
Provenance for Natural Language Queries

Daniel Deutch
Tel Aviv University

danielde@post.tau.ac.il

Nave Frost
Tel Aviv University

navefrost@mail.tau.ac.il

Amir Gilad
Tel Aviv University

amirgilad@mail.tau.ac.il

ABSTRACT
Multiple lines of research have developed Natural Language
(NL) interfaces for formulating database queries. We build
upon this work, but focus on presenting a highly detailed
form of the answers in NL. The answers that we present
are importantly based on the provenance of tuples in the
query result, detailing not only the results but also their
explanations. We develop a novel method for transforming
provenance information to NL, by leveraging the original NL
query structure. Furthermore, since provenance information
is typically large and complex, we present two solutions for
its effective presentation as NL text: one that is based on
provenance factorization, with novel desiderata relevant to
the NL case, and one that is based on summarization. We
have implemented our solution in an end-to-end system sup-
porting questions, answers and provenance, all expressed in
NL. Our experiments, including a user study, indicate the
quality of our solution and its scalability.

1. INTRODUCTION
Developing Natural Language (NL) interfaces to database

systems has been the focus of multiple lines of research (see
e.g. [35, 4, 34, 48]). In this work we complement these ef-
forts by providing NL explanations to query answers. The
explanations that we provide elaborate upon answers with
additional important information, and are helpful for under-
standing why does each answer qualify to the query criteria.

As an example, consider the Microsoft Academic Search
database (http://academic.research.microsoft.com) and
consider the NL query in Figure 1a. A state-of-the-art NL
query engine, NaLIR [35], is able to transform this NL query
into the SQL query also shown (as a Conjunctive Query,
which is the fragment that we focus on in this paper) in Fig-
ure 1b. When evaluated using a standard database engine,
the query returns the expected list of organizations. How-
ever, the answers (organizations) in the query result lack
justification, which in this case would include the authors
affiliated with each organization and details of the papers

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 5
Copyright 2017 VLDB Endowment 2150-8097/17/01.

return the organization of authors who published papers
in database conferences after 2005

(a) NL Query

query(oname) :- org(oid, oname), conf(cid, cname),
pub(wid, cid, ptitle, pyear), author(aid, aname, oid),
domainConf(cid, did), domain(did, dname),
writes(aid, wid), dname = ’Databases’, pyear > 2005

(b) CQ Q

Figure 1: NL Query and CQ Q

TAU is the organization of Tova M. who published
’OASSIS...’ in SIGMOD in 2014

Figure 2: Answer For a Single Assignment

they have published (their titles, their publication venues
and publication years). Such additional information, corre-
sponding to the notion of provenance [28, 7, 9, 25, 26] can
lead to a richer answer than simply providing the names of
organizations: it allows users to also see relevant details of
the qualifying organizations. Provenance information is also
valuable for validation of answers: a user who sees an orga-
nization name as an answer is likely to have a harder time
validating that this organization qualifies as an answer, than
if she was presented with the full details of publications.

We propose a novel approach of presenting provenance in-
formation for answers of NL queries, again as sentences in
Natural Language. Continuing our running example, Fig-
ure 2 shows one of the answers outputted by our system in
response to the NL query in Figure 1a.

Our solution consists of the following key contributions.

Provenance Tracking Based on the NL Query Structure.
A first key idea in our solution is to leverage the NL query
structure in constructing NL provenance. In particular, we
modify NaLIR1 so that we store exactly which parts of the NL
query translate to which parts of the formal query. Then,
we evaluate the formal query using a provenance-aware en-
gine (we use SelP [16]), further modified so that it stores
which parts of the query “contribute” to which parts of the
provenance. By composing these two “mappings” (text-to-
query-parts and query-parts-to-provenance) we infer which
parts of the NL query text are related to which provenance

1We are extremely grateful to Fei Li and H.V. Jagadish for
generously sharing with us the source code of NaLIR, and
providing invaluable support.

http://academic.research.microsoft.com


parts. Finally, we use the latter information in an “inverse”
manner, to translate the provenance to NL text.

Factorization. A second key idea is related to the prove-
nance size. In typical scenarios, a single answer may have
multiple explanations (multiple authors, papers, venues and
years in our example). A näıve solution is to formulate and
present a separate sentence corresponding to each expla-
nation. The result will however be, in many cases, very
long and repetitive. As observed already in previous work
[8, 42], different assignments (explanations) may have sig-
nificant parts in common, and this can be leveraged in a
factorization that groups together multiple occurrences. In
our example, we can e.g. factorize explanations based on
author, paper name, conference name or year. Importantly,
we impose a novel constraint on the factorizations that we
look for (which we call compatibility), intuitively capturing
that their structure is consistent with a partial order defined
by the parse tree of the question. This constraint is needed
so that we can translate the factorization back to an NL
answer whose structure is similar to that of the question.
Even with this constraint, there may still be exponentially
many (in the size of the provenance expression) compatible
factorizations, and we look for the factorization with mini-
mal size out of the compatible ones; for comparison, previous
work looks for the minimal factorization with no such “com-
patibility constraint”. The corresponding decision problem
remains coNP-hard (again in the provenance size), but we
devise an effective and simple greedy solution. We further
translate factorized representations to concise NL sentences,
again leveraging the structure of the NL query.

Summarization. We propose summarized explanations by
replacing details of different parts of the explanation by their
synopsis, e.g. presenting only the number of papers pub-
lished by each author, the number of authors, or the overall
number of papers published by authors of each organization.
Such summarizations incur by nature a loss of information
but are typically much more concise and easier for users
to follow. Here again, while provenance summarization has
been studied before (e.g. [3, 44]), the desiderata of a sum-
marization needed for NL sentence generation are different,
rendering previous solutions inapplicable here. We observe
a tight correspondence between factorization and summa-
rization: every factorization gives rise to multiple possible
summarizations, each obtained by counting the number of
sub-explanations that are “factorized together”. We provide
a robust solution, allowing to compute NL summarizations
of the provenance, of varying levels of granularity.

Implementation and Experiments. We have implemented
our solution in a system prototype called NLProv [15], form-
ing an end-to-end NL interface to database querying where
the NL queries, answers and provenance information are all
expressed in Natural Language. We have further conducted
extensive experiments whose results indicate the scalability
of the solution as well as the quality of the results, the latter
through a user study.

2. PRELIMINARIES
We provide here the necessary preliminaries on Natural

Language Processing, conjunctive queries and provenance.
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Figure 3: Abstract Dependency Trees

2.1 From NL to Formal Queries
We start by recalling some basic notions from NLP, as

they pertain to the translation process of NL queries to a
formal query language. A key notion that we will use is that
of the syntactic dependency tree of NL queries:

Definition 2.1. A dependency tree T = (V,E, L) is a
node-labeled tree where labels consist of two components, as
follows: (1) Part of Speech (POS): the syntactic role of the
word [32, 36] ; (2) Relationship (REL): the grammatical re-
lationship between the word and its parent in the dependency
tree [37].

We focus on a sub-class of queries handled by NaLIR,
namely that of Conjunctive Queries, possibly with compar-
ison operators (=, >,<) and logical combinations thereof
(NaLIR further supports nested queries and aggregation).
The corresponding NL queries in NaLIR follow one of the
two (very general) abstract forms described in Figure 3: an
object (noun) is sought for, that satisfies some properties,
possibly described through a complex sub-sentence rooted
by a modifier (which may or may not be a verb, a distinc-
tion whose importance will be made clear later).

(oname, TAU)

(aname, Tova M.)

(ptitle, OASSIS...)

(cname, SIGMOD)

(pyear, 2014)

return

organization
POS=NN, REL=dobj

of
POS=IN, REL=prep

authors
POS=NNS, REL=pobj

published
POS=VBD, REL=rcmod

in

conferences
POS=NNS, REL=pobj

database
POS=NN, REL=nn

after
POS=IN, REL=prep

2005
POS=CD, REL=pobj
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(a) Query Tree
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Figure 4: Question and Answer Trees

Example 2.2. Reconsider the NL query in Figure 1a; its
dependency tree is depicted in Figure 4a (ignore for now the
arrows). The part-of-speech (POS) tag of each node reflects
its syntactic role in the sentence – for instance, “organiza-
tion” is a noun (denoted “NN”), and “published” is a verb in
past tense (denoted “VBD”). The relation (REL) tag of each



node reflects the semantic relation of its sub-tree with its par-
ent. For instance, the REL of “of” is prep (“prepositional
modifier”) meaning that the sub-tree rooted at “of” describes
a property of “organization” while forming a complex sub-
sentence. The tree in Figure 4a matches the abstract tree
in Figure 3b since “organization” is the object and “of” is
a non-verb modifier (its POS tag is IN, meaning “preposi-
tion or subordinating conjunction”) rooting a sub-sentence
describing “organization”.

The dependency tree is transformed by NaLIR, based also
on schema knowledge, to SQL. We focus in this work on NL
queries that are compiled into Conjunctive Queries (CQs).

Example 2.3. Reconsider our running example NL query
in Figure 1a; a counterpart Conjunctive Query is shown in
Figure 1b. Some words of the NL query have been mapped
by NaLIR to variables in the query, e.g., the word “orga-
nization” corresponds to the head variable (oname). Ad-
ditionally, some parts of the sentence have been complied
to boolean conditions based on the MAS schema, e.g., the
part “in database conferences” was translated to dname =′

Databases′ in the CQ depicted in Figure 1b. Figure 4a
shows the mapping of some of the nodes in the NL query
dependency tree to variables of Q (ignore for now the values
next to these variables).

The translation performed by NaLIR from an NL query
to a formal one can be captured by a mapping from (some)
parts of the sentence to parts of the formal query.

Definition 2.4. Given a dependency tree T = (V,E, L)
and a CQ Q, a dependency-to-query-mapping
τ : V → V ars(Q) is a partial function mapping a subset of
the dependency tree nodes to the variables of Q.

2.2 Provenance
After compiling a formal query corresponding to the user’s

NL query, we evaluate it and keep track of provenance, to be
used in explanations. To define provenance, we first recall
the standard notion of assignments for CQs.

Definition 2.5. An assignment α for a query Q ∈ CQ
with respect to a database instance D is a mapping of the
relational atoms of Q to tuples in D that respects relation
names and induces a mapping over variables/constants, i.e.
if a relational atom R(x1, ..., xn) is mapped to a tuple R(a1,
..., an) then we say that xi is mapped to ai (denoted α(xi) =
ai, overloading notations) and we further say that the tuple
was used in α. We require that any variable will be mapped
to a single value, and that any constant will be mapped to
itself. We further define α(head(Q)) as the tuple obtained
from head(Q) by replacing each occurrence of a head variable
xi by α(xi).

Assignments allow for defining the semantics of CQs: a
tuple t is said to appear in the query output if there exists
an assignment α s.t. t = α(head(Q)). They will also be
useful in defining provenance below.

Example 2.6. Consider again the query Q in Figure 1b
and the database in Figure 6. The tuple (TAU) is an output
of Q when assigning the highlighted tuples to the atoms of Q.
As part of this assignment, the tuple (2, TAU) (the second

(oname,TAU)·(aname,Tova M.)·(ptitle,OASSIS...)·
(cname,SIGMOD)·(pyear,14’)+
(oname,TAU)·(aname,Tova M.)·(ptitle,Querying...)·
(cname,VLDB)·(pyear,06’)+
(oname,TAU)·(aname,Tova M.)· (ptitle,Monitoring..)·
(cname,VLDB)·(pyear,07’)+
(oname,TAU)·(aname,Slava N.)·(ptitle,OASSIS...)·
(cname, SIGMOD)·(pyear,14’)+
(oname,TAU)·(aname,Tova M.)·(ptitle,A sample...)·
(cname,SIGMOD)·(pyear,14’)+
(oname,UPENN)·(aname,Susan D.)·(ptitle,OASSIS...)·
(cname,SIGMOD)·(pyear,14’)

Figure 5: Value-level Provenance

tuple in the org table) and (4, Tova M., 2) (the second tuple
of the author table) are assigned to the first and second atom
of Q, respectively. In addition to this assignment, there are
4 more assignments that produce the tuple (TAU) and one
assignment that produces the tuple (UPENN).

We next leverage assignments in defining provenance, in-
troducing a simple value-level model. The idea is that as-
signments capture the reasons for a tuple to appear in the
query result, with each assignment serving as an alternative
such reason (indeed, the existence of a single assignment
yielding the tuple suffices, according to the semantics, for its
inclusion in the query result). Within each assignment, we
keep record of the value assigned to each variable, and note
that the conjunction of these value assignments is required
for the assignment to hold. Capturing alternatives through
the symbolic “ + ” and conjunction through the symbolic
“ · ”, we arrive at the following definition of provenance as
sum of products.

Definition 2.7. Let A(Q,D) be the set of assignments
for a CQ Q and a database instance D. We define the value-
level provenance of Q w.r.t. D as∑

α∈A(Q,D)

Π{xi,ai|α(xi)=ai}(xi, ai)

.

Rel. org
oid oname
1 UPENN
2 TAU

Rel. author
aid aname oid
3 Susan D. 1
4 Tova M. 2
5 Slava N. 2

Rel. pub
wid cid ptitle pyear
6 10 “OASSIS...” 2014
7 10 “A sample...” 2014
8 11 “Monitoring...” 2007
9 11 “Querying...” 2006

Rel. writes
aid wid
4 6
3 6
5 6
4 7
4 8
4 9

Rel. conf
cid cname
10 SIGMOD
11 VLDB

Rel. domainConf
cid did
10 18
11 18

Rel. domain
did name
18 Databases

Figure 6: DB Instance

Example 2.8. Re-consider our running example query and
consider the database in Figure 6. The value-level prove-
nance is shown in Figure 5. Each of the 6 summands stands
for a different assignment (i.e. an alternative reason for the
tuple to appear in the result). Assignments are represented



as multiplication of pairs of the form (var, val) so that var
is assigned val in the particular assignment. We only show
here variables to which a query word was mapped; these will
be the relevant variables for formulating the answer.

By composing the dependency-to-query-mapping (recall
Definition 2.4) from the NL query’s dependency tree to query
variables, and the assignments of query variables to values
from the database, we associate different parts of the NL
query with values. We will use this composition of map-
pings throughout the paper as a means of assembling the
NL answer to the NL query.

Example 2.9. Continuing our running example, consider
the assignment represented by the first monomial of Figure
5. Further reconsider Figure 4a, and now note that each
node is associated with a pair (var, val) of the variable to
which the node was mapped, and the value that this variable
was assigned in this particular assignment. For instance,
the node “organization” was mapped to the variable oname
which was assigned the value “TAU”.

3. FIRST STEP: A SINGLE ASSIGNMENT
We now start describing our transformation of provenance

to NL. We show it first for the case where the query has a
single assignment with respect to the input database. The
solution will serve as a building block for the general case of
multiple assignments.

3.1 Basic Solution
We follow the structure of the NL query dependency tree

and generate an answer tree with the same structure by
replacing/modifying the words in the question with the val-
ues from the result and provenance that were mapped using
the dependency-to-query-mapping and the assignment. Yet,
note that simply replacing the values does not always result
in a coherent sentence, as shown in the following example.

Example 3.1. Re-consider the dependency tree depicted
in Figure 4a. If we were to replace the value in the orga-
nization node to the value “TAU” mapped to it, the word
“organization” will not appear in the answer although it is
needed to produce the coherent answer depicted in Figure 2.
Without this word, it is unclear how to deduce the informa-
tion about the connection between “Tova M.” and “TAU”.

We next account for these difficulties and present an algo-
rithm that outputs the dependency tree of a detailed answer;
we will further translate this tree to an NL sentence.

Recall that the dependency tree of the NL query follows
one of the abstract forms in Figure 3. We distinguish be-
tween two cases based on nodes whose REL (relationship
with parent node) is modifier; in the first case, the clause
begins with a verb modifier (e.g., the node “published” in
Fig. 4a is a verb modifier) and in the second, the clause
begins with a non-verb modifier (e.g., the node “of” in Fig.
4a is a non-verb modifier). Algorithm 1 considers these two
forms of dependency tree and provides a tailored solution for
each one in the form of a dependency tree that fits the cor-
rect answer structure. It does so by augmenting the query
dependency tree into an answer tree.

The algorithm operates as follows. We start with the de-
pendency tree of the NL query, an empty answer tree TA,
a dependency-to-query-mapping an assignment and a node

object from the query tree. We denote the set of all mod-
ifiers by MOD and the set of all verbs by V ERB. The
algorithm is recursive and handles several cases, depending
on object and its children in the dependency tree. If the
node object is a leaf (Line 2), we replace it with the value
mapped to it by dependency-to-query-mapping and the as-
signment, if such a mapping exists. Otherwise (it is a leaf
without a mapping), it remains in the tree as it is. Second,
if L(object).REL is a modifier (Line 5), we call the proce-
dure Replace in order to replace its entire subtree with the
value mapped to it and add the suitable word for equal-
ity, depending on the type of its child (e.g., location, year,
etc. taken from the pre-prepared table), as its parent (using
procedure AddParent). The third case handles a situation
where object has a non-verb modifier child (Line 9). We use
the procedure Adjust with a false flag to copy TQ into TA,
remove the return node and add the value mapped to object
as its child in TA. The difference in the fourth case (Line 12)
is the value of flag is now true. This means that instead of
adding the value mapped to object as its child, the Adjust
procedure replaces the node with its value. Finally, if object
had a modifier child child (verb or non-verb), the algorithm
makes a recursive call for all of the children of child (Line
16). This recursive call is needed here since a modifier node
can be the root of a complex sub-tree (recall Example 2.2).

Algorithm 1: ComputeAnswerTree

input : A dependency tree TQ, an answer tree TA
(empty in the first call), a
dependency-to-query-mapping τ , an assignment
α, a node object ∈ TQ

output: Answer tree with explanations TA

1 child ..= null;
2 if object is a leaf then
3 value = α(τ(object));
4 Replace(object, value, TA);

5 else if L(object).REL is mod then
6 value = α(τ(childTQ

(object)));

7 Replace(tree(object), value, TA);
8 AddParent(TA, value);

9 else if object has a child v s.t. L(v).REL ∈MOD and
L(v).POS /∈ V ERB then

10 Adjust(TQ, TA, τ, α, object, false);
11 child ..= v;

12 else if object has a child v s.t. L(v).REL ∈MOD and
L(v).POS ∈ V ERB then

13 Adjust(TQ, TA, τ, α, object, true);
14 child ..= v;

15 if child 6= null then
16 foreach u ∈ childrenTQ

(child) do
17 ComputeAnswerTree(TQ, TA, τ, α, u);

18 return TA;

Example 3.2. Re-consider Figure 4a, and note the map-
pings from the nodes to the variables and values as reflected
in the boxes next to the nodes. To generate an answer, we
follow the NL query structure, “plugging-in” mapped database
values. We start with “organization”, which is the first
object node. Observe that “organization” has the child “of”
which is a non-verb modifier, so we add “TAU” as its child
and assign true to the hasMod variable. We then reach
Line 15 where the condition holds and we make a recursive



call to the children of “of”, i.e., the node object is now “au-
thors”. Again we consider all cases until reaching the fourth
(Line 12). The condition holds since the node “published”
is a verb modifier, thus we replace “authors” with “Tova
M.”, mapped to it. Then, we make a recursive call for all
children of “published” since the condition in Line 15 holds.
The nodes “who” and “papers” are leaves so they satisfy the
condition in Line 2. Only “papers” has a value mapped to it,
so it is replaced by this value (“OASSIS...”). However, the
nodes “after” and “in” are modifiers so when the algorithm
is invoked with object = “after” (“in”), the second condi-
tion holds (Line 5) and we replace the subtree of these nodes
with the node mapped to their child (in the case of “after” it
is “2014” and in the case of “in” it is “SIGMOD”) and we
attach the node “in” as the parent of the node, in both cases
as it is the suitable word for equality for years and locations.
We obtain a tree representation of the answer (Fig. 4b).

So far we have augmented the NL query dependency tree
to obtain the dependency tree of the answer. The last step
is to translate this tree to a sentence. To this end, we re-
call that the original query, in the form of a sentence, was
translated by NaLIR to the NL query dependency tree. To
translate the dependency tree to a sentence, we essentially
“revert” this process, further using the mapping of NL query
dependency tree nodes to (sets of) nodes of the answer.

Example 3.3. Converting the answer tree in Figure 4b
to a sentence is done by replacing the words of the NL query
with the values mapped to them, e.g., the word “authors” in
the NL query (Figure 1a) is replaced by “Tova M.” and the
word “papers” is replaced by “OASSIS...”. The word “orga-
nization” is not replaced (as it remains in the answer tree)
but rather the words “TAU is the” are added prior to it, since
its POS is not a verb and its REL is a modifier. Completing
this process, we obtain the answer shown in Figure 2.

3.2 Logical Operators
Logical operators (and, or) and the part of the NL query

they relate to will be converted by NaLIR to a logical pred-
icate which will be mapped by the assignment to one value
that satisfies the logical statement. To handle these parts of
the query, we augment Algorithm 1 as follows: immediately
following the first case (before the current Line 5), we add
a condition checking whether the node object has a logical
operator (“and” or “or”) as a child. If so, we call Procedure
HandleLogicalOps with the trees TQ and TA, the logical op-
erator node as u, the dependency-to-query-mapping τ and
the assignment α. The procedure initializes a set S to store
the nodes whose subtree needs to be replaced by the value
given to the logical predicate (Line 2). Procedure HandleL-
ogicalOps first locates all nodes in TQ that were mapped by
the dependency-to-query-mapping to the same query vari-
able as the sibling of the logical operator (denoted by u).
Then, it removes the subtrees rooted at each of their par-
ents (Line 8), adds the value (denoted by val) from the
database mapped to all of them in the same level as their
parents (Line 9), and finally, the suitable word for equality
is added as the parent of val in the tree by the procedure
AddParent (Line 10).

4. THE GENERAL CASE
In the previous section we have considered the case where

the provenance consists of a single assignment. In general,

Procedure HandleLogicalOps

input : A dependency tree TQ, TA, u ∈ VTA
,

dependency-to-query-mapping τ and an
assignment α

1 w ← parentTQ
(u);

2 S ← {w};
3 var ← τ(childrenTA

(w) \ u);
4 val← α(τ(childrenTA

(w) \ u));
5 for z ∈ siblingsTA

(w) do
6 if z has child mapped by τ to var then
7 S.Insert(z);

8 parentTA
(w).childrenTA

().Remove(S);
9 parentTA

(w).childrenTA
().Insert(val);

10 AddParent(TA, val) ;

[TAU] ·

A



([Tova M.] ·

B


([VLDB] ·

([2006] · [Querying...]
+ [2007] · [Monitoring...]))

+ [SIGMOD] · [2014] ·
([OASSIS...] + [A Sample...]))

 B

+ [Slava N.] · [OASSIS...] · [SIGMOD] · [2014])


A

+ [UPENN] · [Susan D.] · [OASSIS...] · [SIGMOD] · [2014]

(a) f1
[TAU] ·

([SIGMOD] · [2014] ·
([OASSIS...] ·

([Tova M.] + [Slava N.]))
+ [Tova M.] · [A Sample...])

+ [VLDB] · [Tova M.] ·
([2006] · [Querying...]

+ [2007] · [Monitoring...])
+ [UPENN] · [Susan D.] · [OASSIS...] · [SIGMOD] · [2014]

(b) f2
Figure 7: Provenance Factorizations

as illustrated in Section 2, it may include multiple assign-
ments. We next generalize the construction to account for
this. Note that a näıve solution in this respect is to generate
a sentence for each individual assignment and concatenate
the resulting sentences. However, already for the small-scale
example presented here, this would result in a long and un-
readable answer (recall Figure 5 consisting of six assign-
ments). Instead, we propose two solutions: the first based
on the idea of provenance factorization [42, 8], and the sec-
ond leveraging factorization to provide a summarized form.

4.1 NL-Oriented Factorization
We start by defining the notion of factorization in a stan-

dard way (see e.g. [42, 17]).

Definition 4.1. Let P be a provenance expression. We
say that an expression f is a factorization of P if f may
be obtained from P through (repeated) use of some of the
following axioms: distributivity of summation over multipli-
cation, associativity and commutativity of both summation
and multiplication.

Example 4.2. Re-consider the provenance expression in
Figure 5. Two possible factorizations are shown in Figure 7,
keeping only the values and omitting the variable names for
brevity (ignore the A,B brackets for now). In both cases, the
idea is to avoid repetitions in the provenance expression, by



taking out a common factor that appears in multiple sum-
mands. Different choices of which common factor to take
out lead to different factorizations.

How do we measure whether a possible factorization is
suitable/preferable to others? Standard desiderata [42, 17]
are that it should be short or that the maximal number of
appearances of an atom is minimal. On the other hand, we
factorize here as a step towards generating an NL answer;
to this end, it will be highly useful if the (partial) order of
nesting of value annotations in the factorization is consistent
the (partial) order of corresponding words in the NL query.
We will next formalize this intuition as a constraint over
factorizations. We start by defining a partial order on nodes
in a dependency tree:

Definition 4.3. Given an dependency tree T , we define
≤T as the descendant partial order of nodes in T : for each
two nodes, x, y ∈ V (T ), we say that x ≤T y if x is a descen-
dant of y in T .

Example 4.4. In our running example (Figure 4a) it holds
in particular that authors ≤ organization, 2005 ≤ authors,
conferences ≤ authors and papers ≤ authors, but papers,
2005 and conferences are incomparable.

Next we define a partial order over elements of a factoriza-
tion, intuitively based on their nesting depth. To this end,
we first consider the circuit form [6] of a given factorization:

Example 4.5. Consider the partial circuit of f1 in Figure
8. The root, ·, has two children; the left child is the leaf
“TAU” and the right is a + child whose subtree includes the
part that is “deeper” than “TAU”.

Given a factorization f and an element n in it, we denote
by levelf (n) the distance of the node n from the root of
the circuit induced by f multiplied by (−1). Intuitively,
levelf (n) is bigger for a node n closer to the circuit root.

·

+

·

sub-circuit

Tova M.

·

SIGMOD2014OASSISSlava N.

TAU

Figure 8: Sub-Circuit of f1

Our goal here is to define the correspondence between the
level of each node in the circuit and the level of its “source”
node in the NL query’s dependency tree (note that each
node in the query corresponds to possibly many nodes in
the circuit: all values assigned to the variable in the differ-
ent assignments). In the following definition we will omit the
database instance for brevity and denote the provenance ob-
tained for a query with dependency tree T by provT . Recall
that dependency-to-query-mapping maps the nodes of the
dependency tree to the query variables and the assignment
maps these variables to values from the database (Defini-
tions 2.4, 2.5, respectively).

Definition 4.6. Let T be a query dependency tree, let
provT be a provenance expression, let f be a factorization
of provT , let τ be a dependency-to-query-mapping and let

{α1, ...αn} be the set of assignments to the query. For each
two nodes x, y in T we say that x ≤f y if
∀i ∈ [n] : levelf (αi(τ(x))) ≤ levelf (αi(τ(y))).

We say that f is T -compatible if each pair of nodes x 6=
y ∈ V (T ) that satisfy x ≤T y also satisfy that x ≤f y.

Essentially, T -compatibility means that the partial order
of nesting between values, for each individual assignment,
must be consistent the partial order defined by the structure
of the question. Note that the compatibility requirement
imposes constraints on the factorization, but it is in general
far from dictating the factorization, since the order x ≤T y
is only partial – and there is no constraint on the order of
each two provenance nodes whose “origins” in the query are
unordered. Among the T -compatible factorizations, we will
prefer shorter ones.

Definition 4.7. Let T be an NL query dependency tree
and let provT be a provenance expression for the answer.
We say that a factorization f of provT is optimal if f is
T -compatible and there is no T -compatible factorization f ′

of provT such that | f ′ |<| f | (| f | is the length of f).

The following example shows that the T -compatibility
constraint still allows much freedom in constructing the fac-
torization. In particular, different choices can (and some-
times should, to achieve minimal size) be made for different
sub-expressions, including ones leading to different answers
and ones leading to the same answer through different as-
signments.

Example 4.8. Recall the partial order ≤T imposed by our
running example query, shown in part in Example 4.4. It
implies that in every compatible factorization, the organiza-
tion name must reside at the highest level, and indeed TAU
was “pulled out” first in Figure 8; similarly the author name
must be pulled out next. In contrast, since the query nodes
corresponding to title, year and conference name are un-
ordered, we may, within a single factorization, factor out
e.g. the year in one part of the factorization and the con-
ference name in another one. As an example, Tova M. has
two papers published in VLDB (“Querying...” and “Mon-
itoring”) so factorizing based on VLDB would be the best
choice for that part. On the other hand, suppose that Slava
N. had two paper published in 2014; then we could factorize
them based on 2014. The factorization could, in that case,
look like the following (where the parts taken out for Tova
and Slava are shown in bold):

[TAU] ·
([Tova M.] ·
([VLDB] ·

([2006] · [Querying...]
+ [2007] · [Monitoring...]))

+ [SIGMOD] · [2014] ·
([OASSIS...] + [A Sample...]))

+ ([Slava N.] ·
([2014] ·

([SIGMOD] · [OASSIS...]
+ [VLDB] · [Ontology...])))

The following example shows that in some cases, requiring
compatibility can come at the cost of compactness.

Example 4.9. Consider the query tree T depicted in Fig-
ure 4a and the factorizations provT (the identity factoriza-
tion) depicted in Figure 5, f1, f2 presented in Figure 7.



provT is of length 30 and is 5-readable, i.e., the maximal
number of appearances of a single variable is 5 (see [17]).
f1 is of length 20, while the length of f2 is only 19. In ad-
dition, both f1 and f2 are 3-readable. Based on those mea-
surements f2 seems to be the best factorization, yet f1 is
T -compatible with the question and f2 is not. For example,
conferences ≤T authors but “SIGMOD” appears higher
than “Tova M.” in f2. Choosing a T -compatible factoriza-
tion in f1 will lead (as shown below) to an answer whose
structure resembles that of the question, and thus translates
to a more coherent and fitting NL answer.

Note that the identity factorization is always T -compatible,
so we are guaranteed at least one optimal factorization (but
it is not necessarily unique). We next study the problem of
computing such a factorization.

4.2 Computing Factorizations
Recall that our notion of compatibility restricts the fac-

torizations so that their structure resembles that of the ques-
tion. Without this constraint, finding shortest factorizations
is coNP-hard in the size of the provenance (i.e. a boolean
expression) [27]. The compatibility constraint does not re-
duce the complexity since it only restricts choices relevant
to part of the expression, while allowing freedom for arbi-
trarily many other elements of the provenance. Also recall
(Example 4.8) that the choice of which element to “pull-out”
needs in general to be done separately for each part of the
provenance so as to optimize its size (which is the reason for
the hardness in [27] as well). In general:

Proposition 4.10. Given a dependency tree T , a prove-
nance expression provT and an integer k, deciding whether
there exists a T -compatible factorization of provT of size ≤ k
is coNP-hard.

Greedy Algorithm. Despite the above result, the con-
straint of compatibility does help in practice, in that we can
avoid examining choices that violate it. For other choices, we
devise a simple algorithm that chooses greedily among them.
More concretely, the input to Algorithm 2 is the query tree
TQ (with its partial order ≤TQ), and the provenance provTQ .
The algorithm output is a TQ-compatible factorization f .
Starting from prov, the progress of the algorithm is made in
steps, where at each step, the algorithm traverses the circuit
induced by prov in a BFS manner from top to bottom and
takes out a variable that would lead to a minimal expression
out of the valid options that keep the current factorization
T -compatible. Naturally, the algorithm does not guarantee
an optimal factorization (in terms of length), but performs
well in practice (see Section 5).

In more detail, we start by choosing the largest nodes ac-
cording to ≤TQ which have not been processed yet (Line 2).
Afterwards, we sort the corresponding variables in a greedy
manner based on the number of appearances of each variable
in the expression using the procedure sortByFrequentV ars
(Line 3). In Lines 4–5, we iterate over the sorted variables
and extract them from their sub-expressions. This is done
while preserving the ≤TQ order with the larger nodes, thus
ensuring that the factorization will remain TQ-compatible.
We then add all the newly processed nodes to the set
Processed which contains all nodes that have already been
processed (Line 6). Lastly, we check whether there are no
more nodes to be processed, i.e., if the set Processed in-
cludes all the nodes of TQ (denoted V (TQ), see the condition

in Line 7). If the answer is “yes”, we return the factoriza-
tion. Otherwise, we make a recursive call. In each such call,
the set Processed becomes larger until the condition in Line
7 holds.

Algorithm 2: GreedyFactorization

input : TQ - the query tree, ≤TQ
- the query partial

order, prov - the provenance, τ, α -
dependency-to-query-mapping and assignment
from nodes in TQ to provenance variables,
Processed - subset of nodes from V (TQ) which
were already processed (initially, ∅)

output: f - TQ-compatible factorization of provTQ

1 f ← prov;
2 Frontier ← {x ∈ V (TQ)|∀(y ∈
V (TQ) \ Processed) s.t. x 6≤TQ

y};
3 vars← sortByFrequentV ars({α(τ(x))|x ∈
Frontier}, f);

4 foreach var ∈ vars do
5 Take out var from sub-expressions in f not including

variables from {x|∃y ∈ Processed : x = α(τ(y))};
6 Processed← Processed ∪ Frontier;
7 if |Processed| = |V (TQ)| then
8 return f ;

9 else
10 return

GreedyFactorization(TQ, f, τ, α, Processed);

Example 4.11. Consider the query tree TQ depicted in
Figure 4a, and provenance prov in Figure 5. As explained
above, the largest node according to ≤TQ is organization,
hence “TAU” will be taken out from the brackets multi-
plying all summands that contain it. Afterwards, the next
node according to the order relation will be author, there-
fore we group by author, taking out “Tova M.”, “Slava N.”
etc. The following choice (between conference, year and pa-
per name) is then done greedily for each author, based on
its number of occurrences. For instance, V LDB appears
twice for Tova.M. whereas each paper title and year ap-
pears only once; so it will be pulled out. The polynomial
[SlavaN.] · [OASSIS...] · [SIGMOD] · [2014] will remain un-
factorized as all values appear once. Eventually, the algo-
rithm will return the factorization f1 depicted in Figure 7,
which is TQ-compatible and much shorter than the initial
provenance expression.

Proposition 4.12. Let f be the output of Algorithm 2
for the input dependency tree TQ, then f is TQ-compatible.

Complexity. Denote the provenance size by n. The algo-
rithm complexity is O(n2 · logn): at each recursive call, we
sort all nodes in O(n · logn) (Line 3) and the we handle (in
Frontier) at least one node (in the case of a chain graph) or
more. Hence, in the worst case we would have n recursive
calls, each one costing O(n · logn).

4.3 Factorization to Answer Tree
The final step is to turn the obtained factorization into

an NL answer. Similarly to the case of a single assignment
(Section 3), we devise a recursive algorithm that leverages
the mappings and assignments to convert the query depen-
dency tree into an answer tree. Intuitively, we follow the



structure of a single answer, replacing each node there by
either a single node, standing for a single word of the factor-
ized expression, or by a recursively generated tree, standing
for some brackets (sub-circuit) in the factorized expression.

In more detail, the algorithm operates as follows. We
iterate over the children of root (the root of the current sub-
circuit), distinguishing between two cases. First, for each
leaf child, p, we first (Line 4) assign to val the database
value corresponding to the first element of p under the as-
signment α (recall that p is a pair (variable,value)). We then
lookup the node containing the value mapped to p’s variable
in the answer tree TA and change its value to val in Lines
5, 6 (the value of p). Finally, in Line 7 we reorder nodes
in the same level according to their order in the factoriza-
tion (so that we output a semantically correct NL answer).
Second, for each non-leaf child, the algorithm performs a
recursive call in which the factorized answer subtree is com-
puted (Line 9). Afterwards, the set containing the nodes
of the resulting subtree aside from the nodes of TA are at-
tached to TF under the node corresponding to their LCA
in TF (Lines 10 – 13). In this process, we attach the new
nodes that were placed lower in the circuit in the most suit-
able place for them semantically (based on TA), while also
maintaining the structure of the factorization.

Algorithm 3: ComputeFactAnswerTree

input : α - an assignment to the NL query, TA - answer
dependency tree based on α, root - the root of
the circuit induced by the factorized provenance

output: TF - tree of the factorized answer

1 TF ← copy(TA);
2 foreach p ∈ childrenf (root) do
3 if p is a leaf then
4 val← α(var(p));
5 node← Lookup(var(p), α, TA);
6 ReplaceV al(val, node, TF );
7 Rearrange(node, TA, TF );

8 else
9 T recF = ComputeFactAnswerTree(α, TA, p);

10 RecNodes = V (T recF ) \ V (TA);

11 parentrecF ← LCA(recNodes);

12 parentF ← Corresponding node to parentrecF in

TF ;
13 Attach recNodes to TF under the parentF ;

14 return TF ;

Example 4.13. Consider the factorization f1 depicted in
Figure 7, and the structure of single assignment answer de-
picted in Figure 4b which was built based on Algorithm 1.
Given this input, Algorithm 3 will generate an answer tree
corresponding to the following sentence:

TAU is the organization of
Tova M. who published

in VLDB
’Querying...’ in 2006 and
’Monitoring...’ in 2007

and in SIGMOD in 2014
’OASSIS...’ and ’A sample...’

and Slava N. who published
’OASSIS...’ in SIGMOD in 2014.

UPENN is the organization of Susan D. who published
’OASSIS...’ in SIGMOD in 2014.

Note that the query has two results: “TAU” and “UPENN”.
“UPENN” was produced with a single assignment, but there

are 5 different assignments producing “TAU”. We now fo-
cus on this sub-circuit depicted in Figure 8. After initializing
TF , in Lines 3 – 7 the algorithm finds the value TAU and the
node corresponding to it in TA (which originally contained
the variable organization). It then copies this node to TF
and assigns it the value “TAU”. Next the algorithm handles
the + node with a recursive call in Line 9. This node has the
two sub-circuits rooted at the two · nodes (Line 8); one con-
taining [authors, TovaM.] and the other [authors, SlavaN.].
When traversing the sub-circuit containing “Slava N.”, the
algorithm simply copies the subtree rooted at the authors
node with the values from the circuit and arranges the nodes
in the same order as the corresponding variable nodes were
in TA (Line 7) as they are all leaves on the same level. Those
values will be attached under the LCA “of” (Lines 9 – 13).
The sub-circuit of “Tova M.” also has nested sub-circuits.
Although the node paper appears before the nodes year and
conference in the answer tree structure, the algorithm iden-
tifies that f1 extracted the variables “VLDB”, “SIGMOD”
and “2014”, so it changes their location so that they appear
earlier in the final answer tree. Finally, recursive calls are
made with the sub-circuit containing [authors, TovaM.].

Why require compatibility? We conclude this part
of the paper by revisiting our decision to require compati-
ble factorizations, highlighting difficulties in generating NL
answers using non-compatible factorizations.

Example 4.14. Consider factorization f2 from Figure 7.
“TAU” should be at the beginning of the sentence and fol-
lowed by the conference names “SIGMOD” and “VLDB”.
The second and third layers of f2 are composed of author
names (“Tova M.”, “Slava N.”), paper titles (“OASSIS”, “A
sample...”, “Monitoring...”) and publication years (2007,
2014). Changing the original order of the words such that
the conference name “SIGMOD” and the publication year
“2014” will appear before “Tova M.” breaks the sentence
structure in a sense. It is unclear how to algorithmically
translate this factorization into an NL answer, since we need
to patch the broken structure by adding connecting phrases.
One hypothetical option of patching f2 and transforming it
into an NL answer is depicted below. The bold parts of the
sentence are not part of the factorization and it is not clear
how to generate and incorporate them into the sentence al-
gorithmically. Even if we could do so, it appears that the
resulting sentence would be quite convoluted:

TAU is the organization of authors who published in
SIGMOD 2014

’OASSIS...’ which was published by
Tova M. and Slava N.

and Tova M. published ’A sample...’
and Tova M. published in VLDB

’Querying...’ in 2014
and ’Monitoring...’ in 2007.

UPENN is the organization of Susan D. who published
’OASSIS...’ in SIGMOD in 2014

Observe that the resulting sentence is much less clear than
the one obtained through our approach, even though it was
obtained from a shorter factorization f2; the intuitive reason
is that since f2 is not T -compatible, it does not admit a
structure that is similar to that of the question, thus is not
guaranteed to admit a structure that is coherent in Natural
Language. Interestingly, the sentence we would obtain in
such a way also has an edit distance from the question [18]
that is shorter than that of our answer, demonstrating that
edit distance is not an adequate measure here.



(A) [TAU] · Size([Tova M.],[Slava N.]) · Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

(B) [TAU]·(
[Tova M.] ·
Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

[Slava N.] · [OASSIS...] · [SIGMOD] · [2014])
Figure 9: Summarized Factorizations

(A) TAU is the organization of 2 authors who published
4 papers in 2 conferences in 2006 - 2014.
(B) TAU is the organization of Tova M. who published
4 papers in 2 conferences in 2006 - 2014 and Slava N.
who published ’OASSIS...’ in SIGMOD in 2014.

Figure 10: Summarized Sentences

4.4 From Factorizations to Summarizations
So far we have proposed a solution that factorizes multiple

assignments, leading to a more concise answer. When there
are many assignments and/or the assignments involve multi-
ple distinct values, even an optimal factorized representation
may be too long and convoluted for users to follow.

Example 4.15. Reconsider Example 4.13; if there are
many authors from TAU then even the compact representa-
tion of the result could be very long. In such cases we need
to summarize the provenance in some way that will preserve
the “essence” of all assignments without actually specifying
them, for instance by providing only the number of authors/-
papers for each institution.

To this end, we employ summarization, as follows. First,
we note that a key to summarization is understanding which
parts of the provenance may be grouped together. For that,
we use again the mapping from nodes to query variables: we
say that two nodes are of the same type if both were mapped
to the same query variable. Now, let n be a node in the cir-
cuit form of a given factorization f . A summarization of the
sub-circuit of n is obtained in two steps. First, we group the
descendants of n according to their type. Then, we summa-
rize each group separately. The latter is done in our imple-
mentation simply by either counting the number of distinct
values in the group or by computing their range if the values
are numeric. In general, one can easily adapt the solution
to apply additional user-defined “summarization functions”
such as “greater / smaller than X” (for numerical values) or
“in continent Y” for countries.

Example 4.16. Re-consider the factorization f1 from Fig-
ure 7. We can summarize it in multiple levels: the highest
level of authors (summarization “A”), or the level of papers
for each particular author (summarization “B”), or the level
of conferences, etc. Note that if we choose to summarize at
some level, we must summarize its entire sub-circuit (e.g. if
we summarize for Tova. M. at the level of conferences, we
cannot specify the papers titles and publication years).

Figure 9 presents the summarizations of sub-trees for the
“TAU” answer, where “size” is a summarization operator
that counts the number of distinct values and “range” is an
operator over numeric values, summarizing them as their
range. The summarized factorizations are further converted
to NL sentences which are shown in Figure 10. Summa-
rizing at a higher level results in a shorter but less detailed
summarization.
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Figure 11: System Architecture

Table 1: NL queries

Num.
Queries

1 Return the homepage of SIGMOD

2 Return the papers whose title contains ’OASSIS’

3 Return the papers which were published in
conferences in database area

4 Return the authors who published papers in
SIGMOD after 2005

5 Return the authors who published papers in
SIGMOD before 2015 and after 2005

6 Return the authors who published papers in
database conferences

7 Return the organization of authors who published
papers in database conferences after 2005

8 Return the authors from TAU who published
papers in VLDB

9 Return the area of conferences

10 Return the authors who published papers in
database conferences after 2005

11 Return the conferences that presented papers
published in 2005 by authors from organization

12 Return the years of papers published
by authors from IBM

5. IMPLEMENTATION AND EXPERIMENTS

5.1 System Architecture
NLProv is implemented in JAVA 8, extending NaLIR. Its

web UI is built using HTML, CSS and JavaScript. It runs
on Windows 8 and uses MySQL server as its underlying
database management system (the source code is available
in [21]). Figure 11 depicts the system architecture. First,
the user enters a query in Natural Language. This NL sen-
tence is fed to the augmented NaLIR system which interprets
it and generates a formal query. This includes the following
steps: a parser [37] generates the dependency tree for the NL
query. Then, the nodes of the tree are mapped to attributes
in the tables of the database and to functions, to form a for-
mal query. As explained, to be able to translate the results
and provenance to NL, NLProv stores the mapping from the
nodes of the dependency tree to the query variables. Once a
query has been produced, NLProv uses the SelP system [16]
to evaluate it while storing the provenance, keeping track
of the mapping of dependency tree nodes to parts of the
provenance. The provenance information is then factorized
(see Algorithm 2) and the factorization is compiled to an
NL answer (Algorithm 3) containing explanations.

Finally, the factorized answer is shown to the user. If
the answer contains excessive details and is too difficult to
understand, the user may choose to view summarizations.

5.2 User Study
We have examined the usefulness of the system through

a user study, involving 15 non-expert users. We have pre-
sented to each user 6 NL queries, namely No. 1–4, 6, and 7
from Table 1 (chosen as a representative sample). We have
also allowed each user to freely formulate an NL query of



Table 2: Sample use-cases and results
Query Single Assignment Multiple Assignments - Summarized
Return the homepage of SIGMOD http://www.sigmod2011.org/ is

the homepage of SIGMOD
Return the authors who published
papers in SIGMOD before 2015 and
after 2005

Tova M. published “Auto-
completion...” in SIGMOD in
2012

Tova M. published 10 papers in SIGMOD in 2006-
2014

Return the authors from TAU who
published papers in VLDB

Tova M. from TAU published
“XML Repository...” in VLDB

Tova M. from TAU published 11 papers in VLDB

Return the authors who published
papers in database conferences

Tova M. “published Auto-
completion...” in SIGMOD

Tova M. published 96 papers in 18 conferences

Return the organization of authors
who published papers in database
conferences after 2005

TAU is the organization of Tova
M. who published ‘OASSIS...’ in
SIGMOD in 2014

TAU is the organization of 43 authors who pub-
lished 170 papers in 31 conferences in 2006 - 2015

her choice, related to the MAS publication database [38].
2 users have not provided a query at all, and for 5 users
the query either did not parse well or involved aggregation
(which is not supported), leading to a total of 98 success-
fully performed tasks. For each of the NL queries, users were
shown the NL provenance computed by NLProv for cases of
single derivations, factorized and summarized answers for
multiple derivations (where applicable). Multiple deriva-
tions were relevant in 50 of the 98 cases. Examples of the
presented results are shown in Table 2.

We have asked users three questions about each case, ask-
ing them to rank the results on a 1–5 scale where 1 is the
lowest score: (1) is the answer relevant to the NL query?
(2) is the answer understandable? and (3) is the answer de-
tailed enough, i.e. supply all relevant information? (asked
only for answers including multiple assignments).

The results of our user study are summarized in Table 3.
In all cases, the user scores were in the range 3–5, with the
summarized explanation receiving the highest scores on all
accounts. Note in particular the difference in understand-
ability score, where summarized sentences ranked as signif-
icantly more understandable than their factorized counter-
parts. Somewhat surprisingly, summarized sentences were
even deemed by users as being more detailed than factorized
ones (although technically they are of course less detailed),
which may be explained by their better clarity (users who
ranked a result lower on understandability have also tended
to ranked it low w.r.t. level of detail).

Table 3: Users ranking
Category 3 4 5 Average
Single
Relevant 4 10 84 4.82
Understandable 7 25 66 4.60

Multiple
Relevant 0 7 43 4.86
Understandable 4 13 33 4.58
Detailed 3 7 40 4.74

Summarized
Relevant 2 2 46 4.88
Understandable 3 3 44 4.82
Detailed 2 5 43 4.82

5.3 Scalability
Another facet of our experimental study includes runtime

experiments to examine the scalability of our algorithms.
Here again we have used the MAS database whose total size
is 4.7 GB, and queries No. 1–12 from Table 1, running the
algorithm to generate NL provenance for each individual an-
swer. The experiments were performed on a i7 processor and

Table 4: Computation time (sec.), for the MAS database

Query
Query Eval.

Time
Fact.
Time

Sentence
Gen. Time

NLProv
Time

4 0.9 0.038 0.096 0.134
5 0.6 0.03 0.14 0.17
6 33 0.62 2.08 2.7
7 20.5 1.1 3.1 4.2
8 2.4 0.001 0.001 0.002
9 0.01 0.011 0.001 0.012
10 21.3 0.53 2.23 2.76
11 53.7 3.18 6.46 9.64
12 18.8 3.22 1.73 4.95

32GB RAM with Windows 8. As expected, when the prove-
nance includes a single assignment per answer, the runtime
is negligible (this is the case for queries No. 1–3). We thus
show the results only for queries No. 4–12.

Table 4 includes, for each query, the runtime required by
our algorithms to transform provenance to NL in factorized
or summarized form, for all query results (as explained in
Section 4, we can compute the factorizations independently
for each query result). We show a breakdown of the execu-
tion time of our solution: factorization time, sentence gener-
ation time, and total time incurred by NLProv (we note that
the time to compute summarizations given a factorization
was negligible). For indication on the complexity level of
the queries, we also report the time incurred by standard
(provenance-oblivious) query evaluation, using the mySQL
engine. We note that our algorithms perform quite well
for all queries (overall NLProv execution has 16% overhead),
even for fairly complex ones such as queries 7, 11, and 12.

Figure 12a (see next page) presents the execution time
of NL provenance computation for an increasing number of
assignments per answer (up to 5000, note that the maxi-
mal number in the real data experiments was 4208). The
provenance used for this set of experiments was such that
the only shared value in all assignments was the result value,
so the factorization phase is negligible in terms of execution
time, taking only about one tenth of the total runtime in
the multiple assignments case. Most computation time here
is incurred by the answer tree structuring. We observe that
the computation time increased moderately as a function of
the number of assignments (and is negligible for the case of a
single assignment). The execution time for 5K assignments
with unique values was 1.5, 2, 1.9, 4.9, 0.006, 0.003, 2.6, 5.3,
and 3.7 seconds resp. for queries 4–12. Summarization time
was negligible, less than 0.1 seconds in all cases.

For the second set of experiments, we have fixed the num-
ber of assignments per answer at the maximum 5K and
changed only the domain of unique values from which prove-
nance expressions were generated. The domain size per an-
swer, per query variable varies from 0 to 5000 (this cannot
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(b) Sentence gen. time

Figure 13: Breakdown for synthetic experiments

exceed the number of assignments). Note that the running
time increases as a function of the number of unique val-
ues: when there are more unique values, there are more
candidates for factorization (so the number of steps of the
factorization algorithm increases), each factorization step is
in general less effective (as there are more unique values for
a fixed size of provenance, i.e. the degree of value shar-
ing across assignments decreases), and consequently the re-
sulting factorized expression is larger, leading to a larger
overhead for sentence generation. Indeed, as our breakdown
analysis (Figure 13) shows, the increase in running time oc-
curs both in the factorization and in the sentence generation
time. Finally, Figure 12c shows the expected increase in the
factorized expression size w.r.t the number of unique values.

6. RELATED WORK

NL interfaces. Multiple lines of work (e.g. [34, 4, 35,
48, 43, 47, 1]) have proposed NL interfaces to formulate
database queries, and additional works [20] have focused on
presenting the answers in NL, typically basing their trans-
lation on the schema of the output relation. Among these,
works such as [4, 35] also harness the dependency tree in or-
der to make the translation form NL to SQL by employing
mappings from the NL query to formal terms. The work of
[33] has focused on the complementary problem of translat-
ing SQL queries (rather than their answers or provenance)
to NL. To our knowledge, no previous work has focused on
formulating the provenance of output tuples in NL. This re-
quires fundamentally different techniques (e.g. that of fac-
torization and summarization, building the sentence based
on the input question structure, etc.) and leads to answers
of much greater detail.

Provenance. The tracking, storage and presentation of prove-
nance have been the subject of extensive research in the
context of database queries, scientific workflows, and others
(see e.g. [7, 28, 25, 9, 26, 14, 13, 24]) while the field of
provenance applications has also been broadly studied (e.g.
[16, 39, 45]). A longstanding challenge in this context is the
complexity of provenance expressions, leading to difficulties
in presenting them in a user-comprehensible manner. Ap-
proaches in this respect include showing the provenance in
a graph form [46, 40, 29, 19, 14, 12, 2], allowing user control
over the level of granularity (“zooming” in and out [11]),
or otherwise presenting different ways of provenance visu-
alization [28]. Other works have studied allowing users to
query the provenance (e.g. [31, 30]) or to a-priori request
that only parts of the provenance are tracked (see for ex-
ample [16, 22, 23]). Importantly provenance factorization
and summarization have been studied (e.g., [8, 5, 42, 44]) as
means for compact representation of the provenance. Usu-
ally, the solutions proposed in these works aim at reducing
the size of the provenance but naturally do not account for
its presentation in NL; we have highlighted the different con-
siderations in context of factorization/summarization in our
setting. We note that value-level provenance was studied in
[41, 10] to achieve a fine-grained understanding of the data
lineage, but again do not translate the provenance to NL.

7. CONCLUSION AND LIMITATIONS
We have studied in this paper, for the first time to our

knowledge, provenance for NL queries. We have devised
means for presenting the provenance information again in
Natural Language, in factorized or summarized form.

There are two main limitations to our work. First, a part
of our solution was designed to fit NaLIR, and will need to be
replaced if a different NL query engine is used. Specifically,
the “sentence generation” module will need to be adapted to
the way the query engine transforms NL queries into formal
ones; our notions of factorization and summarization are
expected to be easier to adapt to a different engine. Sec-
ond, our solution is limited to Conjunctive Queries. One
of the important challenges in supporting NL provenance
for further constructs such as union and aggregates is the
need to construct a concise presentation of the provenance
in NL (e.g. avoiding repetitiveness in the provenance of
union queries, summarizing the contribution of individual
tuples in aggregate queries, etc.).
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