Natural language (NL) interfaces to databases allow users without technical background to query the database and get the results. Users of such systems may be surprised by the absence of certain expected results. To this end, we propose to demonstrate NLProveNAns, a system that allows non-expert users to view explanations for non-answers of interest. The explanations are shown in an intuitive manner, by highlighting parts of the original NL query that are intuitively “responsible” for the absence of the expected result. Our solution builds upon and combines recent advancements in Natural Language Interfaces to Databases and models for why-not provenance. In particular, the systems can provide explanations in one of two flavors corresponding to two different why-not provenance models; a short explanation based on the frontier picky model, and a detailed explanation based on the why-not polynomial model.