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ABSTRACT
Datasets may include errors, and specifically violations of integrity
constraints, for various reasons. Standard techniques for “minimal-
cost” database repairing resolve these violations by aiming for a
minimum change in the data, and in the process, may sway rep-
resentations of different sub-populations. For instance, the repair
may end up deleting more females than males, or more tuples from
a certain age group or race, due to varying levels of inconsistency
in different sub-populations. Such repaired data can mislead con-
sumers when used for analytics, and can lead to biased decisions for
downstream machine learning tasks. We study the “cost of repre-
sentation” in subset repairs for functional dependencies. In simple
terms, we target the question of howmany additional tuples have to
be deleted if we want to satisfy not only the integrity constraints but
also representation constraints for given sub-populations. We study
the complexity of this problem and compare it with the complexity
of optimal subset repairs without representations. While the prob-
lem is NP-hard in general, we give polynomial-time algorithms for
special cases, and efficient heuristics for general cases. We perform
a suite of experiments that show the effectiveness of our algorithms
in computing or approximating the cost of representation.
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1 INTRODUCTION
Real-world datasets may violate integrity constraints that are ex-
pected to hold in the dataset for various reasons such as noisy
sources, imprecise extraction, integration of conflicting sources,
and synthetic data generation. Among the basic data science tasks,
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repairing such noisy data is considered as one of the most time-
consuming and important steps, as it lays the foundation for sub-
sequent tasks that rely on high-quality data [27, 44]. Therefore,
the problem of automatic data repairing has been the focus of
much prior work [1, 4, 12, 18, 21, 22, 31, 38, 46]. The existing lit-
erature on data repairing typically has the following high-level
goal: given a source database that violates a set of integrity con-
straints, find the closest database that satisfies the constraints. This
problem has been studied in many settings, by varying the type
of integrity constraints [6, 10, 30], changing the database in dif-
ferent forms [4, 10, 12, 29, 38, 41], and even relaxing it in various
manners [46, 47]. Among these, a fundamental and well-studied
instance of the problem is that of data repairing with tuple deletions
(called subset repair or S-repair) [29, 38, 42, 43], when the integrity
constraints are Functional Dependencies (FDs), e.g., a zip code can-
not belong to two different cities. The aim is to find the minimum
number of deletions in the input database so that the resulting
database satisfies the FDs. In particular, previous work [38] has
characterized the tractable and intractable cases in this setting.

Database repair may drastically sway the proportions of different
populations in the data, specifically the proportions of various
sensitive sub-populations. For instance, the repair may end up
deleting more females than males, or more tuples from a certain
age group, race, or disability status, as illustrated in the sequel in
an example. This may happen simply by chance while selecting
one of many feasible optimal repairs, or, due to varying levels of
inconsistency in different sub-populations in the collected data,
which may arise due to varying familiarity with the data collection
technology, imputing varying amounts of missing data in different
groups due to concerns for ageism and other biases, etc. If data
is repaired agnostic to the representations, it can lead to biased
decisions for downstream (e.g., ML prediction) tasks [23, 24, 50],
and mislead consumers when used for analytics. Thus, it is only
natural to require that the process of data repair that ensures the
satisfaction of FDs, will also guarantee desired representation of
different groups. Recent works have proposed ways of ensuring
representation of different sub-populations (especially sensitive
ones) and diversity in query results by considering different types
of constraints [33, 51]. However, to our knowledge, such aspects
have not been considered in the context of data repairing.

In this work, we embark on an exploration of the problem of
measuring the cost of representation in data repair. In particular,
we treat the representation of sub-populations on par with data
consistency. Our framework allows for FDs as well as a novel type
of constraint called representation constraint (RC). This constraint
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Figure 1: Disability status and cost of representation for ACS
data.

specifies the proportions of the different values in a sensitive at-
tribute (e.g., gender, race, disability status), such as “the percentage
of population with disability should be at least 20%,” “the percent-
ages of population with disability vs. non-disability should be exactly
20%/80%,” etc. We then formally define the problem of finding an
optimal representative S-repair (RS-repair for short) as finding the
minimum number of deletions required to satisfy both the FDs and
the RC. We devise algorithms that consider RCs as an integral part
of the repairing process and compare the cost of optimal S-repair
with the cost of optimal RS-repair to understand the cost of repre-
sentation that one has to pay for maintaining representations of a
sensitive attribute in a dataset after repair.

Example 1. Consider a noisy dataset constructed from the ACS
PUMS, with data collected from the US demographics survey by the
Census Bureau. It is expected to satisfy a set of 9 FDs: Citizenship to
Nativity, State to Division, etc. (more details in Section 6). We focus
on the sensitive attributeDisability, which has a 20%/80% distribution
of disabled and non-disabled people in the dataset, where the data for
the disabled group is 4-times more noisy than the non-disabled group.

Suppose that we wish to repair the dataset by subset repair (S-
repair) such that all FDs are satisfied. One can write a simple integer
linear program (ILP) to find the maximum S-repair so that for each
pair of tuples that violate an FD, at least one is removed. Although
the ILP method finds an optimal (maximal-size) S-repair, as shown
in Figure 1a, a side-effect of this repair is the drop in the proportion
of people with disabilities from 20% to 9%, which makes a minority
group less represented further. ILP is not a scalable method for S-repair;
if we were to use an efficient approximate algorithm [38, 43], no
people with disability would stay in the repaired data. Consequently,
both S-repairs may introduce biases against people with disability in
downstream tasks that use the repaired datasets.

The above example shows that representation-agnostic S-repair
methods can badly affect representations of groups. Our aim is to
answer the following question: What would it take to repair the
database by an S-repair if we insisted on the representation? Figure 1
shows that “Optimal S-repair” retains 64.25% of the original tuples,
but does not satisfy the representation, while it is possible to obtain
an RS-repair that retains 34.25% of the tuples. Although retaining
only 34.25% of the original tuples after the optimal RS-repair looks
pessimistic, this cost is necessary in this example. In other words,
for this dataset and specific noise, if we insist on preserving the
20%/80% ratio of representation among disabled and non-disabled

people respectively,1 we can retain at most 34.25% of the original
tuples, and will be forced to remove 1.8 times the number of tuples
than a representation-agnostic optimal S-repair. Since computing
the optimal RS-repair is not always possible, in this paper, we study
multiple other approaches for obtaining the RS-repairs.

Contributions. We focus on understanding the cost of repre-
sentations for S-repair,2 where the number of deleted tuples is
used to measure the repair quality. Algorithms and complexity of
S-repair, which is NP-hard in general, has been studied in prior
work [22, 38, 41, 43]. Whenever finding an optimal (largest) S-repair
is an intractable problem, so is the problem of finding an optimal
RS-repair. The complexity of finding an optimal S-repair has been
studied by Livshits et al. [38], who established a complete classifica-
tion of complexity (dichotomy) based on the structural properties
of the input FD set. We show that finding an RS-repair can be com-
putationally hard even if the FDs are such that an optimal S-repair
can be computed in polynomial time.

Next we investigate the complexity of computing an optimal
RS-repair for special cases of FDs and RC. We present a polynomial-
time dynamic-programming-based algorithm for a well-studied
class of FDs, namely the LHS-chains [37, 39], when the domain
of the sensitive attribute is bounded (e.g., gender, race, disability
status). For the general case, we phrase the problem as an ILP, and
devise heuristic algorithms that produce RS-repairs by rounding
the ILP and by using the algorithm for LHS-chains.

Finally, we perform an experimental study using three real-world
datasets. We demonstrate the effect of representation-agnostic S-
repairs on the representations of the sensitive attribute and show
that optimal RS-repairs delete 1× to 2× tuples compared to op-
timal S-repairs in Section 6.2, depending on how the noises are
distributed. We conduct a thorough comparison between our al-
gorithms, existing baselines, and a version of these baselines with
post-hoc processing that further deletes tuples until the RC is satis-
fied, and analyze the quality and runtime of different approaches.
We show that representation-aware subset-repair algorithms can
find superior RS-repairs in terms of the number of deletions. In
summary, our contributions are as follows. (1) We introduce the
problem of finding an optimal RS-repair as a way of measuring the
cost of representation. (2) We present a complexity analysis of the
problem. (3) We devise algorithms, including polynomial-time and
ILP algorithms with optimality guarantees, and heuristics. and (4)
We conduct a thorough experimental study of our solutions and
show their effectiveness compared to the baselines.

Due to space limitation, all proofs appear in the full version [35].

2 PRELIMINARIES
In this section, we present the background concepts and notations
used in the rest of the paper.

A relation (or table) 𝑅 is a set of tuples over a relation schema
S = (𝐴1, . . . , 𝐴𝑚), where𝐴1, . . . , 𝐴𝑚 are the attributes of 𝑅. A tuple
𝑡 in 𝑅 maps each 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑚, to a value that we denote by 𝑡 [𝐴𝑖 ].

1More settings varying noise and representations are given in the experiments (Sec-
tion 6) and full version [35].
2We note that “update repair” methods, e.g., Holoclean [46] and Nadeef [14], have
their own limitations or challenges when considering the cost of representations as
discussed in Section 8.
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This is referred to as a cell in 𝑅 in the sequel. We use |𝑅 | to denote
the number of tuples in 𝑅. The domain of an attribute 𝐴𝑖 , denoted
by 𝐷𝑜𝑚(𝐴 𝑗 ), is the range of values that 𝐴𝑖 can be assigned to by 𝑡 .
Abusing notation, we denote by 𝑡 [𝑋 ] the projection of tuple 𝑡 over
the set 𝑋 of attributes, i.e., 𝑡 [𝑋 ] = 𝜋𝑋 𝑡 .

A functional dependency (FD) is denoted as 𝑋 → 𝑌 , where 𝑋
and 𝑌 are disjoint sets of attributes. 𝑋 is termed the left-hand side
(LHS), and 𝑌 is the right-hand side (RHS) of the FD. A relation 𝑅
satisfies 𝑋 → 𝑌 if every pair of tuples that agree on 𝑋 also agree
on 𝑌 . Formally, for every pair 𝑡𝑖 , 𝑡 𝑗 in 𝑅, if 𝑡𝑖 [𝑋 ] = 𝑡 𝑗 [𝑋 ], then
𝑡𝑖 [𝑌 ] = 𝑡 𝑗 [𝑌 ]. A relation 𝑅 satisfies a set Δ of FDs, denoted 𝑅 |= Δ,
if it satisfies each FD from Δ. When Δ is clear from the context, we
refer to 𝑅 as clean (respectively, noisy) if it satisfies (respectively,
violates) Δ. Without loss of generality, we assume that the RHS 𝑌
of each FD is a single attribute, otherwise we break the FD into
multiple FDs. Note that the LHS 𝑋 can contain multiple attributes.
We also assume that the FDs 𝑋 → 𝑌 are non-trivial, i.e., 𝑌 ∉ 𝑋 .

Two types of database repairs have been mainly studied. A subset
repair (S-repair) [22, 29, 38, 43] changes a noisy relation by removing
tuples, while an update repair [21, 38, 46] changes values of cells.
Each of the two has pros and cons. While the update repair retains
the size of the dataset, it may generate invalid tuples (as discussed
in Section 1). An S-repair uses original tuples, but at the cost of
losing others. The complexity of computing an optimal S-repair
is well understood [38], whereas the picture for update repairs is
still quite partial [29, 38]. Hence, we focus on S-repairs and leave
the update repairs for future work. Formally, given 𝑅 and Δ, an
S-repair is a subset of tuples3 𝑅′ ⊆ 𝑅 such that 𝑅′ |= Δ. 𝑅′ is called
an optimal subset repair (or optimal S-repair) if for all S-repairs 𝑅′′
of 𝑅 given Δ, |𝑅′ | ≥ |𝑅′′ | (there is a weighted version when there
is a weight𝑤 (𝑡) associated with each input tuple 𝑡 ).

Computing optimal S-repairs. Livshits et al. [38] proposed an
exact algorithmic characterization (dichotomy) for computing an
optimal S-repair. Moreover, it showed that when a specific proce-
dure is not able to return an answer, the problem is NP-hard for the
input Δ in data complexity [53]. We briefly discuss these concepts
and algorithms as we will use them in the sequel.

A consensus FD ∅ → 𝐴 is an FD where the LHS is the empty
set, which means that all values of the attribute 𝐴 must be the
same in the relation. A common LHS of an FD set Δ is an attribute
𝐴 shared by the LHS of all FDs in Δ, e.g., 𝐴 is a common LHS in
Δ = {𝐴 → 𝐵,𝐴𝐶 → 𝐷}. An LHS marriage is a pair of distinct
left-hand sides (𝑋1, 𝑋2) such that every FD in Δ contains either 𝑋1
or 𝑋2 (or both), and 𝑐𝑙Δ (𝑋1) = 𝑐𝑙Δ (𝑋2), where 𝑐𝑙Δ (𝑋 ) is the closure
of 𝑋 under Δ, i.e. all attributes that can be inferred starting with 𝑋
using Δ. For instance, (𝐴, 𝐵) forms a LHS marriage in Δ = {𝐴 →
𝐵, 𝐵 → 𝐴,𝐴→ 𝐶} where 𝑐𝑙Δ (𝐴) = 𝑐𝑙Δ (𝐵) = {𝐴, 𝐵,𝐶}.

Using the above concepts, three simplification methods for Δ
are proposed, preserving the complexity of computing an optimal
S-repair. This leads to a dichotomy: cases where computing an
optimal S-repair is either polynomial-time solvable or NP-hard. In

3We note that in prior work [38, 42], an S-repair has been defined as a “maximal” subset
𝑅′ ⊆ 𝑅 such that 𝑅′ |= Δ. We consider even non-maximal subsets as valid S-repairs
since in our problem, additional tuples from S-repairs may have to be removed to
satisfy both FDs and representations.

the polynomial-time cases, dynamic programming can be used to
recursively find an optimal S-repair.

3 REPRESENTATIVE REPAIRS
We now formally define the problem of finding an optimal RS-repair,
and give an overview of complexity results and algorithms.

3.1 Representation of a Sensitive Attribute
Sensitive Attribute. Without loss of generality, we denote the last

attribute 𝐴𝑠 of S as the sensitive attribute.4 We denote the domain
of 𝐴𝑠 in 𝑅 as 𝐷𝑜𝑚(𝐴𝑠 ) = {𝑎1, · · · , 𝑎𝑘 }, therefore 𝑘 = |𝐷𝑜𝑚(𝐴𝑠 ) |
representing the size. A special case is when 𝐴𝑠 is binary, i.e., the
sensitive attribute has two values: (1) a minority or protected group
of interest (e.g., female, people with disability, and other underrep-
resented groups), and (2) the non-minority group or others.

Definition 1 (RepresentationConstraint). LetS be a schema
and 𝐴𝑠 a sensitive attribute. A lower-bound constraint is an expres-
sion of the form %𝑎 ≥ 𝑝 where 𝑎 is a value and 𝑝 is a number in [0, 1].
A Representation Constraint (RC) 𝜌 is a finite set of lower-bound
constraints. A relation 𝑅 satisfies %𝑎 ≥ 𝑝 if at least 𝑝 · |𝑅 | of the tuples
𝑡 ∈ 𝑅 satisfy 𝑡 [𝐴𝑠 ] = 𝑎. A relation 𝑅 satisfies an RC 𝜌 , denoted 𝑅 |= 𝜌 ,
if 𝑅 satisfies every lower-bound constraint in 𝜌 .

We assume that 𝜌 contains only constraints %𝑎 ≥ 𝑝 where 𝑎 is
in the active domain of 𝐴𝑠 ; otherwise, for 𝑝 > 0 the constraint is
unsatisfiable by any S-repair, and for 𝑝 = 0 the constraint is trivial
and can be ignored. We also assume that 𝜌 has no redundancy, that
is, it contains at most one lower-bound %𝑎 ≥ 𝑝 for every value 𝑎.
We can also assume that the numbers 𝑝 in 𝜌 sum up to at most one,
since otherwise the constraint is, again, infeasible.

The RC 𝜌 is called an exact RC if
∑𝑘
𝑖=1 𝑝𝑖 = 1 because the only

way to satisfy the individual constraints %𝑎𝑖 ≥ 𝑝𝑖 is to match 𝑝𝑖
exactly, i.e., %𝑎𝑖 = 𝑝𝑖 for all 1 ≤ 𝑖 ≤ 𝑘 . We refer to the lower-bound
proportion 𝑝ℓ of value 𝑎ℓ in 𝜌 by 𝜌 (𝑎ℓ ).

For simplicity, our implementation restricts attention so that
each proportion (𝑝ℓ ) in the input is a rational number, represented
by an integer numerator and an integer denominator. Moreover, if
one does not specify a lower-bound constraint for some 𝑎𝑜 , then we
treat it as a trivial lower-bound constraint in the form of %𝑎𝑜 ≥ 0
or formally 𝜌 (𝑎𝑜 ) = 𝑝𝑜 = 0.

Example 2. Suppose that a relation 𝑅 with the schema S =

(𝐴1, 𝐴2, 𝐴3) and the sensitive attribute 𝐴3 contains four tuples {(1, 𝑎
, 3), (2, 𝑏, 5), (3, 𝑐, 9), (4, 𝑑, 3)}. The RC is 𝜌 = {%3 ≥ 1

3 ,%5 ≥
1
3 ,%9 ≥

1
3 }. 𝑅 does not satisfy 𝜌 , but both the subset 𝑅1 = {(1, 𝑎, 3), (2, 𝑏, 5),
(3, 𝑐, 9)} and the subset 𝑅2 = {(2, 𝑏, 5), (3, 𝑐, 9), (4, 𝑑, 3)} satisfy it.

Next we define an RS-repair for a set of FDs and an RC:

Definition 2 (RS-repair). Given a relation 𝑅 with the sensitive
attribute 𝐴𝑠 , a set Δ of FDs, and an RC 𝜌 , a subset 𝑅′ ⊆ 𝑅 is called
an RS-repair (representative subset repair) w.r.t. Δ and 𝜌 if:
• 𝑅′ is an S-repair of 𝑅, i.e., 𝑅′ |= Δ,
• 𝑅′ satisfies the RC 𝜌 on 𝐴𝑠 , i.e., 𝑅′ |= 𝜌 .

4This initial study of cost of representations by subset repairs considers representations
of sub-populations defined on a single sensitive attribute. Representations on a set of
sensitive attributes will be an interesting future work (Section 8).
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We call 𝑅′ an optimal RS-repair of 𝑅 w.r.t. Δ and 𝜌 if for all RS-repairs
𝑅′′ of 𝑅, we have |𝑅′′ | ≤ |𝑅′ |.

Example 3. Continuing Example 2, if Δ = {𝐴1 → 𝐴2}, then either
𝑅1 or 𝑅2 in can be an optimal RS-repair of 𝑅 w.r.t. Δ and 𝜌 .

We study the problem of computing an optimal RS-repair. For
our complexity analysis, we assume that S and Δ are fixed, and the
input consists of the relation 𝑅 and the RC 𝜌 .

Choice of repair model for the cost of representation. In this initial
study of repairs with representation, we consider S-repair (deletion)
as the repair model. Multiple prior works have theoretically ana-
lyzed S-repairs (without the cost of representation) [22, 29, 38, 43],
and the complexity of achieving an optimal S-repair based on the
structure of the input FD set is well understood [38]. We focus
on the framework and theoretical analysis for this simpler variant
of the repair model with the representation criteria. Additionally,
S-repairs keep tuples from the original dataset and do not introduce
new combinations of values within the same tuple while repairing
the data. We use the number of deletions to define the optimal
RS-repair as an extension for defining S-repair models from prior
work. Extensions to other repair models and other cost functions
(e.g., based on the effects on downstream tasks) are important and
challenging future work (see Section 8).

3.1.1 NP-Hardness of Computing Optimal RS-Repairs. In this sec-
tion, we consider the relation 𝑅 and the RC 𝜌 as inputs, while the
schema S and the FD set Δ are fixed. We first note that since the
problem of finding an optimal RS-repair is a generalization of the
problem of finding an optimal S-repair, as expected, in all cases
where finding an optimal S-repair is NP-hard, finding an optimal
RS-repair is also NP-hard. Theorem 1 shows that computing an
optimal RS-repair is NP-hard even for a single FD. We prove this
theorem by a reduction from 3-SAT (proof in [35]).

Theorem 1. The problem of finding an optimal RS-repair is NP-
hard already for S = (𝐴, 𝐵,𝐶) and Δ = {𝐴→ 𝐵}.

It is important to note that if Δ contains a single FD, comput-
ing an optimal S-repair can be done in polynomial time [38]. The
key distinction is on (the size of) the active domain of the sensitive
attribute. Theorem 2 in the next subsection describes a tractable sce-
nario when the active domain of the sensitive attribute is bounded.

3.2 Overview of Our Algorithms for Computing
Optimal RS-Repairs

As shown by Livshits et al. [38], computing an optimal S-repair is
poly-time solvable if Δ can be reduced to ∅ by repeated applications
of three simplification processes: (i) consensus FDs (remove FDs of
the form ∅ → 𝑌 ), (ii) common LHS (remove attribute𝐴 from Δ, such
that 𝐴 belongs to the LHS of all FDs in Δ), and (iii) LHS marriage,
which is slightly more complex. We will show that reduction to ∅
only by the first two simplification processes entails a polynomial
time algorithm for computing optimal RS-repairs when the sensitive
attribute 𝐴𝑠 has a fixed number of distinct values (e.g., for common
sensitive attributes gender, race, disability status, etc.). Before we
formally state the theorem, we take a closer look at the class of FD
sets that reduces to ∅ by the first two simplifications.

Definition 3. An FD set Δ is an LHS-chain [36, 38] if for every
two FDs 𝑋1 → 𝑌1 and 𝑋2 → 𝑌2, either 𝑋1 ⊆ 𝑋2 or 𝑋2 ⊆ 𝑋1 holds.

For instance, the FD setΔ1 = {𝐴→ 𝐵,𝐴𝐶 → 𝐷} is an LHS-chain.
LHS-chains have been studied for S-repairs in prior work [36, 38].
[36] showed that the class of LHS-chains consists of precisely the
FD sets where the S-repairs can be counted in polynomial time
(assuming P ≠ #P). [38] observed that FD sets that form an LHS-
chain can be simplified to the empty set by repeatedly applying
simplifications on only the common LHS and the consensus FD. We
show in the following proposition that the converse also holds:

Proposition 4. A set Δ of FDs reduces to the ∅ by repeated appli-
cations of consensus FD and common LHS simplifications if and only
if Δ is an LHS-chain.

The following theorem states our main algorithmic result.

Theorem 2. Let S be a fixed schema and Δ be a fixed FD set that
forms an LHS chain. Suppose that the domain size of the sensitive
attribute 𝐴𝑠 is fixed. Then, an optimal RS-repair can be computed in
polynomial time.

We present and analyze a dynamic programming (DP)-based
algorithm LhsChain-DP(𝑅,Δ, 𝜌) in Section 4 to prove the above
theorem. LhsChain-DP not only gives an optimal algorithm for the
special case of LHS-chains, but will also be used in Section 5 as a
procedure to obtain efficient heuristics for general FD sets where
computing an optimal RS-repair can be NP-hard. We give another
(non-polynomial-time) optimal algorithm and several polynomial-
time heuristics for cases with general FD sets in Section 5.

3.3 Can we Convert an S-repair to an RS-repair?
As discussed in the introduction for Example 1, an intuitive heuristic
to compute an RS-repair is (i) first compute an S-repair 𝑅′ (optimal
or non-optimal) of 𝑅 w.r.t. Δ, and (ii) then delete additional tuples
from 𝑅′ to obtain 𝑅′′ that also satisfies the RC 𝜌 . Following this idea,
we present the PostClean algorithm, which takes a relation 𝑅 and
an RC 𝜌 , and returns a maximum subset 𝑅′ of 𝑅 such that 𝑅′ |= 𝜌 .
PostClean has a dual use in this paper. First, it is used as a subroutine
in several algorithms in the later sections when an S-repair of 𝑅
is used as the input relation to PostClean. Second, in Section 6,
we also compose PostClean with several known approaches for
computing S-repairs to create baselines for our algorithms.

Overview of the PostClean algorithm. The PostClean algorithm
intuitively works as follows (pseudo-code and analysis are in [35]).
Recall from Section 3.1 that 𝜌 (𝑎ℓ ) denotes the lower bound on the
fraction of the value 𝑎ℓ in the tuples retained by the RS-repair. Also
recall that the sum of 𝜌 (𝑎ℓ ) may be smaller than 1, i.e., the RC 𝜌 may
only specify the desired lower bounds for a subset of the sensitive
values, and the rest can have arbitrary proportions as long as a
minimum set of tuples is removed to obtain the optimal RS-repair.
Moreover, the fractions are computed w.r.t. the final repair size |𝑅′ |
and not w.r.t. the input relation size |𝑅 |. PostClean iterates over
all possible sizes 𝑇 of 𝑅′ from |𝑅 | to 1. For each 𝑇 , it checks if the
lower bound on the number of tuples with 𝑎ℓ , i.e., 𝜏ℓ = ⌈𝑇 · 𝜌 (𝑎ℓ )⌉,
is greater than the number of tuples with value 𝑎ℓ in the original
relation 𝑅. If yes, then no repair 𝑅′ of size 𝑇 can satisfy 𝜌 , and it
goes to the next value of 𝑇 (or 𝑇 ← 𝑇 − 1). Otherwise, if there are
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Algorithm 1 LhsChain-DP(𝑅,Δ, 𝜌)
Input: a relation 𝑅, an LHS-chain FD set Δ, and a RC 𝜌
Output: an optimal RS-repair of (𝑅,Δ, 𝜌)
1: C𝑅,Δ ← Reduce(𝑅,Δ); ⊲ Algorithm 2 in Section 4.2
2: 𝑆 ← {PostClean(𝑅′, 𝜌) | 𝑅′ ∈ C𝑅,Δ}; ⊲ Section 3.3
3: return argmax

𝑠∈𝑆
|𝑠 |;

sufficient tuples for all sensitive values 𝑎ℓ , and if the sum of the
lower bounds on numbers, formally𝑇0 =

∑
𝜏ℓ is ≤ 𝑇 , then we have

a feasible 𝑇 . Finally, the algorithm arbitrarily fills 𝑅′ with more
tuples from 𝑅 if 𝑇0 < 𝑇 and returns the final 𝑅′. Note that if all
values of 𝑇 between |𝑅 | and 1 are invalid, then an ∅ is returned
because it is the only subset of 𝑅 that (trivially) satisfies the 𝜌 . The
following states the optimality and runtime of PostClean.

Proposition 5. Given 𝑅 and 𝜌 , PostClean(𝑅, 𝜌) returns in poly-
nomial time a maximum subset 𝑅′ of 𝑅 such that 𝑅′ |= 𝜌 .

Applying PostClean on an optimal S-repair may not lead to an
optimal RS-repair as illustrated below (and in Example 1).

Example 6. Consider a relation 𝑅 with S = (𝐴, 𝐵, sex), a set Δ
of FDs {𝐴 → 𝐵}, and an exact RC 𝜌 = {%male = 1

2 ,%female =
1
2 }. Let 𝑅 = {(1, 𝑎, male), (1, 𝑏, female), (2, 𝑐, male), (2, 𝑑, female)}.
An optimal S-repair of 𝑅 w.r.t. Δ is 𝑅′ = {(1, 𝑎, male), (2, 𝑐, male)}.
However, PostClean(𝑅′, 𝜌) returns ∅ since𝑅′ does not have any female
tuples. Conversely, {(1, 𝑎, male), (2, 𝑑, female)} is an optimal RS-
repair, which satisfies both Δ and 𝜌 .

4 DYNAMIC PROGRAMMING FOR
LHS-CHAINS

We now prove Theorem 2 by presenting a DP-based exact algorithm,
LhsChain-DP (Algorithm 1), that finds an optimal RS-repair for
LHS-chains (Section 3.2, Definition 3) in polynomial time when the
sensitive attribute has a fixed domain size. By the property of an
LHS-chain, Δ can be reduced to ∅ by repeated application of only
consensus FD simplification and common LHS simplification.

Overview of LhsChain-DP. For a relation 𝑅 and a set Δ of FDs,
let A𝑅,Δ = {𝑅′ ⊆ 𝑅 | 𝑅′ |= Δ} be the set of all S-repairs of 𝑅 for
Δ. Intuitively, if we could enumerate all S-repairs 𝑅′ from A𝑅,Δ,
we could compute 𝑅′′ = PostClean(𝑅′, 𝜌) (Section 3.3) for each of
them and return the 𝑅′′ with the maximum number of tuples. Since
PostClean optimally returns a maximum subset satisfying 𝜌 for
every 𝑅′, and since any RS-repair w.r.t. Δ and 𝜌 must be an S-repair
w.r.t. Δ, such an 𝑅′′ is guaranteed to be an optimal RS-repair.

However, even when the domain size of the sensitive attribute
𝐴𝑠 is fixed, the size of A𝑅,Δ can be exponential in |𝑅 |. Therefore, it
is expensive to enumerate the set of all S-repairs. Hence, we find a
candidate set C𝑅,Δ ⊆ A𝑅,Δ of S-repairs that is sufficient to inspect.
Then, we apply PostClean to each element of C𝑅,Δ, and return
the final solution having the maximum size. We formally define
candidate set C𝑅,Δ in Section 4.1, along with associated definitions.
The basic idea is that there are no two S-repairs in C𝑅,Δ where one
is “clearly better” than the other or that the two “are equivalent to
each other”. Further, for any S-repair that is not in the candidate
set i.e., 𝑅′′ ∈ A𝑅,Δ \ C𝑅,Δ, there is an S-repair 𝑅′ ∈ C𝑅,Δ that is
“clearly better” or “equivalent to” 𝑅′′. We prove (in Lemma 9) that

an optimal RS-repair can be obtained by applying PostClean to
each S-repair in C𝑅,Δ and returning the one with maximum size.
Moreover, the size of the candidate set is𝑂 ( |𝑅 |𝑘 ), when the domain
size |𝐷𝑜𝑚(𝐴𝑠 ) | = 𝑘 is fixed (proofs in [35]).

Algorithm 1 has two steps: Line 1 computes the candidate set
C𝑅,Δ by the recursive Reduce procedure (Algorithm 2 in Section 4.2),
that divides the problem into smaller sub-problems by DP. Then
Line 2 applies PostClean to each S-repair in C𝑅,Δ and returns the
maximum output as an optimal RS-repair in Line 3. Section 4.2
describes the Reduce procedure. Since Δ is an LHS-chain, it re-
duces to ∅ by repeated reductions of consensus FD (Section 4.2.1)
and common LHS (Section 4.2.2). The correctness of LhsChain-DP
follows from Lemmas 9 and 10 stated later.

Lemma 7. LhsChain-DP terminates in𝑂 (𝑚 · |Δ| ·𝑘 · |𝑅 |3𝑘+2) time,
where𝑚 is the number of attributes in 𝑅, |Δ| is the number of FDs,
and 𝑘 = |𝐷𝑜𝑚(𝐴𝑠 ) | is the domain size of the sensitive attribute 𝐴𝑠 .

4.1 Candidate Set for Optimal RS-Repairs
Recall that A𝑅,Δ denotes the set of all S-repairs 𝑅 w.r.t. Δ. We
define a candidate set as the subset of A𝑅,Δ such that every S-
repair in the candidate set is neither representatively dominated by
nor representatively equivalent to other S-repairs in terms of the
sensitive attribute as defined below.

Definition 4. For a relation 𝑅, FD set Δ, and 𝑅1, 𝑅2 ∈ A𝑅,Δ:
• 𝑅1 is representatively equivalent to 𝑅2, denoted 𝑅1 =𝑅𝑒𝑝𝑟 𝑅2,

if for all 𝑎ℓ ∈ 𝐷𝑜𝑚(𝐴𝑠 ), |𝜎𝐴𝑠=𝑎ℓ𝑅1 | = |𝜎𝐴𝑠=𝑎ℓ𝑅2 |, i.e. the same
number of tuples for each sensitive value.

• 𝑅1 representatively dominates 𝑅2, denoted 𝑅1 ≻𝑅𝑒𝑝𝑟 𝑅2, if for
all 𝑎ℓ ∈ 𝐷𝑜𝑚(𝐴𝑠 ), |𝜎𝐴𝑠=𝑎ℓ𝑅1 | ≥ |𝜎𝐴𝑠=𝑎ℓ𝑅2 |, and there exists
𝑎𝑐 ∈ 𝐷𝑜𝑚(𝐴𝑠 ), |𝜎𝐴𝑠=𝑎𝑐𝑅1 | > |𝜎𝐴𝑠=𝑎𝑐𝑅2 |.

Example 8. Consider three S-repairs for the relation 𝑅 with the
schema (𝐴, 𝐵, race) and FD setΔ = {𝐴→ 𝐵}: (1)𝑅′1 = {(1, 2, white),
(2, 3, black)}; (2) 𝑅′2 = {(1, 3, black), (1, 3, white)}; and (3) 𝑅′3 =

{(1, 1, black), (2, 2, white), (3, 3, asian)}. Here 𝑅′1 =𝑅𝑒𝑝𝑟 𝑅
′
2 since

they have the same number of black and white tuples. 𝑅′3 ≻𝑅𝑒𝑝𝑟 𝑅
′
1

and 𝑅′3 ≻𝑅𝑒𝑝𝑟 𝑅
′
2 since 𝑅

′
3 has one more asian than 𝑅′1 and 𝑅

′
2.

Definition 5 (candidate set). Given a relation 𝑅 and any FD
set Δ, a candidate set denoted by C𝑅,Δ is a subset of A𝑅,Δ such that

(1) For all 𝑅1, 𝑅2 ∈ C𝑅,Δ, 𝑅1 ̸=𝑅𝑒𝑝𝑟 𝑅2, 𝑅1 ̸≻𝑅𝑒𝑝𝑟 𝑅2, and
𝑅2 ̸≻𝑅𝑒𝑝𝑟 𝑅1;

(2) For any 𝑅′′ ∈ A𝑅,Δ \ C𝑅,Δ, there exists 𝑅′ ∈ C𝑅,Δ such that
𝑅′ =𝑅𝑒𝑝𝑟 𝑅′′ or 𝑅′ ≻𝑅𝑒𝑝𝑟 𝑅′′.

Each S-repair 𝑅′ ∈ C𝑅,Δ is called a candidate.

For the correctness of LhsChain-DP, we use the following lemma.

Lemma 9. For any relation 𝑅 and any FD set Δ, if C𝑅,Δ is computed
correctly in Line 1, LhsChain-DP (Algorithm 1) returns an optimal
RS-repair of 𝑅 w.r.t. Δ and 𝜌 .

ReprInsert. A subroutine ReprInsert(C, 𝑅0) (pseudocode in [35])
will be used in the following subsections. Intuitively, it safely pro-
cesses an insertion to a set of candidates and maintains the prop-
erties in Definition 5. Specifically, it takes a set of candidates C,
where no representative equivalence or representative dominance
exists, and an S-repair 𝑅0 ∈ A𝑅,Δ as inputs. ReprInsert compares
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Algorithm 2 Reduce(𝑅,Δ)
Input: a relation 𝑅, a FD set Δ that forms an LHS chain
Output: a candidate set C𝑅,Δ w.r.t. 𝑅 and Δ
1: if Δ is empty then
2: return C𝑅,Δ := {𝑅};
3: else if Identify a consensus FD 𝑓 : ∅ → 𝑌 then
4: return ConsensusReduction(𝑅,Δ, 𝑓 ); ⊲ Algorithm 3
5: else if Identify a common LHS 𝑋 then
6: return CommonLHSReduction(𝑅,Δ, 𝑋 ); ⊲ Algorithm 4
7: end if

𝑅0 with every 𝑅′ ∈ C. If there is an 𝑅′ such that 𝑅′ ≻𝑅𝑒𝑝𝑟 𝑅0 or
𝑅′ =𝑅𝑒𝑝𝑟 𝑅0, it returns the existing C. Otherwise it removes all 𝑅′
from C where 𝑅0 =𝑅𝑒𝑝𝑟 𝑅′ and returns C ∪ {𝑅0}.

4.2 Recursive Computation of Candidate Set
The procedure Reduce (Algorithm 2) computes a candidate set
recursively when Δ is an LHS-chain. Since an LHS-chain Δ can
be reduced to ∅ by repeated applications of consensus FD and
common LHS, Reduce calls ConsensusReduction (Section 4.2.1) and
CommonLHSReduction (Section 4.2.2) until Δ is empty. When Δ is
empty, it returns {𝑅} as the singleton candidate set since 𝑅 itself is
an S-repair and representatively dominates all other S-repairs. The
following lemma states the correctness of the Reduce procedure.

Lemma 10. Given relation 𝑅 and FD set Δ that forms an LHS-chain,
Reduce(𝑅,Δ) correctly computes the candidate set C𝑅,Δ.

4.2.1 Reduction for Consensus FD. Consider a consensus FD 𝑓 :
∅ → 𝑌 . Within an S-repair, all values of 𝑌 should be the same.
Suppose that 𝐷𝑜𝑚(𝑌 ) = {𝑦1, · · · , 𝑦𝑛} and 𝑅𝑦ℓ = 𝜎𝑌=𝑦ℓ𝑅 denotes
the subset of 𝑅 that has the value 𝑌 = 𝑦ℓ . The procedure Consen-
susReduction (Algorithm 3) computes the candidate set C𝑅𝑦ℓ

,Δ−𝑓
by calling Reduce(𝑅𝑦ℓ ,Δ − 𝑓 ) for every 𝑦ℓ . Note that any S-repair
𝑅′ ∈ C𝑅𝑦ℓ

,Δ−𝑓 is also an S-repair of 𝑅 for Δ, i.e., 𝑅′ ∈ A𝑅,Δ, since
the FD 𝑓 is already taken care of in 𝑅𝑦ℓ . Hence, Line 5 combines
these sets from smaller problems (i.e., Reduce(𝑅𝑦ℓ ,Δ− 𝑓 ) for every
𝑦ℓ ∈ 𝐷𝑜𝑚(𝑌 )) by inserting their candidates into C𝑅,Δ one by one
so that the properties of a candidate set are maintained in C𝑅,Δ.

4.2.2 Reduction for Common LHS. Consider a common LHS at-
tribute 𝑋 that appears on the LHS of all FDs in Δ. Suppose that
𝐷𝑜𝑚(𝑋 ) = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, 𝑅𝑥ℓ = 𝜎𝑋=𝑥ℓ𝑅 denotes the subsets of 𝑅
that have value 𝑋 = 𝑥ℓ , and 𝑅𝑥1,...,𝑥ℓ = 𝜎𝑋=𝑥1∨···∨𝑋=𝑥ℓ𝑅 as an ex-
tension. Also suppose Δ−𝑋 denotes that the common LHS attribute
𝑋 is removed from all FDs in Δ. If we were to consider S-repairs,
we could optimally repair each 𝑅𝑥ℓ w.r.t. Δ−𝑋 independently (and
recursively), and then take the union of their optimal S-repairs to
obtain an optimal S-repair for 𝑅 w.r.t. Δ (as done in [38]).

Yet, this is not the case for computing RS-repairs, since maximum
size is not the only requirement—while we know the final repair
will satisfy 𝜌 , we do not know what the value distribution of 𝐴𝑠
should be in each disjoint piece (e.g., some 𝑅𝑥ℓ ) of the final repair
before we get one. Therefore, in each step of the recursion (either
CommonLHSReduction here or ConsensusReduction above), the
candidate set preserves all possible distributions of 𝐴𝑠 from the
S-repairs that could provide the final optimal solution.

Algorithm 3 ConsensusReduction(𝑅,Δ, 𝑓 )
Input: a relation 𝑅, a FD set Δ, a consensus FD 𝑓 : ∅ → 𝑌 in Δ
Output: A candidate set C𝑅,Δ
1: C𝑅,Δ ← ∅;
2: for each value 𝑦ℓ ∈ 𝐷𝑜𝑚(𝑌 ) do
3: C𝑅𝑦ℓ

,Δ−𝑓 ← Reduce(𝑅𝑦ℓ ,Δ − 𝑓 ); ⊲ Algorithm 2
4: for all 𝑅′ in C𝑅𝑦ℓ

,Δ−𝑓 do
5: C𝑅,Δ ← ReprInsert(C𝑅,Δ, 𝑅′); ⊲ Section 4.1
6: end for
7: end for
8: return C𝑅,Δ.

CommonLHSReduction (Algorithm 4) constructs the candidate
set C𝑅,Δ recursively from smaller problems by building solutions
cumulatively in 𝑛 stages (the outer loop). In particular, after stage
ℓ , the algorithm obtains the candidate set C𝑅𝑥1,...,𝑥ℓ ,Δ

by combin-
ing S-repairs for 𝑅𝑥1 , · · · , 𝑅𝑥ℓ . Note that the union of S-repairs for
𝑅𝑥1 , · · · , 𝑅𝑥ℓ is an S-repair for 𝑅𝑥1,...,𝑥ℓ and consequently 𝑅 w.r.t. Δ,
but we have to ensure that the properties of a candidate set are main-
tained while combining these S-repairs. Line 3 computes the candi-
date set C𝑅𝑥ℓ

,Δ−𝑋 recursively by calling Reduce(𝑅𝑥ℓ ,Δ−𝑋 ). Since
C𝑅𝑥1,...,𝑥ℓ−1 ,Δ

is already formed in the previous stage, in Lines 4-7, it
goes over all combinations of 𝑅′ ∈ C𝑅𝑥1,...,𝑥ℓ−1 ,Δ

and 𝑅′′ ∈ C𝑅𝑥ℓ
,Δ−𝑋 ,

takes their union 𝑅0 = 𝑅′ ∪ 𝑅′′, and inserts it to C𝑅𝑥1,...,𝑥ℓ ,Δ
by

ReprInsert ensuring that the property of a candidate set is main-
tained. Finally, C𝑅𝑥1,...,𝑥𝑛 ,Δ

is returned as the final set C𝑅,Δ.

5 ALGORITHMS FOR THE GENERAL CASE
Computing optimal RS-repairs for arbitrary Δ and 𝜌 is NP-hard (Sec-
tion 3.1.1). We now present a collection of end-to-end algorithms
capable of handling general inputs. We begin with an exact algo-
rithm based on integer linear programming (ILP) and then present
a heuristic utilizing LP relaxation and rounding. Next, we present
another heuristic using procedures from the previous section for
LHS-chains as a subroutine (Section 5.2).

5.1 LP-Based Algorithms
We use |𝑅 | binary random variables 𝑥1, 𝑥2, . . . , 𝑥 |𝑅 | , where 𝑥𝑖 ∈
{0, 1} denotes whether tuple 𝑡𝑖 ∈ 𝑅 is retained (if 𝑥𝑖 = 1) or deleted

Algorithm 4 CommonLHSReduction(𝑅,Δ, 𝑋 )
Input: A relation 𝑅, a FD set Δ, a common LHS 𝑋 for all FDs in Δ
Output: a candidate set C𝑅,Δ
1: for ℓ = 1 to 𝑛 do ⊲ Suppose 𝐷𝑜𝑚(𝑋 ) = {𝑥1, 𝑥2, . . . , 𝑥𝑛}
2: C𝑅𝑥1,...,𝑥ℓ ,Δ

← ∅; ⊲ Initialize a candidate set for Δ that only
considers values 𝑥1, · · · , 𝑥ℓ of 𝑋

3: C𝑅𝑥ℓ
,Δ−𝑋 ← Reduce(𝑅𝑥ℓ ,Δ−𝑋 ); ⊲ Algorithm 2

4: for all 𝑅′ in C𝑅𝑥1,...,𝑥ℓ−1 ,Δ
and all 𝑅′′ in C𝑅𝑥ℓ

,Δ−𝑋 do
5: 𝑅0 ← 𝑅′ ∪ 𝑅′′; ⊲ Combine prior and current S-repairs
6: C𝑅𝑥1,...,𝑥ℓ ,Δ

← ReprInsert(C𝑅𝑥1,...,𝑥ℓ ,Δ
, 𝑅0); ⊲ Section 4.1

7: end for
8: end for
9: C𝑅,Δ ← C𝑅𝑥1,...,𝑥𝑛 ,Δ

10: return C𝑅,Δ.
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Algorithm 5 FDCleanser(𝑅,Δ, 𝜌)
1: while Δ is not empty do
2: Select the most frequent LHS column 𝑋 in Δ;
3: Choose one arbitrary FD 𝑓 whose LHS contains 𝑋 ;
4: 𝑅 ← LhsChain-DP(𝑅, {𝑓 }, 𝜌);
5: Δ← Δ − 𝑓
6: end while
7: return 𝑅;

(if 𝑥𝑖 = 0) in the RS-repair. From the result of the following ILP we
take the tuples with 𝑥𝑖 = 1. We refer to this algorithm as GlobalILP.

Maximize
∑︁

𝑖∈ [1,|𝑅 | ]
𝑥𝑖 subject to: (1)

𝑥𝑖 + 𝑥 𝑗 ≤ 1 for all conflicting 𝑡𝑖 and 𝑡 𝑗∑︁
𝑖 :𝑡𝑖 [𝐴𝑠 ]=𝑎ℓ

𝑥𝑖 ≥ 𝑝ℓ ×
∑︁
𝑖

𝑥𝑖 for all 𝑎ℓ ∈ 𝐷𝑜𝑚 (𝐴𝑠 )

𝑥𝑖 ∈ {0, 1} for all 𝑖 ∈ [1, |𝑅 | ]

The objective maximizes the number of tuples retained. The
first constraint ensures that the solution does not violate Δ. The
following set of constraints correspond to the RC 𝜌 , by ensuring
each lower-bound constraint is satisfied, i.e. %𝑎ℓ ≥ 𝑝ℓ , where 𝑝ℓ =
𝜌 (𝑎ℓ ), is satisfied for every 𝑎ℓ ∈ 𝐷𝑜𝑚(𝐴𝑠 ).

The ILP in Equation (1) can be relaxed to an LP by replacing
the integrality constraints 𝑥𝑖 ∈ {0, 1} with 𝑥𝑖 ∈ [0, 1], for every
𝑖 ∈ [1, |𝑅 |]. We propose rounding procedures to derive an inte-
gral solution from fractional 𝑥𝑖s and refer to the heuristic as LP +
ReprRounding (pseudocode and running time analysis in [35]).

Limitations. While GlobalILP provides an exact optimal solution,
its scalability is limited by the size of the ILP. And ILP in general is
not poly-time solvable. Each pair of tuples (𝑡𝑖 , 𝑡 𝑗 ) that conflict on
some FD introduces a constraint 𝑥𝑖 + 𝑥 𝑗 ≤ 1 to the ILP, therefore it
can have 𝑂 ( |𝑅 |2) constraints, leading to a large program that does
not scale. In Section 6, we show that GlobalILP finds optimal RS-
repairs but does not scale to large datasets. For LP + ReprRounding,
we observe in Section 6 that, even with the state-of-the-art LP
solvers, solving our LP can be slow and sometimes encounters out-
of-memory issues due to large number of constraints. Hence, we
propose a DP-based heuristic using ideas from Section 4 to explore
the possibility of avoiding solving the large LP.

5.2 FDCleanser: A DP-Based Algorithm
The combinatorial DP-based FDCleanser algorithm is motivated
by the ideas behind the CommonLHSReduction and ConsensusRe-

duction procedures in Section 4. An FD set Δ with only one FD can
be reduced to the empty set using LhsChain-DP by first applying
CommonLHSReduction and then ConsensusReduction, and hence
is poly-time solvable by Theorem 2. FDCleanser therefore calls
LhsChain-DP with one FD at a time from Δ until all FDs are taken
care of. Further, it prioritizes the FD which has a most frequent LHS
column𝑋 (among all the columns) in its LHS. This greedy approach
may not be optimal as demonstrated empirically in Section 6.

As highlighted, Since Δ is fixed and each call to LhsChain-DP

runs in polynomial time for fixed 𝐷𝑜𝑚(𝐴𝑠 ), FDCleanser terminates

in polynomial time for any (𝑅,Δ, 𝜌) where 𝐷𝑜𝑚(𝐴𝑠 ) is fixed. FD-
Cleanser provides a practical and scalable heuristic approach for
handling large instances of the problem of computing RS-repairs, by
leveraging the efficient subroutine, LhsChain-DP. Its effectiveness
and efficiency will be empirically evaluated in Section 6.

In our implementation, the heuristics described in Section 5.2 first
employ ConsensusReduction and CommonLHSReduction until no
feasible reductions are possible. This decomposes the problem into
sub-problems. Then the heuristics are applied to the sub-problems
and return a single RS-repair (and consequently a singleton candi-
date set) for each of them. These candidate sets are later merged
during the backtracking stage of reductions. Finally, all the end-to-
end algorithms will return a candidate set as what LhsChain-DP
does, and rely on PostClean to ensure satisfying the RC.

6 EXPERIMENTS
In this section, we evaluate the deletion overhead to preserve rep-
resentation in subset repairs, and the quality and performance of
our algorithms. In particular, we study the following questions:
(1) Section 6.2: How many additional tuple deletions are required

(i.e., deletion overhead) for computing optimal RS-repairs com-
pared to computing optimal S-repairs?

(2) Section 6.3: How effective is each algorithm in minimizing
tuple deletions compared to an optimal RS-repair algorithm
(i.e., RS-repair quality)?

(3) Section 6.4: What is the runtime cost of our algorithms?
(4) Section 6.5: What is the impact of considering non-exact RCs

on the number of deletions, i.e., %𝑎 ≥ 𝑝 instead of %𝑎 = 𝑝?

Summary of findings. The experiments show the following. First,
the deletion overhead is high when the noise distribution is imbal-
anced in the input (more noise in one subgroup), especially when
the under-represented group defined by the sensitive attribute has
relatively more noise than the majority group. Second, the DP-
based algorithms proposed in this paper, FDCleanser for general
FD sets (Section 5), and LhsChain-DP to which the former reduces
to for chain FD sets (Section 4), present the best trade-off of high
RS-repair quality and runtime compared to the other alternatives
that we have examined. Third, as the constraint on exact RC is
relaxed, fewer deletions are needed.

6.1 Setup
We implement5 our algorithms in Python 3.11 and experiment on
a machine with a commodity EPYC CPU (AMD EPYC 7R13 48-
Core Processor @2.6GHz, Boost 3.73GHz, 192MB L3 cache; 256GiB
DDR4-3200 memory). We use Gurobi[25] as the LP/ILP solver.

6.1.1 Datasets. We use samples of different sizes from three real
datasets (ACS, COMPAS, and Flight) that are commonly used for
the study of fairness or data repair. For ACS and COMPAS, the
noise is injected (Section 6.1.4), whereas for the Flight dataset, the
noise is real and inherent to the dataset. Additional experiments
with a fourth dataset on Credit Card Transactions [9] appear in the
full version [35] due to space limitations.

5Code publicly available at https://github.com/louisja1/RS-repair.
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Table 1: FD sets used in experiments.

Dataset Chain FD Set Non-chain FD Set

ACS {ST→ DIV,
DIV→ Region}

{CIT→ Nativity,ST→ DIV,
DIV→ Region,

POBP→WAOB,RAC2P→ RAC1P}

COMPAS {DecileScore→
ScoreText}

{DecileScore→ ScoreText,
ScaleID→ DisplayText,RSL→ RSLT,
DisplayText→ ScaleID,RSLT→ RSL,
FirstName, LastName,DOB→ Sex}

Flight Chain FD Set
{DF→ ActualDeparture, DF→ ActualArrival,
DF→ ScheduledDeparture, DF→ ScheduledArrival}

• ACS-PUMS (in short ACS) [15]: The American Community Sur-
vey Public Use Microdata Sample dataset. We use 9 attributes and
samples from 2K to 1.5M in our experiments (described below).

• COMPAS [32]: The ProPublica COMPAS recidivism dataset. We
use 10 attributes and samples from 4K to 30K in our experiments.

• Flight [5, 34]6: The Flight data contains information on scheduled
and actual departure time and arrival time from different sources,
and has been used in prior work of data fusion [34] and data
cleaning [5, 46]. We use 6 attributes and samples from 2K to 8K.

6.1.2 Functional dependencies. We consider two types of FD sets
in our experiments: (1) chain FD sets (i.e., LHS-chains, Definition 3,
Section 4), and (2) non-chain FD sets (Section 5). For ACS and
COMPAS, FDs are inferred from the data description documents
and verified in the original clean datasets [7]. The FD sets used
in all three datasets are shown in Table 1.7 For example, the FD
ST→ DIV for ACS implies that each state has a unique division.
For the Flight dataset, FDs are from prior work [5]. For ACS and
COMPAS, the set of FDs is a non-chain, and we also use a subset of
the FDs that forms a chain for these two datasets. For Flight, the
set of FDs forms a chain, so only the chain FD set is considered.

6.1.3 Sensitive attribute selection. For the ACS dataset, we consider
Nativity as the sensitive attribute (with the values Native-born
and Foreign-born) for the non-chain FD set, and Region (with the
values Region-1-2 and Region-3-4) for the chain FD set, so that
the sensitive attribute is always included in the FD set. (Nativity is
not in the chain FD set.) For the COMPAS dataset, we use Sex as the
sensitive attribute with values Male and Female that appear in the
dataset. For the Flight dataset, there is no natural sensitive attribute
so we choose the Source of the data as the sensitive attribute with
two values wunderground and flightview. We use binary values
of the sensitive attribute in our experiments since we vary both the
data and noise distribution of two groups (Section 6.1.4), but our
algorithms can handle multiple values of the sensitive attribute.

6.1.4 Obtaining noisy input data. The Flight dataset has viola-
tions of the FD, so we only generate uniform random samples
of 2K, 4K, 6K, and 8K tuples as the noisy input data. These samples
have slightly different value distributions of Source, ranging from
{%wunderground = 58%,%flightview = 42%} to {%wunderground
= 54%,%flightview = 46%}.

6We download and use the version of data from Boeckling and Bronselaer [5].
7
ST,DIV,CIT,RAC1P,RAC2P, POBP, andWAOB are in short for state code, division,
citizenship status, race code 1, race code 2, place of birth, world area of birth respectively
for dataset ACS. DOB,RSL, and RSLT are short for date of birth, recommended level
of supervision, and its text respectively for dataset COMPAS. DF is in short for date
collected + flight number for dataset Flight.

post-clean
repair for Δ

Baselines: group (b)

Our solutions: group (c)
𝑅,Δ, 𝜌

group (a)

repair for Δ, 𝜌

Figure 2: Our solutions vs. baselines.

The ACS and COMPAS datasets satisfy their FDs, and we inject
random noise (FD violations) similarly to prior work [14, 21, 46]. We
vary two parameters: (1) value distribution of the sensitive attribute,
and (2) relative noise distribution of the two groups defined by the
sensitive attribute, as we describe next.

(1) Value distribution of the sensitive attribute for ACS and COM-
PAS:We consider binary values of their sensitive attributes denoted
by Group-1 and Group-2. The notation “X%-Y%” denotes the value
distribution of these two groups, i.e., %no. of tuples from Group-1

%no. of tuples from Group-2 = 𝑋
𝑌

where 𝑋 + 𝑌 = 100. We generate stratified samples for these two
groups in the ACS and COMPAS datasets where the percentages
“X%-Y%” are varied as “80%-20%”, “60%-40%” to “50%-50%” for differ-
ent sizes of the datasets. Therefore, Group-1 is called the majority
group (Native-born, Region-1-2, Male in Section 6.1.3) having
possibly higher percentage of tuples, and Group-2 (Foreign-born,
Region-3-4, Female in Section 6.1.3) is called the minority group.

(2) Relative noise distribution of the sensitive attribute in ACS
and COMPAS: First, we choose an overall noise level. We only
change the values of the attributes that appear in the LHS or RHS
of FDs (Table 1). 𝑥% noise level means that 𝑥% of the cells (attribute
values) belonging to these attributes from all tuples in the data
generated in the previous step have been changed to another value
from the domain of the corresponding attribute. Then, we choose
a relative noise distribution of the values Group-1 and Group-2
of the binary sensitive attribute. The distribution “x%-y%” means
that %noise level of Group-1

%noise level of Group-2 = 𝑥
𝑦 , where 𝑥 +𝑦 = 100. The values of 𝑥%-

𝑦% are chosen from “20%-80%”, “40%-60%”, “50%-50%”, “60%-40%”,
“80%-20%” to study different levels of noise in the majority and the
minority groups (Section 6.2). For example, “20%-80%” means that
the noise level of Group-2 (the minority group, e.g., Foreign-born,
Female, etc.) is four times that of Group-1 (the majority group, e.g.,
Native-born, Male, etc.). Since the sensitive attribute values are
changed, the data distribution in the previous step of the majority
and the minority group may change following the noise injection.

6.1.5 Representation constraints. We use exact RCs in Sections 6.2
to 6.4 to preserve the original distribution of the two groups of the
sensitive attribute, and examine RCs with inequality in Section 6.5
to preserve the original distribution of the minority group.

6.1.6 Algorithms. We classify the repair algorithms into three
groups (Figure 2): (a) S-repairs, (b) S-repairs with PostClean (Sec-
tion 3.3) to satisfy the RC, and (c) RS-repair algorithms from Sec-
tions 4 and 5. Group (a) includes the following:
• ILP-Baseline [40] (for both chain and non-chain FD sets): Formu-

lates an ILP (with only the first constraint for FD in Equation (1))
and computes the optimal S-repair satisfying a given FD set.

• VC-approx-Baseline [2] (for non-chain FD sets only): An 2-
approximation algorithm that translates the problem to finding
a minimum vertex cover of the conflict graph.
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Table 2: Deletion overhead for varying representations (80%-20% and 50%-50%) and relative noise distributions (ACS data, 5%
overall noise, 10k tuples). “S-rep. %” and “RS-rep. %” stand for deletion percentage of S-repair and and for RS-repair, respectively.

(a) Chain FD set: 80%-20%

noise del. ratio S-rep. % RS-rep. %
20%-80% 2.112 13.52 28.55
40%-60% 1.254 13.88 17.40
50%-50% 1.003 13.89 13.92
60%-40% 1.044 13.91 14.52
80%-20% 1.134 13.87 15.73

(b) Chain FD set: 50%-50%

noise (%) del. ratio S-rep. % RS-rep. %
20%-80% 1.514 13.60 20.70
40%-60% 1.152 13.80 15.90
50%-50% 1.004 13.90 13.90
60%-40% 1.153 13.90 16.00
80%-20% 1.511 13.60 20.60

(c) Non-chain FD set: 80%-20%

noise (%) del. ratio S-rep. % RS-rep. %
20%-80% 2.039 25.91 52.83
40%-60% 1.197 28.65 34.30
50%-50% 1.026 28.81 29.55
60%-40% 1.009 28.71 28.97
80%-20% 1.199 28.02 30.80

(d) Non-chain FD set: 50%-50%

noise (%) del. ratio S-rep. % RS-rep. %
20%-80% 1.423 28.63 40.74
40%-60% 1.091 30.02 32.75
50%-50% 1.005 29.94 30.08
60%-40% 1.071 29.56 31.64
80%-20% 1.395 27.97 39.02

• DP-Baseline [38] (for chain FD sets only): A dynamic program-
ming (DP) algorithm that computes the optimal S-repair in poly-
nomial time when the FD set forms an LHS-chain.

• MuSe-Baseline [22] (for both chain and non-chain FD sets): An
S-repair framework with deletion rules. We use step semantics.

Group (b) is defined as using PostClean to post-process the S-repairs
obtained by the Group (a) approaches. These baselines are denoted
as baseline+PostClean, e.g. ILP-Baseline + PostClean. Group (c)
in Figure 2 consists of the algorithms proposed in Sections 4 and 5,
which incorporate the RC in their core procedures.

For chain FD sets, we examine the polynomial-time optimal
algorithm LhsChain-DP (Section 4). For non-chain FD sets, we
examine the end-to-end heuristic algorithms LP + ReprRounding
and FDCleanser (Section 5). Recall that when applied to chain
FD sets, FDCleanser reduces to LhsChain-DP. We repeat each
experiment twice for each data point and take the average.

6.2 Deletion Overhead of RS-repairs
In this section, we examine the number of additional deletions
required to satisfy the representation of the sensitive attribute. We
do so by defining deletion overhead as follows:

deletion overhead =
#del (an optimal RS-repair of 𝑅 w.r.t. Δ and 𝜌 )

#del (an optimal S-repair of 𝑅 w.r.t. Δ) (2)

Here #del () is the number of tuple deletions of a repair. This ratio
quantifies the additional deletions required by an optimal RS-repair
compared to an optimal S-repair for the same (𝑅,Δ). This ratio is at
least 1 as an optimal RS-repair may have to delete more tuples also
to satisfy 𝜌 . A large ratio indicates a high overhead, i.e., many extra
deletions are needed to satisfy 𝜌 , whereas a ratio close to 1 indicates
that an optimal S-repair is likely to satisfy 𝜌 . We use ILP-Baseline
and GlobalILP for optimal S-repairs and RS-repairs respectively.
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Figure 3: Deletion overhead varying overall noise and input
size (ACS, 80%-20% value distr., 20%-80% relative noise distr.).

Table 3: Deletion overhead and value distribution of sensitive
attribute for Flight data with real noise.

Size Deletion overhead Value distribution
del. ratio S-rep. % RS-rep. % Original S-rep. RS-rep.

2K 1.005 47.25 47.50 58%-42% 69%-31% 58%-42%
4K 1.006 48.20 48.50 55%-45% 61%-39% 55%-45%
6K 1.035 48.30 50.00 54%-46% 57%-43% 54%-46%
8K 1.034 48.36 50.00 54%-46% 65%-35% 54%-46%

First, we examine the deletion overhead in various scenarios for
ACS in Table 2. (Results for COMPAS appear in full version [35]
due to space limitations.) Table 2 also shows the deletion overhead
and the percentage of tuples deleted by the optimal S-repair and
optimal RS-repair for ACS for both chain and non-chain FD sets
(5% overall noise and 10K tuples). We vary the data distribution of
the majority and minority groups as 80%-20% and 50%-50%, and for
each vary their relative noise distribution 20%-80%, 40%-60%, 50%-
50%, 60%-40%, 80%-20%, investigating the cases when the minority
group has more, equal, and less noise than the majority group.

We observe the following. (1) When noise is uniform (50%-50%),
irrespective of the data distribution in Tables 2a to 2d, RS-repair
does not delete many additional tuples, hence the deletion overhead
is close to 1. As the noise distribution becomes unbalanced, deletion
overhead increases as more tuples are deleted for representation. (2)
In Tables 2a and 2c, when the data distribution of the majority and
minority groups is 80%-20%, the overhead for relative noise distri-
bution 20%-80% is larger than the overhead for 80%-20%. Intuitively,
the fraction of noisy tuples from the minority group is much larger
requiring more deletions from the minority group compared to
the majority group. Hence, many tuples from the majority groups
need to be removed to get the data distribution back to 80%-20%
in the optimal RS-repair. (3) Although both chain and non-chain
FD sets show similar trends on the deletion overhead, the deletion
percentages of tuples (S-rep.% and RS-rep%) are lower for the chain
FD sets. This is because a lower number of attributes is involved in
the chain FD set (Table 1), so less noise is injected.

Next, in Figure 3, we vary the overall noise level (1%, 5%, 10%)
and the input size (2K to 10K) for ACS data with 80%-20% value dis-
tribution and 20%-80% relative noise distribution. The relation size
does not significantly impact the deletion overhead of RS-repairs.
However, higher noise levels lead to lower deletion overhead, since
as noise increases, S-repair tends to delete more tuples from both
majority and minority groups, almost matching the deletions by
RS-repair maintaining their representation, which reduces the ratio.

Table 3 presents the deletion overhead and percentage for the
optimal S-repair and RS-repair on Flight, alongside the value distri-
bution of the majority and minority groups before and after repair.
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Table 4: Value distributions by optimal S-repairs varying
overall noise (ACS, 6K tuples, 20%-80% relative noise distr.).

FD Set Original Overall noise level
1% 5% 10% 15%

Chain FD set 80%-20% 81%-19% 84%-16% 88%-11% 92%-8%
Non-chain FD set 80%-20% 82%-18% 89%-11% 96%-4% 100%-0%

(1) Across input sizes (2K to 8K), the deletion overhead remains
slightly above 1, indicating significant tuple deletions in both S-
repair and RS-repair. (2) Notably, while S-repair does not preserve
the original value distribution and disproportionately deletes from
the minority group, RS-repair maintains the distribution when the
representation constraint is applied.

In Table 4, we report the value distributions of the majority and
minority groups after optimal S-repair varying the noise level for
ACS data with 80%-20% value and 20%-80% relative noise distribu-
tion (one example is in Example 1). At 15% noise level, the minority
group drops from 20% to 8% for chain FDs, and to 0% for non-chain
FDs. This shows that S-repairs may significantly change the repre-
sentation of a sensitive attribute and highlights the importance of
considering the representation constraint in the repair algorithms.

6.3 RS-Repair Quality of Various Approaches
The algorithm GlobalILP computes an optimal RS-repair, but does
not scale (e.g., it took 18 hours to repair ACS data for the non-chain
FD set with 10% noise and 10K tuples). In this section, we report the
RS-repair quality (repair quality in short) defined below to assess
how our proposed algorithms perform compared to the optimal RS-
repair. The experiments are conducted on relatively small datasets
where GlobalILP terminated in a reasonable time.

repair quality =
|𝑅 | − #del (𝑅′ )

|𝑅 | − #del (an optimal RS-repair of 𝑅 w.r.t. Δ and 𝜌 ) (3)

The expression compares the number of tuples retained by an RS-
repair 𝑅′ to that of an optimal RS-repair (viaGlobalILP), indicating
how well 𝑅′ approximates the optimum. This quality is upper-
bounded by 100%, and a ratio close to 100% indicates high quality
when the output of an RS-repair algorithm is close to optimal.

In Table 5, we examine the repair quality for varying value distri-
butions of the sensitive attribute and FD types for ACS andCOMPAS
data. Since there are many potential scenarios, we present a set of
results (more results are in the full version [35]) for overall 10%
noise level, value distributions of the majority and minority groups
X%-Y% (“80%-20%”, “60%-40%”, and “50%-50%”) with relative noise
distributions Y%-X% (i.e., the same number of cells are changed in
both majority and minority groups). The results by FDCleanser

proposed in Section 5.2 for general FD sets, which is identical to the
optimal LhsChain-DP in Section 4, are boldfaced in all tables. The
repair quality by other algorithms that are better than FDCleanser

(non-chain) or LhsChain-DP (chain) is also boldfaced.
We conclude the following. (1) LhsChain-DP (=FDCleanser) is

optimal for chain FDs, so has 100% repair quality in all settings
for chain FDs in ACS and COMPAS (Table 5 (a) and (c)). (2) For
non-chain FDs, FDCleanser has consistently high repair quality
(> 94%) in all settings for both ACS and COMPAS (Table 5 (b) and
(d)). (3) For the baselines that apply PostClean after an S-repair
is obtained (i.e., group (b) in Figure 2), repair quality significantly
varies in different scenarios. They perform relatively better for chain

FD sets where LhsChain-DP already gives optimal results (MuSe-
Baseline+PostClean exceeded 12 hours for larger data denoted
by “-”), but may give poor quality for non-chain FD sets. For both
chain and non-chain FDs, their quality mostly degrades when the
value distribution of the sensitive attribute is imbalanced. While
ILP-Baseline+PostClean has better quality than FDCleanser

in some non-chain FD settings in Table 5 (b) and (d), ILP is not
a scalable method (Section 6.4). The efficient approximation VC-
approx-Baseline+PostClean has poor quality. (4) The other LP-
rounding-based algorithm LP + ReprRounding from Section 5.1 also
performs better than FDCleanser in some settings in Table 5 (b) and
(d), especially when the value distribution of the sensitive attribute
is close to 50%-50%, but is not scalable (Section 6.4). Table 5 shows
that FDCleanser gives high quality across datasets and settings
with better scalability as shown in Section 6.4.

Table 6 presents the repair quality for the Flight dataset. Glob-
alILP and LhsChain-DP provide 100% repair quality consistently
as expected, while the baselines DP-Baseline + PostClean and
ILP-Baseline+PostClean have a significantly lower quality across
all input sizes (e.g., for 8𝐾 , the quality of DP-Baseline+PostClean
is 3.5% and the quality of ILP-Baseline+ PostClean is 60%).

6.4 Running Time Analysis
Comparison of runtime of different RS-repair methods: First, we

evaluate the runtime performance of the RS-repair algorithms from
groups (b) and (c) in Figure 2. Figure 5 shows the runtime results of
the ACS and COMPAS for 80%-20% value distribution of the sensi-
tive attribute and 10% overall noise level (runtime for more settings
and Flight are in the full version [35]). If no data points are shown,
execution took longer than 12 hours. (1) The optimal GlobalILP
for RS-repair has a high runtime in all settings as ILP is not scalable.
(2) For chain FD sets in Figures 5a and 5c the optimal LhsChain-DP
(= FDCleanser) is much faster than GlobalILP, e.g., GlobalILP
takes 1, 046s for size 10K ACS data, while LhsChain-DP takes only
12s, (3) For non-chain FD sets in Figures 5b and 5d, FDCleanser
has a good scalability. While VC-approx-Baseline+PostClean
has a slightly better runtime than FDCleanser in Figure 5c, Table 5
shows its poor quality. Additionally, for COMPAS and non-chain
FD set () in size 30K due to a lagged rounding step.

Scalability for bigger data: Since ILP is known to be unscalable,
in Table 7 we evaluate the scalability of the other methods over
bigger samples up to 1.5M tuples of the ACS dataset. We see that
FDCleanser for non-chain FD sets, which is identical to the op-
timal LhsChain-DP for chain FD sets, can repair larger datasets,
while the other methods face out-of-memory issues. While DP-
Baseline+PostClean has much better scalability for chain FD sets,
as discussed in Section 6.3, it suffers from poor quality. For the chain
FD set, LhsChain-DP provides the optimal RS-repair in 8 hours
for 1M tuples and in 48 hours for 1.5M tuples. For the non-chain
FD set, FDCleanser takes 5.9 hours for 1M tuples, and 34 hours
for 1.5M tuples. Although it takes a long time to repair the data,
it returns results, which may be permissible for offline data repair
tasks. In contrast, VC-approx-Baseline + PostClean and LP +
ReprRounding encounter issues with memory usage over 100K
tuples, which is as expected given that the number of constraints
can be as large as |𝑅 |2. Yet, both LhsChain-DP and FDCleanser

484



Table 5: Repair quality of different algorithms for ACS and COMPAS data (10% noise level) with chain and non-chain FD sets.
Numbers are boldfaced if they are from LhsChain-DP, FDCleanser, or other algorithms that beat them in the same setup.

(a) ACS: chain FD set
Sensitive attribute distribution 80%-20% 60%-40% 50%-50%
Algorithm / Size (K) 4 6 8 10 4 6 8 10 4 6 8 10
GlobalILP 100 100 100 100 100 100 100 100 100 100 100 100
LhsChain-DP (= FDCleanser) 100 100 100 100 100 100 100 100 100 100 100 100
ILP-Baseline+PostClean 76.54 79.57 80.60 80.90 96.95 97.60 97.52 97.63 99.79 99.93 99.98 99.93
DP-Baseline+PostClean 76.54 79.57 80.60 80.90 96.95 97.60 97.52 97.63 99.79 99.93 99.98 99.93
MuSe-Baseline+PostClean 77.80 80.64 - - 96.68 65.54 - - 99.66 99.91 - -

(b) ACS: non-chain FD set
Sensitive attribute distribution 80%-20% 60%-40% 50%-50%
Algorithm / Size (K) 4 6 8 10 4 6 8 10 4 6 8 10
GlobalILP 100 100 100 100 100 100 100 100 100 100 100 100
FDCleanser 94.25 95.41 96.19 99.14 94.45 96.05 96.12 95.60 96.45 97.22 96.65 97.83
LP + ReprRounding 64.94 66.39 69.25 79.14 81.33 82.26 75.33 87.75 98.15 90.74 90.21 84.29
ILP-Baseline+PostClean 29.60 45.57 46.78 73.62 84.03 86.03 85.79 85.79 95.7 96.30 97.57 98.10
VC-approx-Baseline+PostClean 0 0 0 0 5.00 4.14 3.81 4.51 18.15 15.73 13.93 15.11

(c) COMPAS: chain FD set
Sensitive attribute distribution 80%-20% 60%-40% 50%-50%
Algorithm / Size (K) 4 10 20 30 4 10 20 30 4 10 20
GlobalILP 100 100 100 100 100 100 100 100 100 100 100
LhsChain-DP (= FDCleanser) 100 100 100 100 100 100 100 100 100 100 100
ILP-Baseline+PostClean 97.96 98.60 99.19 99.01 99.92 100 100 100 100 100 100
DP-Baseline+PostClean 97.96 98.60 99.19 99.01 99.92 100 100 100 100 100 100
MuSe-Baseline+PostClean 98.93 - - - - - - - - - -

(d) COMPAS: non-chain FD set
Sensitive attribute distribution 80%-20% 60%-40% 50%-50%
Algorithm / Size (K) 4 10 20 30 4 10 20 30 4 10 20
GlobalILP 100 100 100 100 100 100 100 100 100 100 100
FDCleanser 98.94 94.21 97.39 96.45 95.99 96.90 97.39 96.37 97.11 99.24 99.19
LP + ReprRounding 98.58 97.92 98.04 98.44 99.61 99.54 98.25 98.02 100 100 100
ILP-Baseline+PostClean 96.81 94.36 90.01 85.36 99.10 98.32 96.95 95.86 99.55 99.17 99.28
VC-approx-Baseline+PostClean 26.24 25.96 22.81 20.85 9.95 9.81 8.73 9.01 11.12 10.40 8.91

Table 6: Repair quality for Flight data (chain FD set).

Algorithm / Size (K) 2 4 6 8
GlobalILP 100 100 100 100
LhsChain-DP(= FDCleanser) 100 100 100 100
DP-Baseline+PostClean 57.14 77.67 66.67 2.93
ILP-Baseline+PostClean 52.38 70.87 66.67 50.00

are DP-based algorithms that require significant space and do not
scale well. Developing more space- and time-efficient algorithms
for RS-repair remains a promising direction for future research.

6.5 Varying Representation Constraints
In this section, we vary the RCs to study the effect on the number
of tuples remaining in the database after repair in ACS data. We

Table 7: Runtime (mins) for ACS (5% overall noise, 80%-20%
value distr. and 20%-80% relative noise distr.). “OOM” = out-
of-memory issues.

Chain FD set

Name/DB Size 10K 100K 500K 1M 1.5M

DP-Baseline+PostClean 0.01 0.02 0.07 0.14 0.20
LhsChain-DP 0.14 3.52 84.76 479.50 2873.09

Non-chain FD set

Name/DB Size 10K 100K 500K 1M 1.5M

VC-approx-Baseline+PostClean 0.29 OOM OOM OOM OOM
LP + ReprRounding 3.18 OOM OOM OOM OOM
FDCleanser 0.15 10.56 142.80 351.79 2049.64
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(b) Non-chain (4K tuples, 5% noise)
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Figure 4: Percentage of remaining tuples varying the RC
(ACS, 80%-20% value distr. and 20%-80% relative noise distr.).

relax the RC by gradually reducing the proportion of the minority
group from the original “= 20%” to “≥ 18%” and “ ≥ 15%.”

Figure 4 shows that for both chain and non-chain FD sets, the
percentage of remaining tuples increases as the constraint is relaxed.
The percentage of tuples deleted for non-chain FDs is high even for
5% noise, since the FDs have 9 attributes (Table 1), possibly changing
a large number of tuples in noise injection (Section 6.1.4), and the
20%-80% relative noise has a high cost of RS-repair (Section 6.2).

7 RELATEDWORK
Data repairing and constraints. Past work on data repairing [1,

4, 12, 18, 46] aimed at minimizing the number of changes in the
database in terms of tuple deletions [1, 10, 22, 38, 41, 43] and value
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Figure 5: Runtimes for ACS and COMPAS data (10% noise level, 80%-20% value distribution) with chain and non-chain FD sets.

updates [4, 12, 14, 21, 29, 46]. The complexity of the former is better
understood [38]. We intend to study extensions of our approach
to the value-change model as well in future work. The literature
considered a wide variety of constraints, such as FDs and versions
thereof [6, 30], denial constraints [10], tuple-generating dependen-
cies [17, 19], and equality-generating dependencies [3]. Different
from these, our representation constraints consider the statistical
proportions of an attribute over the entire database.

Representation constraints. Various types of constraints involving
probability distributions on the data have been proposed in the
literature. This vein of literature focuses on fairness toward specific
downstream tasks. A predominant part of that work focuses on
algorithmic fairness [8, 20, 45, 48, 49]: given a classification algo-
rithm and sensitive attributes, determine whether the classification
satisfies some definition of fairness [13, 26]. They consider the out-
come or predicted attribute in the data and some sensitive attributes
(like race or sex), and aim to maintain some equality of conditional
probabilities for different values of these attributes. Several fairness
definitions can be expressed as comparisons of conditional prob-
abilities, e.g., demographic parity [16, 28] and true positive rate
balance [11, 52]. Our hypothesis here is that maintaining represen-
tation while repairing the data is a precursor to reducing biases in
all data-dependent tasks. Yet, capturing some fairness definitions
using complex RCs is an intriguing subject for future work.

8 DISCUSSION AND FUTUREWORK
We proposed a framework for estimating the cost of representation
for S-repairs—how many extra tuples have to be deleted to satisfy
the FDs as well as a representation constraint (RC) on a sensitive
attribute. We studied the complexity of computing an optimal RS-
repair, presented polynomial-time algorithms for FD sets that form
LHS-chains for a bounded domain of the sensitive attribute, devised
efficient heuristics for the general cases, and evaluated them exper-
imentally. This is an initial study of data repair with representation,
and there are many interesting future directions.

First, one can study the complexity and algorithms for gener-
alization of representations to multiple sensitive attributes. While
the problem is still NP-hard, a closer study of the complexity, al-
gorithms (e.g., the PostClean process), and practical performance
would be beneficial. We have a detailed discussion on multiple
sensitive attributes in the full version [35].

Second, it will be interesting to study the cost of representations
for other repair models, and in particular, for update repairs. Update
repair cleans the data by updating values of some cells (attributes
of tuples), which preserves the original data size unlike S-repair.
However, update repair approaches also have their own challenges
with or without representations. In Example 1 discussed in the in-
troduction, a popular update repair method Holoclean [46] does not
make any changes in the data, and therefore does not eliminate any
violations, since it treats the FDs as soft constraints while preserv-
ing the data distribution. On the other hand, another update repair
method Nadeef [14] provides a repair satisfying the FDs, and since
the sensitive attribute Disability does not participate in the FDs, it
preserves its representations. However, in our experiment, Nadeef
changed a (Asian, foreign-born) person to (White, native)
while keeping the other attribute values the same (female, born
in Philippines, lives in CA, DISABLE, · · · ). This is not faith-
ful to the reality (People born in Philippines should be “foreign
born” not “native” and are likely to be Asian (not White)). Data
repair under updates might be inherently connected to preserving
distributions of multiple attributes discussed above.

Third, this paper considers the cost of repair preserving rep-
resentation on the data without considering any tasks where the
data is used. A natural extension of our model and future work
is to consider the (still task-independent) weighted cost of tuple
deletion where different tuples have different weights or different
costs, which can be helpful to the downstream tasks after repairing.
A more challenging future work is to study both the cost and ef-
fect of data repair with and without representation on downstream
tasks, e.g., when the repaired data is used for ML-based tasks like
predictions and classification. It will be interesting to see the impli-
cation of preserving representations in the input dataset to preserve
fairness of the ML tasks for different sub-populations.
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