoldo E. Bertossi. 2018. Measuring and Computing Database Inconsistency

via Repairs. In SUM (LNCS, Vol. 11142). Springer, 368–372.
[6] Leopoldo E. Bertossi, Solmaz Kolahi, and Laks V. S. Lakshmanan. 2013. Data

Cleaning and Query Answering with Matching Dependencies and Matching

Functions. Theory Comput. Syst. 52, 3 (2013), 441–482.
[7] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial

Constraint Discovery with Hydra. Proc. VLDB Endow. 11, 3 (2017), 311–323.
[8] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. 2013. Differentially

private data analysis of social networks via restricted sensitivity. In Proceedings
of the 4th conference on Innovations in Theoretical Computer Science. 87–96.

[9] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-

etsidis. 2007. Conditional functional dependencies for data cleaning. In ICDE.
[10] Jan Chomicki and Jerzy Marcinkowski. 2005. Minimal-change integrity mainte-

nance using tuple deletions. Inf. Comput. 197, 1-2 (2005), 90–121.
[11] Xu Chu, Ihab F Ilyas, and Paolo Papotti. 2013. Discovering denial constraints.

Proceedings of the VLDB Endowment 6, 13 (2013), 1498–1509.
[12] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting

violations into context. In ICDE. 458–469.
[13] Wei-Yen Day, Ninghui Li, andMin Lyu. 2016. Publishing graph degree distribution

with node differential privacy. In SIGMOD. 123–138.
[14] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting telemetry

data privately. Advances in Neural Information Processing Systems 30 (2017).
[15] Wei Dong, Juanru Fang, Ke Yi, Yuchao Tao, and Ashwin Machanavajjhala. 2022.

R2t: Instance-optimal truncation for differentially private query evaluation with

foreign keys. In SIGMOD. 759–772.
[16] Cynthia Dwork. 2006. Differential Privacy. In ICALP, Michele Bugliesi, Bart

Preneel, Vladimiro Sassone, and Ingo Wegener (Eds.), Vol. 4052. 1–12.

[17] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.

In EUROCRYPT, Serge Vaudenay (Ed.), Vol. 4004. Springer, 486–503.

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating noise to sensitivity in private data analysis. In Theory of cryptography
conference. Springer, 265–284.

[19] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. 2016. Cali-

brating Noise to Sensitivity in Private Data Analysis. J. Priv. Confidentiality 7, 3

(2016), 17–51. https://doi.org/10.29012/jpc.v7i3.405

[20] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. Rappor: Random-

ized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014
ACM SIGSAC conference on computer and communications security. 1054–1067.

[21] Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis. 2015. Dichotomies in

the Complexity of Preferred Repairs. In PODS. 3–15.
[22] Chang Ge, Shubhankar Mohapatra, Xi He, and Ihab F. Ilyas. 2021. Kamino:

Constraint-Aware Differentially Private Data Synthesis. Proc. VLDB Endow. 14,
10 (2021), 1886–1899. https://doi.org/10.14778/3467861.3467876

[23] Chang Ge, Shubhankar Mohapatra, Xi He, and Ihab F. Ilyas. 2021. Kamino:

Constraint-Aware Differentially Private Data Synthesis. Proc. VLDB Endow. 14,
10 (2021), 1886–1899.

[24] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2013.

The LLUNATIC Data-Cleaning Framework. Proc. VLDB Endow. 6, 9 (2013), 625–
636.

[25] Amir Gilad, Daniel Deutch, and Sudeepa Roy. 2020. On Multiple Semantics for

Declarative Database Repairs. In SIGMOD. 817–831.
[26] John Grant and AnthonyHunter. 2013. Distance-BasedMeasures of Inconsistency.

In ECSQARU (LNCS, Vol. 7958). Springer, 230–241.
[27] John Grant and Anthony Hunter. 2023. Semantic inconsistency measures using

3-valued logics. Int. J. Approx. Reason. 156 (2023), 38–60.
[28] Jerrold R. Griggs, Charles M. Grinstead, and David R. Guichard. 1988. The number

of maximal independent sets in a connected graph. Discret. Math. 68, 2-3 (1988),
211–220. https://doi.org/10.1016/0012-365X(88)90114-8

[29] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar.

2010. Differentially private combinatorial optimization. In Proceedings of the
twenty-first annual ACM-SIAM symposium on Discrete Algorithms. SIAM, 1106–

1125.

[30] Michael Hay, Chao Li, Gerome Miklau, and David Jensen. 2009. Accurate es-

timation of the degree distribution of private networks. In 2009 Ninth IEEE
International Conference on Data Mining. IEEE, 169–178.

[31] Justin Hsu, Aaron Roth, Tim Roughgarden, and Jonathan Ullman. 2014. Privately

solving linear programs. In ICALP. Springer, 612–624.

https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.14778/3467861.3467876
https://doi.org/10.1016/0012-365X(88)90114-8

Computing Inconsistency Measures Under Differential Privacy SIGMOD’25, June 22-27, 2025, Berlin, Germany

[32] Noah Johnson, Joseph PNear, andDawn Song. 2018. Towards practical differential

privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018), 526–
539.

[33] Noah M Johnson, Joseph P Near, and Dawn Xiaodong Song. 2017. Practical

differential privacy for SQL queries using elastic sensitivity. CoRR, abs/1706.09479
(2017).

[34] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith, and Grigory Yaroslavtsev.

2011. Private analysis of graph structure. Proceedings of the VLDB Endowment 4,
11 (2011), 1146–1157.

[35] Vishesh Karwa and Aleksandra B Slavković. 2012. Differentially private graphi-

cal degree sequences and synthetic graphs. In Privacy in Statistical Databases:
UNESCO Chair in Data Privacy, International Conference, PSD 2012, Palermo, Italy,
September 26-28, 2012. Proceedings. Springer, 273–285.

[36] Vishesh Karwa, Aleksandra B Slavković, and Pavel Krivitsky. 2014. Differentially

private exponential random graphs. In Privacy in Statistical Databases: UNESCO
Chair in Data Privacy, International Conference, PSD 2014, Ibiza, Spain, September
17-19, 2014. Proceedings. Springer, 143–155.

[37] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam D.

Smith. 2013. Analyzing Graphswith NodeDifferential Privacy. In TCC, Amit Sahai

(Ed.), Vol. 7785. Springer, 457–476. https://doi.org/10.1007/978-3-642-36594-2_26

[38] Benny Kimelfeld, Ester Livshits, and Liat Peterfreund. 2020. Counting and enu-

merating preferred database repairs. Theor. Comput. Sci. 837 (2020), 115–157.

https://doi.org/10.1016/j.tcs.2020.05.016

[39] Ios Kotsogiannis, Yuchao Tao, Xi He, Maryam Fanaeepour, Ashwin Machanava-

jjhala, Michael Hay, and Gerome Miklau. 2019. Privatesql: a differentially private

sql query engine. Proceedings of the VLDB Endowment 12, 11 (2019), 1371–1384.
[40] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian.

2009. Metric functional dependencies. In ICDE.
[41] Sanjay Krishnan, Jiannan Wang, Michael J. Franklin, Ken Goldberg, and Tim

Kraska. 2016. PrivateClean: Data Cleaning and Differential Privacy. In SIGMOD.
ACM, 937–951. https://doi.org/10.1145/2882903.2915248

[42] M. Lichman. 2013. UCI machine learning repository.

https://archive.ics.uci.edu/ml/datasets/adult.

[43] Jinfei Liu, Jian Lou, Junxu Liu, Li Xiong, Jian Pei, and Jimeng Sun. 2021. Dealer:

an end-to-end model marketplace with differential privacy. Proceedings of the
VLDB Endowment 14, 6 (2021).

[44] Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. 2020.

The Shapley Value of Tuples in Query Answering. In ICDT, Vol. 155. 20:1–20:19.
[45] Ester Livshits, Alireza Heidari, Ihab F. Ilyas, and Benny Kimelfeld. 2020. Approx-

imate Denial Constraints. Proc. VLDB Endow. 13, 10 (2020), 1682–1695.
[46] Ester Livshits and Benny Kimelfeld. 2022. The Shapley Value of Inconsistency

Measures for Functional Dependencies. Log. Methods Comput. Sci. 18, 2 (2022).
[47] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. 2020. Computing Optimal

Repairs for Functional Dependencies. ACM Trans. Database Syst. 45, 1 (2020),
4:1–4:46. https://doi.org/10.1145/3360904

[48] Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld, and

Sudeepa Roy. 2021. Properties of Inconsistency Measures for Databases. In

SIGMOD. 1182–1194.
[49] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.

2018. Optimizing error of high-dimensional statistical queries under differential

privacy. Proc. VLDB Endow. 11, 10 (2018), 1206–1219.
[50] Frank McSherry and Kunal Talwar. 2007. Mechanism design via differential

privacy. In 48th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’07). IEEE, 94–103.

[51] John W Moon and Leo Moser. 1965. On cliques in graphs. Israel journal of
Mathematics 3, 1 (1965), 23–28.

[52] Department of Transportation. 2020. Flight. Research and Innovative Technology

Administration. https://data.transportation.gov/d/7fzd-cqts.

[53] Oleh Onyshchak. 2020. StockMarket Dataset. https://doi.org/10.34740/KAGGLE/

DSV/1054465

[54] Francesco Parisi and John Grant. 2019. Inconsistency measures for relational

databases. arXiv preprint arXiv:1904.03403 (2019).
[55] Shweta Patwa, Danyu Sun, Amir Gilad, Ashwin Machanavajjhala, and Sudeepa

Roy. 2023. DP-PQD: Privately Detecting Per-Query Gaps In Synthetic Data

Generated By Black-Box Mechanisms. Proc. VLDB Endow. 17, 1 (2023), 65–78.
[56] Eduardo H. M. Pena, Eduardo Cunha de Almeida, and Felix Naumann. 2021.

Fast Detection of Denial Constraint Violations. Proc. VLDB Endow. 15, 4 (2021),
859–871.

[57] CORGIS Dataset Project. [n. d.]. Hospitals CSV File. https://corgis-edu.github.io/

corgis/csv/hospitals/.

[58] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:

Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–

1201.

[59] Dan Roth. 1993. On the Hardness of Approximate Reasoning. In IJCAI. Morgan

Kaufmann, 613–619.

[60] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y Zhao.

2011. Sharing graphs using differentially private graph models. In Proceedings of
the 2011 ACM SIGCOMM conference on Internet measurement conference. 81–98.

[61] Peng Sun, Xu Chen, Guocheng Liao, and Jianwei Huang. 2022. A Profit-

Maximizing Model Marketplace with Differentially Private Federated Learning.

In INFOCOM. IEEE, 1439–1448.

[62] Yuchao Tao, Xi He, Ashwin Machanavajjhala, and Sudeepa Roy. 2020. Computing

local sensitivities of counting queries with joins. In SIGMOD. 479–494.
[63] Matthias Thimm. 2017. On the compliance of rationality postulates for inconsis-

tency measures: A more or less complete picture. KI-Künstliche Intelligenz 31
(2017), 31–39.

[64] Zhihua Tian, Jian Liu, Jingyu Li, Xinle Cao, Ruoxi Jia, and Kui Ren. 2022. Private

Data Valuation and Fair Payment in Data Marketplaces. CoRR abs/2210.08723

(2022).

[65] Vijay V Vazirani. 1997. Approximation algorithms. Georgia Inst. Tech (1997).

[66] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel

Simmons-Marengo, and Bryant Gipson. 2019. Differentially private sql with

bounded user contribution. arXiv preprint arXiv:1909.01917 (2019).

[67] Mingyan Xiao, Ming Li, and Jie Jennifer Zhang. 2023. Locally Differentially

Private Personal Data Markets Using Contextual Dynamic Pricing Mechanism.

IEEE Trans. Dependable Secur. Comput. 20, 6 (2023), 5043–5055.
[68] Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. 2018. Differ-

entially Private Generative Adversarial Network. CoRR abs/1802.06739 (2018).

arXiv:1802.06739 http://arxiv.org/abs/1802.06739

[69] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xi-

aokui Xiao. 2015. Private release of graph statistics using ladder functions. In

Proceedings of the 2015 ACM SIGMOD international conference on management of
data. 731–745.

[70] Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xi-

aokui Xiao. 2017. Privbayes: Private data release via bayesian networks. ACM
Transactions on Database Systems (TODS) 42, 4 (2017), 1–41.

[71] Jun Zhang, Xiaokui Xiao, and Xing Xie. 2016. PrivTree: A Differentially Private

Algorithm for Hierarchical Decompositions. In SIGMOD. 155–170.

https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.1016/j.tcs.2020.05.016
https://doi.org/10.1145/2882903.2915248
https://doi.org/10.1145/3360904
https://doi.org/10.34740/KAGGLE/DSV/1054465
https://doi.org/10.34740/KAGGLE/DSV/1054465
https://corgis-edu.github.io/corgis/csv/hospitals/
https://corgis-edu.github.io/corgis/csv/hospitals/
https://arxiv.org/abs/1802.06739
http://arxiv.org/abs/1802.06739

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

A Theorems and Proofs
A.1 Proof for Proposition 2
Recall the proposition states that given a database 𝐷 and a set of

DCs Σ, where |𝐷 | = 𝑛, the following holds:

(1) The global sensitivity of ID is 1.

(2) The global sensitivity of IMI is 𝑛.

(3) The global sensitivity of IP is 𝑛.

(4) The global sensitivity of IMC is exponential in 𝑛.

(5) The global sensitivity of IR is 1.

Proof. Consider two neighbouring datasets, 𝐷 and 𝐷′.

ID. Adding or removing one tuple from the dataset will affect

the addition or removal of all conflicts related to it in the dataset. In

the worst case, this tuple could remove all conflicts in the dataset,

and the ID could go from 1 to 0 or vice versa.

IMIand IP. The IMI and IP are concerned with the set of mini-

mally inconsistent subsets𝑀𝐼Σ (𝐷). The IMI measure computes the

total number of inconsistent subsets |𝑀𝐼Σ (𝐷) | and IP computes the

total number of unique rows participating in𝑀𝐼Σ (𝐷), | ∪𝑀𝐼Σ (𝐷) |.
Now, without loss in generality, let’s assume 𝐷′ has an additional

tuple compared to 𝐷 . In the worst case, the extra row could vio-

late all other rows in the dataset, adding |𝐷 | inconsistent subsets
to 𝑀𝐼Σ (𝐷). Therefore, in the worst case, the IMI measure and IP
could change by |𝐷 |.

IMC. The IMC measure is #P-complete and can be computed for

a conflict graph G𝐷Σ if the dataset has only FDs in the constraint

set Σ and G𝐷Σ is 𝑃4-free [38]. The maximum number of maximal

independent sets [28, 51] 𝑓 (𝑛) for a graph with 𝑛 vertices is given

by : If 𝑛 ≧ 2, then 𝑓 (𝑛) =

3
𝑛/3, if 𝑛 ≡ 0(mod3);
4.3[𝑛/3]−1, if 𝑛 ≡ 1(mod3);
2.3[𝑛/3] , if 𝑛 ≡ 2(mod3) .

Using the above result, we can see that adding or removing a node

in the graph can affect the total number of maximal independent

sets in the order of 3
𝑛
.

IR. Without loss in generality, let’s assume 𝐷′ has an additional

tuple compared to 𝐷 . This extra row may or may not add extra

violations. However, repairing this extra row in 𝐷′ will always
remove these added violations. Therefore, IR for 𝐷′ can only be

one extra than 𝐷 . □

A.2 DP Analysis for IMI and IP(Algorithm 2)
A.2.1 Proof for Theorem 1. The theorem states that Algorithm 2

satisfies (𝜀1 + 𝜀2)-node DP for G𝐷Σ and (𝜀1 + 𝜀2)-DP for the input

database 𝐷 .

Proof. The proof is straightforward using the composition prop-

erty of DP Proposition 1. □

A.2.2 Proof for Lemma 2. Lemma 2 states that the sensitivity of the

quality function 𝑞𝜀2 (G, 𝜃𝑖) in Algorithm 3 defined in Equation (2)

is 𝜃max = max(Θ).

Proof. Weprove the lemma for theIMImeasure and show that it

is similar for IP. Let us assume that G and G′ are two neighbouring

graphs and G′ has one extra node 𝑣∗.

∥𝑞𝜀2 (G, 𝜃) − 𝑞𝜀2 (G′, 𝜃)∥ ≤ −|G𝜃max
.𝐸 | + |G𝜃 .𝐸 | −

√
2

𝜃

𝜀1

+ |G′
𝜃max

.𝐸 | − |G′
𝜃
.𝐸 | +

√
2

𝜃

𝜀1

≤
(
|G′

𝜃max

.𝐸 | − |G𝜃max
.𝐸 |

)
−
(
|G′

𝜃
.𝐸 | − |G𝜃 .𝐸 |

)
≤ 𝜃max −

(
|G′

𝜃
.𝐸 | − |G𝜃 .𝐸 |

)
≤ 𝜃max

The second last inequality is due to Lemma 1 that states that

|G′
𝜃𝑚𝑎𝑥

.𝐸 | − |G𝜃𝑚𝑎𝑥
.𝐸 | ≤ 𝜃𝑚𝑎𝑥 . The last inequality is because

|G′
𝜃
.𝐸 | ≥ |G𝜃 .𝐸 |. Note that the neighboring graph G′ contains

all edges of G plus extra edges of the added node 𝑣∗. Due to the

stable ordering of edges in the edge addition algorithm, each ex-

tra edge of 𝑣∗ either substitutes an existing edge or is added as

an extra edge in G𝜃 . Therefore, the total edges |G′𝜃 .𝐸 | is equal or
larger than |G𝜃 .𝐸 |. We elaborate this detail further in the proof

for Lemma 1. For the IP measure, the term in the last inequality

changes to |G′
𝜃
.𝑉>0 | − |G𝜃 .𝑉>0 | and is also non-negative because

G′ contains an extra node that can only add and not subtract from

the total number of nodes with positive degree. □

A.2.3 Proof for Lemma 1. This lemma states that the sensitivity

of 𝑓 ◦ 𝜋𝜃 (·) in Algorithm 2 is 𝜃 , where 𝜋𝜃 is the edge addition

algorithm with the user input 𝜃 , and 𝑓 (·) return returns edge count

for IMI and the number of nodes with positive degrees for IP.

Proof. Let’s assumewithout loss of generality thatG′ = (𝑉 ′, 𝐸′)
has an additional node 𝑣+compared to G = (𝑉 , 𝐸), i.e., 𝑉 ′ = 𝑉 ∪{
𝑣+

}
, 𝐸′ = 𝐸 ∪ 𝐸+, and 𝐸+is the set of all edges incident to 𝑣+in G′.

We prove this lemma separately for IMI and IP.

For IMI. Let Λ′ be the stable orderings for constructing 𝜋𝜃 (G′),
and 𝑡 be the number of edges added to 𝜋𝜃 (G′) that are incident
to 𝑣+. Clearly, 𝑡 ≤ 𝜃 because of the 𝜃 -bounded algorithm. Let

𝑒′
ℓ1
, . . . , 𝑒′

ℓ𝑡
denote these 𝑡 edges in their order in Λ′. Let Λ0 be the

sequence obtained by removing from Λ′ all edges incident to 𝑣+,
and Λ𝑘 , for 1 ≤ 𝑘 ≤ 𝑡 , be the sequence obtained by removing from

Λ′ all edges that both are incident to 𝑣+and come after 𝑒′
ℓ𝑘
in Λ′. Let

𝜋
Λ𝑘

𝜃
(G′), for 0 ≤ 𝑘 ≤ 𝑡 , be the graph reconstructed by trying to

add edges in Λ𝑘 one by one on nodes in G′, and 𝜆𝑘 be the sequence

of edges from Λ𝑘 that are actually added in the process. Thus 𝜆𝑘

uniquely determines 𝜋
Λ𝑘

𝜃
(G′); we abuse the notation and use 𝜆𝑘

to also denote 𝜋
Λ𝑘

𝜃
(G′). We have 𝜆0 = 𝜋𝜃 (G), and 𝜆𝑡 = 𝜋𝜃 (G′).

In the rest of the proof, we show that ∀𝑘 such that 1 ≤ 𝑘 ≤ 𝑡 , at

most 1 edge will differ between 𝜆𝑘 and 𝜆𝑘−1. This will prove the
lemma because there are at most 𝑡 (upper bounded by 𝜃) edges that

are different between 𝜆𝑡 and 𝜆0.

To prove that any two consecutive sequences differ by at most

1 edge, let’s first consider how the sequence 𝜆𝑘 differs from 𝜆𝑘−1.
Recall that by construction, Λ𝑘 contains one extra edge in addition

to Λ𝑘−1 and that this edge is also incident to 𝑣∗. Let that additional
differing edge be 𝑒′

ℓ𝑘
= (𝑢 𝑗 , 𝑣+). In the process of creating the graph

𝜋
Λ𝑘

𝜃
(G′), each edge will need a decision of either getting added or

not. The decisions for all edges coming before 𝑒′
ℓ𝑘

in Λ′ must be the

same in both 𝜆𝑘 and 𝜆𝑘−1. Similarly, after 𝑒′
ℓ𝑘
, the edges in Λ𝑘 and

Λ𝑘−1 are exactly the same. However, the decisions for including

Computing Inconsistency Measures Under Differential Privacy SIGMOD’25, June 22-27, 2025, Berlin, Germany

the edges after 𝑒′
ℓ𝑘

may or may not be the same. Assuming that

there are a total of 𝑠 ≥ 1 different decisions, we will observe how

the additional edge 𝑒′
ℓ𝑘

makes a difference in decisions.

When 𝑠 = 1, the only different decision must be regarding differ-

ing edge 𝑒′
ℓ𝑘

= (𝑢 𝑗 , 𝑣+) and that must be including that edge in the

total number of edges for 𝜆𝑘 . Also note that due to this addition,

the degree of 𝑢 𝑗 gets added by 1 which did not happen for 𝜆𝑘−1.
When 𝑠 > 1, the second different decision must be regarding an

edge incident to 𝑢 𝑗 and that is because degree of 𝑢 𝑗 has reached

𝜃 , and the last one of these, denoted by (𝑢 𝑗 , 𝑢𝑖𝜃) which was added

in 𝜆𝑘−1, cannot be added in 𝜆𝑘 . In this scenario, 𝑢 𝑗 has the same

degree (i.e., 𝜃) in both 𝜆𝑘 and 𝜆𝑘−1. Now if 𝑠 is exactly equal to

2, then the second different decision must be not adding the edge

(𝑢 𝑗 , 𝑢𝑖𝜃) to 𝜆𝑘 . Again, note here that as (𝑢 𝑗 , 𝑢𝑖𝜃) was not added in

𝜆𝑘 but was added in 𝜆𝑘−1, there is still space for one another edge
of 𝑢𝑖𝜃 . If 𝑠 > 2, then the third difference must be the addition of

an edge incident to 𝑢𝑖𝜃 in 𝜆𝑘 . This process goes on for each dif-

ferent decision in 𝜆𝑘 and 𝜆𝑘−1. Since the total number of different

decisions 𝑠 is finite, this sequence of reasoning will stop with a

difference of at most 1 in the total number of the edges between

𝜆𝑘−1 and 𝜆𝑘 .

For IP. Assume, in the worst case, the graph G is a star graph

with 𝑛 nodes such that there exists an internal node that is con-

nected to all other 𝑛 − 1 nodes. In this scenario, there are no nodes

that have 0 degrees, and the IP measure = 𝑛 − 0 = 0. If the neigh-

bouring graph G′ differs on the internal node, all edges of the graph
are removed are the IP = 𝑛. The edge addition algorithm 𝜋𝜃 would

play a minimal role here as 𝜃 could be equal to 𝑛. □

A.2.4 Proof for Theorem 4. Algorithm 2 with the optimized EM in

Algorithm 4 satisfies (𝜀1 + 𝜀2)-DP.

Proof. The total privacy budget is split in twoways for optimiza-

tion and measure computation. These budgets can be composed

using Proposition 1. □

A.2.5 Proof for Lemma 4. This lemma states that the sensitivity of

𝑞𝜀2 (G, 𝜃𝑖) in the 2-step EM (Algorithm 4) defined in Equation (2) is

𝜃max = min(˜𝑑
bound

, |𝑉 |) for 1st EM step and 𝜃max = 𝜃∗ for the 2nd
EM step.

Proof. Using Lemma 2, we know that the sensitivity of qual-

ity function 𝑞𝜀2 (G, 𝜃𝑖) is given by the max over all candidates in

max(Θ). For the first step of the 2-step EM, the maximum candidate

apart from |𝑉 | is given by min(˜𝑑
bound

, |𝑉 |). For the candidate |𝑉 |,
the quality function 𝑞 differs. It only depends on the Laplace error√
2 |𝑉 |
𝜀2

and has no error from 𝑒
bias

as no edges are truncated due to

|𝑉 |. For the 2nd step of EM, we truncate all values in the set greater

than the output of the first step, i.e., 𝜃∗. Therefore, the sensitivity
becomes 𝜃∗. □

A.2.6 Utility Analysis for Algorithm 2. Theorem 2 states that on

any database instance 𝐷 and its respective conflict graph G𝐷Σ , let 𝑜

be the output of Algorithm 2 with Algorithm 3 over 𝐷 . Then, with

a probability of at least 1 − 𝛽 , we have

|𝑜 − 𝑎 | ≤ −𝑞opt (𝐷, 𝜀2) +
2𝜃max

𝜀1
(ln 2|Θ|
|Θopt | · 𝛽

) (13)

where 𝑎 is the true inconsistency measure over 𝐷 and 𝛽 ≤ 1

𝑒
√
2

.

Proof. By the utility property of the exponential mechanism [50],

with at most probability 𝛽/2, Algorithm 3 will sample a bad 𝜃∗ with
a quality value as below

𝑞𝜀2 (G𝐷Σ , 𝜃∗) ≤ 𝑞opt (𝐷, 𝜀2) −
2𝜃max

𝜀1
(ln 2|Θ|
|Θopt |𝛽

) (14)

which is equivalent to

𝑒
bias
(G, 𝜃∗) ≥ −𝑞opt (𝐷, 𝜀2) +

2𝜃max

𝜀1
(ln 2|Θ|
|Θopt |𝛽

) −
√
2𝜃∗

𝜀2
. (15)

With probability 𝛽/2, where 𝛽 ≤ 1

𝑒
√
2

, we have

Lap(𝜃
∗

𝜀2
) ≥ ln(1/𝛽)𝜃∗

𝜀2
≥
√
2𝜃∗

𝜀2
(16)

Then, by union bound, with at most probability 𝛽 , we have

|𝑜 − 𝑎 |

= |𝑓 (G𝜃 ∗) + Lap(
𝜃∗

𝜀2
) − 𝑎 |

≥ 𝑎 − 𝑓 (G𝜃 ∗) +
√
2𝜃∗

𝜀2

= 𝑓 (G) − 𝑓 (G𝜃 ∗) +
√
2𝜃∗

𝜀2

= 𝑓 (G) − 𝑓 (G𝜃max
) + 𝑓 (G𝜃max

) − 𝑓 (G𝜃 ∗) +
√
2𝜃∗

𝜀2

= 𝑓 (G) − 𝑓 (G𝜃max
) + 𝑒

bias
(G, 𝜃∗) +

√
2𝜃∗

𝜀2

≥ −𝑞opt (𝐷, 𝜀2) + 𝑓 (G) − 𝑓 (G𝜃max
) + 2𝜃max

𝜀1
(ln 2|Θ|
|Θopt |𝛽

)

= −𝑞opt (𝐷, 𝜀2) +
2𝜃max

𝜀1
(ln 2|Θ|
|Θopt |𝛽

) (17)

□

A.3 DP Analysis for IR (Algorithm 5)
A.3.1 Proof for Theorem 5. Algorithm 5 satisfies 𝜀-node DP and

always outputs the size of a 2-approximate vertex cover of graph

G.

Proof. The privacy analysis of Algorithm 5 is straightforward as

we calculate the private vertex cover using the Laplace mechanism

with sensitivity 2 according to Proposition 3. The utility analysis

can be derived from the original 2-approximation algorithm. The

stable ordering Λ in Algorithm 5 can be perceived as one particular

random order of the edges and hence has the same utility as the

original 2-approximation algorithm. □

SIGMOD’25, June 22-27, 2025, Berlin, Germany Mohapatra et al.

Figure 8: Runtime analysis for all measures by varying
datasets.

Figure 9: Trend of the utility analysis vs 𝛽

A.3.2 Proof for Proposition 3. Algorithm 5 obtains a vertex cover,

and its size has a sensitivity of 2.

Proof. Let’s assumewithout loss of generality thatG′ = (𝑉 ′, 𝐸′)
has an additional node 𝑣+compared to G = (𝑉 , 𝐸), i.e., 𝑉 ′ = 𝑉 ∪{
𝑣+

}
, 𝐸′ = 𝐸 ∪ 𝐸+, and 𝐸+ is the set of all edges incident to 𝑣+ in

G′. We prove the theorem using a mathematical induction on 𝑖 that

iterates over all edges of the global stable ordering Λ.
Base: At step 0, the value of 𝑐 and 𝑐′ are both 0.

Hypothesis: As the algorithm progresses at each step 𝑖 when the

edge 𝑒𝑖 is chosen, either the edges of graph G′ which is denoted by

𝐸′
𝑖
has an extra vertex or the edge of graph G has an extra vertex.

Thus, we can have two cases depending on some node 𝑣∗ and its

edges {𝑣∗}. Note that at the beginning of the algorithm, 𝑣∗ is the
differing node 𝑣+ and G′ has the extra edges of 𝑣∗/𝑣+, but 𝑣∗ may

change as the algorithm progresses. The cases are as illustrated

below:

• Case 1: 𝐸𝑖 does not contain any edges incident to 𝑣∗, 𝐸′
𝑖
=

𝐸𝑖 + {𝑣∗} and the vertex cover sizes at step 𝑖 could be 𝑐𝑖 = 𝑐′
𝑖

or 𝑐𝑖 = 𝑐′
𝑖
+ 2.

• Case 2: 𝐸′
𝑖
does not contain any edges incident to 𝑣∗, 𝐸𝑖 =

𝐸′
𝑖
+ {𝑣∗} and the vertex cover sizes at step 𝑖 could be 𝑐𝑖 = 𝑐′

𝑖
or 𝑐′

𝑖
= 𝑐𝑖 + 2.

• Case 3: 𝐸𝑖 = 𝐸′
𝑖
and the vertex cover sizes at step 𝑖 is 𝑐𝑖 = 𝑐′

𝑖
.

This case occurs only when the additional node 𝑣+ has no
edges.

Induction: At step 𝑖 + 1, lets assume an edge 𝑒𝑖+1 = {𝑢, 𝑣} is
chosen. Depending on the 𝑖𝑡ℎ step, we can have 2 cases as stated in

the hypothesis.

• Case 1 (When 𝐸′
𝑖
has the extra edges of 𝑣∗): We can have the

following subcases at step 𝑖 + 1 depending on 𝑒𝑖+1.
a) If the edge is part of 𝐸′

𝑖
but not of 𝐸𝑖 (𝑒𝑖+1 ∈ 𝐸′

𝑖
\ 𝐸𝑖):

Then 𝑒𝑖+1 = {𝑢, 𝑣} should not exist in 𝐸𝑖 (according to

the hypothesis at the 𝑖 step) and one of 𝑢 or 𝑣 must be 𝑣∗.
Let’s assume without loss of generality that 𝑣 is 𝑣∗. The
algorithm will add (𝑢, 𝑣) to 𝐶′ and update 𝑐′

𝑖+1 = 𝑐𝑖 + 2.
Hence, we have either 𝑐′

𝑖+1 = 𝑐𝑖+1 or 𝑐′𝑖+1 = 𝑐 + 2.
In addition, all edges of 𝑢 and 𝑣/𝑣∗ will be removed from

𝐸′
𝑖+1. Thus, we have 𝐸𝑖+1 = 𝐸′

𝑖+1+{𝑢}, where {𝑢} represent
edges of 𝑢. Now 𝑢 becomes the new 𝑣∗ and moves to Case

2 for the 𝑖 + 1 step.
b) If the edge is part of both 𝐸′

𝑖
and 𝐸𝑖 (𝑒𝑖+1 ∈ 𝐸′𝑖 and 𝑒𝑖+1 ∈ 𝐸𝑖):

In this case (𝑢, 𝑣) will be added to both 𝐶 and 𝐶′ and
the vertex sizes with be updated as 𝑐𝑖+1 = 𝑐𝑖 + 2 and

𝑐′
𝑖+1 = 𝑐′ + 2.
Also, the edges adjacent to u and v will be removed from

𝐸𝑖 and 𝐸
′
𝑖
. We still have 𝐸′

𝑖
= 𝐸 + 𝑣∗ (the extra edges of 𝑣∗

and remain in case 1 for step i+1.

c) If the edge is part of neither 𝐸′
𝑖
nor 𝐸𝑖 (If 𝑒𝑖+1 ∈ 𝐸′

𝑖
and

𝑒𝑖+1 ∈ 𝐸𝑖): the algorithm makes no change. The previ-

ous state keep constant: 𝐸′
𝑖+1 = 𝐸′

𝑖
, 𝐸𝑖+1 = 𝐸𝑖 and 𝑐′

𝑖+1 =

𝑐′
𝑖
, 𝑐𝑖+1 = 𝑐𝑖 . The extra edges of 𝑣

∗
are still in 𝐸′

𝑖+1.
• Case 2 (When 𝐸𝑖 has the extra edges of 𝑣∗) : This case is

symmetrical to Case 1. There will be three subcases similar

to Case 1 – a) in which after the update the state of the

algorithm switches to Case 1, b) in which the state remains

in Case 2, and c) where no update takes place.

• Case 3 (When 𝐸𝑖 = 𝐸′
𝑖
): In this case, the algorithm progresses

similarly for both the graphs, and remains in case 3 with

equal vertex covers, 𝑐𝑖+1 = 𝑐′
𝑖+1.

Our induction proves that our hypothesis is true and the algo-

rithm starts with Case 1 and either remains in the same case or

oscillates between Case 1 and Case 2. Hence as per our hypothesis

statement, the difference between the vertex cover sizes are upper

bounded by 2. □

A.4 Deferred experiment
This experiment is similar to our runtime analysis experiment. In

Figure 8, we fix the total number of nodes to 10k and noise to RNoise

at 𝛼 = 0.001 and vary the dataset. The x-axis is ordered according

to the density of the dataset. We observe that the runtime is pro-

portional to the density of the dataset and increases exponentially

with the total number of edges in the graph.

A.5 Utility vs 𝛽 for Theorem 2
In Figure 9, we show the trend of the utility analysis according to

Theorem 2 by varying the 𝛽 parameter. We follow Example 1 and set

𝜀1 and 𝜀2 to 1. The figure confirms that as the value of 𝛽 increases,

there is a decrease in the distance between the true answer and the

output, i.e., the utility increases. However, with higher values of 𝛽 ,

the utility analysis holds with lesser probability, i.e., 1 − 𝛽 .

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Database and Constraints
	2.2 Inconsistency Measures
	2.3 Differential Privacy

	3 Inconsistency Measures under DP
	4 DP Graph Projection for IMI and IP
	4.1 Graph Projection Approach for IMI and IP
	4.2 Optimized Parameter Selection

	5 DP Minimum Vertex Cover for IR
	6 Experiments
	6.1 Experimental Setup
	6.2 Results

	7 Related Work
	8 Future Work
	9 Conclusions
	Acknowledgments
	References
	A Theorems and Proofs
	A.1 Proof for prop:sensitivity
	A.2 DP Analysis for IMI and IP(algo:graphgeneral)
	A.3 DP Analysis for IR (algo:dpvertexcover)
	A.4 Deferred experiment
	A.5 Utility vs for Theorem 2

