DPXPlain: Privately Explaining Aggregate Query Answers


Differential privacy (DP) is the state-of-the-art and rigorous notion of privacy for answering aggregate database queries while preserving the privacy of sensitive information in the data. In today’s era of data analysis, however, it poses new challenges for users to understand the trends and anomalies observed in the query results. Is the unexpected answer due to the data itself, or is it due to the extra noise that must be added to preserve DP? In the second case, even the observation made by the users on query results may be wrong. In the first case, can we still mine interesting explanations from the sensitive data while protecting its privacy? To address these challenges, we present a three-phase framework DPXPlain, which is the first system to the best of our knowledge for explaining groupby aggregate query answers with DP. In its three phases, DPXPlain (a) answers a group-by aggregate query with DP, (b) allows users to compare aggregate values of two groups and with high probability assesses whether this comparison holds or is flipped by the DP noise, and (c) eventually provides an explanation table containing the approximately ‘top-k’ explanation predicates along with their relative influences and ranks in the form of confidence intervals, while guaranteeing DP in all steps. We perform an extensive experimental analysis of DPXPlain with multiple use-cases on real and synthetic data showing that DPXPlain efficiently provides insightful explanations with good accuracy and utility.

In PVLDB 16(1), 2023