
Noname manuscript No.
(will be inserted by the editor)

Efficient Provenance Tracking For Datalog Using Top-K
Queries

Daniel Deutch · Amir Gilad · Yuval Moskovitch

Received: date / Accepted: date

Abstract Highly expressive declarative languages, such

as datalog, are now commonly used to model the oper-

ational logic of data-intensive applications. The typi-

cal complexity of such datalog programs, and the large

volume of data that they process, call for result expla-

nation. Results may be explained through the tracking

and presentation of data provenance, defined here as the

set of derivation trees of a given fact. While informa-

tive, the size of such full provenance information is typ-

ically too large and complex (even when compactly rep-

resented) to allow displaying it to the user. To this end,

we propose a novel top-k query language for querying

datalog provenance, supporting selection criteria based

on tree patterns and ranking based on the rules and

database facts used in derivation. We propose an effi-

cient novel algorithm that computes in polynomial data

complexity a compact representation of the top-k trees

which may be explicitly constructed in linear time with

respect to their size. We further experimentally study

the algorithm performance, showing its scalability even

for complex datalog programs where full provenance

tracking is infeasible.

Daniel Deutch
Tel Aviv University
E-mail: danielde@post.tau.ac.il

Amir Gilad
Tel Aviv University
E-mail: amirgilad@mail.tau.ac.il

Yuval Moskovitch
Tel Aviv University
E-mail: moskovitch1@post.tau.ac.il

1 Introduction

Many real-life applications rely on an underlying database

in their operation. In different domains, such as Declar-

ative Networking [44], Social Networks [53], and Infor-

mation Extraction [24], it has recently been proposed

to use datalog for the modeling of such applications.

Consider, for example, AMIE [24], a system for min-

ing logical rules from Knowledge Bases (KBs), based on

observed correlations in the data. After being mined,

rules are then treated as a datalog program (techni-

cally, a syntax of Inductive Logic Programming is used

there) which may be evaluated with respect to a KB

of facts (e.g. YAGO [57]) that, in turn, were directly

extracted from sources such as Wikipedia. This allows

addressing incompleteness of KBs, gradually deriving

additional new facts and introducing them to the KB.

The datalog program depicted in Figure 1 is composed

of rules automatically inferred by AMIE.

Datalog programs capturing the logic of real-life ap-

plications are typically quite complex, with many, possi-

bly recursive, rules and an underlying large-scale database.

For instance, AMIE rules are highly complex and in-

clude many instances of recursion and mutual recursion

(see again Figure 1). Furthermore, since AMIE rules are

automatically mined, there is an inherent uncertainty

with respect to their validity. Indeed, many rules mined

in such a way are not universally valid, but are never-

theless very useful (and used in practice), since they

contribute to a higher recall of facts.

In such complex systems, accompanying derived facts

with provenance information, i.e. an explanation of the

ways they were derived, is of great importance. Such

provenance information may provide valuable insight

into the system’s behavior and output data, useful both

for the application developers and their users.

2 Daniel Deutch et al.

dealsWith(a, b) :- imports(a, c), exports(b, c)

dealsWith(a, b) :- dealsWith(b, a)

dealsWith(a, b) :- dealsWith(a, f), dealsWith(f, b)

hasChild(a, b) :- isMarriedTo(e, a), hasChild(e, b)

hasChild(a, b) :- isMarriedTo(a, f), hasChild(f, b)

isMarriedTo(a, b) :- isMarriedTo(b, a)

isMarriedTo(a, b) :- hasChild(a, c), hasChild(b, c)

influences(a, b) :- influences(a, f),

influences(f, b)

isCitizenOf(a, b) :- wasBornIn(a, f),

isLocatedIn(f, b)

diedIn(a, b) :- wasBornIn(a, b)

dealsWith(a, b) :- exports(a, f), exports(b, f)

dealsWith(a, b) :- imports(a, f), imports(b, f)

directed(a, b) :- created(a, b)

influences(a, b) :- influences(a, f),

influences(b, f)

isPoliticianOf(a, b) :- diedIn(a, f),

isLocatedIn(f, b)

isPoliticianOf(a, b) :- livesIn(a, f),

isLocatedIn(f, b)

isInterestedIn(a, b) :- influences(a, f),

isInterestedIn(f, b)

worksAt(a, b) :- graduatedFrom(a, b)

influences(a, b) :- influences(e, a),

influences(e, b)

isInterestedIn(a, b) :- isInterestedIn(e, b),

influences(e, a)

produced(a, b) :- created(a, b)

isPoliticianOf(a, b) :- wasBornIn(a, f),

isLocatedIn(f, b)

Fig. 1: AMIE program

Example 1 The binary relation dealsWith includes in-

formation on international trade relations. For instance,

AMIE has “learned” the following rule, intuitively spec-

ifying that dealsWith is a symmetric relation (ignore

for now the numbers in parentheses).
r1(0.8) dealsWith(a, b):- dealsWith(b, a)

Many other rules with the dealsWith relation oc-

curring in their head were mined by AMIE, including

some additional rules whose validity is questionable:

(imports and exports are additional binary relations)

r2(0.5) dealsWith(a, b):- imports(a, c), exports(b, c)

r3(0.7) dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

In this example, when viewing a concrete derived

“dealsWith” fact, it is thus highly useful to see an ex-

planation for it, including in particular which rules were

used for its derivation: intuitively, we may trust facts

derived via the first rule but not via the second, unless

for a concrete fact the derivation using the latter ap-

pears to “make sense” (e.g. if the derivation involves a

rare product).

A conceptual question in this respect is what con-

stitutes a “good” explanation. There are many differ-

ent models defining such explanations through different

notions of provenance. The models greatly vary in the

level of detail that they capture: for instance, prove-

nance may be defined as the set of input tuples con-

tributing to a tuple derivation (the lineage model of

[6]); the boolean combination thereof [32]; or their com-

bination using an algebraic structure as in [30]. Differ-

ent models are useful for different applications. In this

work, we capture explanations for datalog through the

notion of derivation trees. A derivation tree of an inten-

sional fact t, defined with respect to a datalog program

and an extensional database, completely specifies the

rules instantiations and intermediate facts jointly used

in the gradual process of deriving t.

Example 2 As a simple example, consider the datalog

program consisting of the rules r1, r2, r3 from Example

1 and the instance presented in Table 2. Figure 2 depicts

derivation trees for the fact dealsWith(Cuba, France).

Derivation trees are particularly appealing as expla-

nations, since unlike boolean provenance or the lineage

model, they do not only include the facts and rules that

support a given fact, but they also describe how they

support it, providing insight on the structure of infer-

ence. A single fact may have multiple derivation trees

(alternative derivations), and the set of all such trees

(each serving as “alternative explanation”) is the prove-

nance of that fact. Defining provenance as the set of all

possible derivation trees leads to a challenge: the num-

ber of possible derivation trees for a given program and

database may be extremely large and even infinite in

presence of recursion in the program. This is the main

challenge that we aim to address in this work.

We next outline our approach and main contribu-

tions in addressing this problem, as well as the chal-

lenges that arise in this context.

Novel query language for datalog provenance. We ob-

serve that while full provenance tracking for datalog

may be costly or even infeasible, it is often the case that

only parts of the provenance are of interest for analy-

sis purposes. To this end, we develop a query language

called selPQL that allows analysts to specify which deriva-

tion trees are of interest to them. A selPQL query in-

cludes a derivation tree pattern, used to specify the

structure of derivation trees that are of interest. The la-

bels of nodes in the derivation tree pattern correspond

to facts (possibly with wildcards replacing constants),

and edges may be regular or “transitive”, matching

edges or paths in derivation trees, respectively.

Example 3 Analysts may be interested in explanations

for a particular dealsWith fact (due of its importance),

in all dealsWith facts involving a particular country, or

in explanations for all dealsWith facts (rather than all

Efficient Provenance Tracking For Datalog Using Top-K Queries 3

relations). The two latter cases may be captured by pat-

terns that involve wildcards. Beyond specifying facts of

interest, analysts may be interested in specific features

of their derivations, e.g. viewing derivations that involve

integration of data from different sources or ones that

rely on particular sources.

Importantly, and since the number of qualifying deriva-

tion trees may still be very large (and in general even

infinite), we support the retrieval of a ranked list of

top-k qualifying trees for each fact of interest. To this

end, we allow analysts to assign weights to the different

facts and rules. These weights are aggregated to form

the weights of trees.

Example 4 The weight function may be uniform across

all rules and tuples, in which case concise derivations

are preferable to long ones. As another example, AMIE

associates confidence values with rules; these may be

aggregated to form the confidence in a given derivation.

Novel algorithms for selective provenance tracking. We

then turn to the problem of efficient provenance track-

ing for datalog, guided by a selPQL query. We ob-

serve (and experimentally prove) that materializing full

provenance, i.e. a compact representation of the possi-

ble trees, and then querying the provenance, is a solu-

tion that fails to scale. Our solution then consists of two

main steps. The first is to instrument the datalog pro-

gram P with respect to the tree pattern p of the selPQL

query. We introduce a precise definition of the output of

this instrumentation (see Proposition 1), which is a new

datalog program Pp that “guides” provenance tracking

based on p. Namely, for each pair of (relation of P ,

part of p) we design a novel relation name and corre-

sponding rules whose body relations together “guaran-

tee” satisfaction of the pattern part. Then, we show a

bottom-up evaluation algorithm for Pp w.r.t. a database

D that generates compact representation of the top-k

qualifying trees. This is done by first computing the top-

1 tree side-by-side with bottom-up datalog evaluation.

We then further design novel algorithms for computing

the top-k derivation trees, by exploring modifications

of the top-1 tree. We show heuristic solutions as well

as a solution that supports diversification of retrieved

trees.

Complexity analysis and experimental study. We ana-

lyze the performance of our evaluation algorithm from

a theoretical perspective, showing that the complex-

ity of computing a compact representation of selected

derivation trees is polynomial in the input database size,

with the exponent depending on the size of the data-

log program and the selPQL query; the enumeration of

trees from this compact representation is then linear in

the output size (size of top-k trees). We have further

implemented our solution, and have experimented with

different highly complex and recursive programs. Our

experimental results indicate the effectiveness of our so-

lution even for complex programs and large-scale data

where full provenance tracking is infeasible.

Note This paper significantly extends [16,17]. Specifi-

cally, our main novel contributions here are as follows:

1. We present full proofs for all theoretical results.

2. We introduce many new examples throughout the

paper (e.g. Examples 12 - 21, 23).

3. We provide an extensive and complete study (Sec-

tion 5) of the case of boolean combinations of pat-

terns. We provide a new algorithm (Algorithm 2)

with a correctness proof (Proposition 3), and new

examples (Examples 15 – 20)

4. We introduce a novel algorithm for computing di-

verse top-k trees (in Section 6.4).

5. We present new experiments concerning the track-

ing of full provenance, diversification, and boolean

combinations of patterns, as well as full details in-

cluding the patterns and programs used.

2 Preliminaries

We provide an overview of datalog and its provenance.

2.1 Datalog

We assume that the reader is familiar with standard

datalog concepts [1]. Here we review the terminology

and illustrate it with an example.

Definition 1 A datalog program is a finite set of dat-

alog rules. A datalog rule is an expression of the form:

R1(u1) : −R2(u2)...Rn(un), xi 6= xj

where Ri’s are relation names, and u1, ...,un are sets

of variables with appropriate arities. R1(u1) is called

the rule’s head, and R2(u2)...Rn(un) is called the rule’s

body. Every variable occurring in u1 must occur in at

least one of u2, ...,un. xi and xj are variables or con-

stants occurring in u1, ...,un and any assignment to the

variables must satisfy the disequalities constrains.

We make the distinction between extensional (edb)

and intensional (idb) facts and relations. An extensional

relation is a relation occurring only in the body of the

rules. An intensional relation is a relation occurring in

4 Daniel Deutch et al.

the head of some rule. A datalog program is then a map-

ping from edb instances to idb instances, whose seman-

tics may be defined via the notion of the consequence

operator. First, the immediate consequence operator in-

duced by a program P maps a database instance D to

an instance D
⋃
{A} if there exists an instantiation of

some rule in P (i.e. a consistent replacement of variables

occurring in the rule with constants) such that the body

of the instantiated rule includes only atoms in D and

the head of the instantiated rule is A. Then the conse-

quence operator is defined as the transitive closure of

the immediate consequence operator, i.e. the fixpoint of

the repeated application of the immediate consequence

operator. Finally, given a database D and a program P

we use P (D) to denote the restriction to idb relations

of the database instance obtained by applying to D the

consequence operator induced by P .

P Datalog program
r Datalog rule
β Body of a rule
D Database
t Fact

P (D) Intensional Database
R idb relation
T edb relation
τ Derivation tree

trees(P,D, t) Derivation trees of t with respect to P,D
trees(P,D) All derivation trees with respect to P,D

p Pattern
v Pattern node
v0 Root of pattern p

p(P,D) Derivation trees in trees(P,D) matching p
Pp Instrumented program (P w.r.t. p)

Rv , Rvt
Annotated relation

Table 1: Notations Table

Example 5 Reconsider the datalog program depicted in

Figure 1. Among many others, the idb instance includes

the binary relation dealsWith (an edb “copy” of this

relation appears as well, with a rule to copy its contents

that is omitted for simplification) and the binary edb

relations imports and exports.

The rules r1, r2, r3 from Example 1 form a datalog

program whose evaluation (with respect to the instance

presented in Table 2; the presented table dealsWith is

its edb copy) follows the immediate consequence oper-

ator until convergence. For instance, using rule r2 we

may assign Cuba, France, wine to a, b, c respectively,

obtaining the new idb fact dealsWith(Cuba, France).

Then using rule r1 we obtain the idb fact

dealsWith(France, Cuba), etc., until no new fact may

be added in such a way.

exports
Country Product
France wine

t1: Cuba tobacco
Cuba coffee beans

imports
Country Product
Cuba wine
Mexico wine
Mexico tobacco

t2: France tobacco

dealsWith
Countrya Countryb

Mexico France

Table 2: Database

Fig. 2: Derivation Trees

2.2 Datalog Provenance

It is common to characterize the process of datalog

evaluation through the notion of derivation trees. A

derivation tree of a fact t with respect to a datalog pro-

gram and a database instance D is a finite tree whose

nodes are labeled by facts. The root is labeled by t,

leaves are labeled by edb facts from D, and internal

nodes by idb facts. The tree structure is dictated by

the consequence operator of the program: the labels set

of the children of node n corresponds to an instanti-

ation of the body of some rule r, such that the label

of n is the corresponding instantiation of r’s head (we

refer to this as an occurrence of r in the tree). Dise-

qualities are not included in the derivation tree, even

if they appear in r. Given a datalog program P and

a database D, we denote by trees(P,D, t) the set of

all possible derivation trees for t ∈ P (D), and define

trees(P,D) =
⋃
t∈P (D) trees(P,D, t).

A single derivation tree is quite simple to under-

stand and is even natural to visualize. However there

may be infinitely many (and exponentially many in ab-

sence of recursion in P) possible derivation trees of a

given fact, and so it is infeasible to materialize trees(P,D).

Example 6 Three derivation trees for the fact

t = dealsWith(Cuba, France), based on the program

Efficient Provenance Tracking For Datalog Using Top-K Queries 5

given in Example 1 and the database given in Table 2,

are presented in Figure 2. For instance, τ2 corresponds

to the derivation that uses the edb facts t1 and t2 and

the rule r2 to derive the idb fact dealsWith(France, Cuba),

and then, use r1 to derive t.

Already in the small-scale demonstrated example

there are infinitely many derivation trees for t (due to

the presence of recursion in rules); for the full program

and database, many trees are substantially different in

nature (based on different rules and/or rules instanti-

ated and combined in different ways).

3 Querying Datalog Provenance

We introduce a query language called selPQL for deriva-

tion trees, based on two facets: (1) boolean criteria de-

scribing derivations of interest, (2) a ranking function

for derivations.

3.1 Derivation Tree Patterns

Recalling our definition of provenance as a possibly infi-

nite set of trees, we next introduce the notion of deriva-

tion tree patterns.

Definition 2 A derivation tree pattern is a node-labeled

tree. Labels are either wildcards (*), or edb/idb facts, in

which wildcards may appear instead of some constants.

Edges may be marked as regular (/) or transitive (//),

and in the latter case may be matched to a path of any

length.

The boolean operators ¬, ∨ and ∧ can be applied to

tree patterns. Intuitively, given the tree pattern p1 and

p2, ¬p1 is used to specify that we are interested in trees

that do not match (see semantics of matching below)

p1, p1 ∨ p2 (and p1 ∧ p2) are used to specify that we are

interested in trees that match p1 or (resp. and) p2.

(a) Pattern p1 (b) Pattern p2 (c) Pattern p3

(d) Pattern p4

Fig. 3: Tree Pattern Examples

Example 7 Several tree patterns are presented in Fig-

ure 3. The pattern p1 specifies interest in all deriva-

tions of facts of the form dealsWith(Cuba, ∗) (any con-

stant may replace the wildcard). The other patterns

further query the structure of derivation. Specifically,

p2 specifies that the analyst is interested in derivations

of such facts that are (directly or indirectly) based on

the fact that Cuba exports tobacco. The patterns p3
and p4 are relevant when (omitted) rules integrate two

ontologies (YAGO and DBpedia). We use ∗ YAGO()

and ∗ DBP()1 to match all relations from YAGO and

DBpedia resp.; then p3 selects derivations of facts

dealsWith(Cuba, ∗) that are based on integrated data

from both sources, and p4 selects derivations that use

facts from YAGO but no fact from DBpedia.

We next define the semantics of derivation tree pat-

terns, in the spirit of XML query languages with some

technical differences (see below).

Definition 3 Given a derivation tree τ and a deriva-

tion tree pattern p, a match of p in τ is a mapping h

from the nodes of p to nodes of τ , and from the reg-

ular (transitive) edges of p to edges (resp. paths) of τ

such that (1) the root of p is mapped to the root of τ ,

(2) a node labeled by a label l which does not contain

wildcards, is mapped to a node labeled by l, (3) a node

labeled by a label l which includes wildcards is mapped

to a node labeled by l′, where l′ may be obtained from l

by replacing wildcards by constants, (4) a node labeled

by a wildcard can be mapped to any node in τ . (5) If

n,m are nodes of p and e is the directed (transitive)

edge from m to n, then h(e) is an edge (path) in τ from

h(m) to h(n) and (6) for any two edges e1 and e2 in p,

their corresponding edge/path in τ are disjoint.

We next define the semantics of a pattern with re-

spect to a datalog instance.

Definition 4 Given a (possibly infinite) set S of deriva-

tion trees and a derivation tree pattern p, we define p(S)

(“the result of evaluating p over S”) to be the (possi-

bly infinite) subset S′ consisting of the trees in S for

which there exists a match of p. Given a pattern p, a

datalog program P and an extensional database D, we

use p(P,D) as a shorthand for p(trees(P,D)).

Example 8 Consider the datalog program P given in

Example 1, the database instance given in Table 2 and

the tree pattern p2 in Figure 3b. The set p2(P,D) in-

cludes infinitely many derivation trees, including in par-

ticular τ2 and τ3 shown in Figure 2.

1 This requires a slight change of the definition of patterns,
which is easy to support, to allow * in relation names.

6 Daniel Deutch et al.

The boolean operators ¬, ∨ and ∧ can also be ap-

plied to tree patterns, with the expected semantics, i.e.

¬p1 matches every tree where there is no match of p1,

and p1 ∨ p2 (p1 ∧ p2) matches trees that match p1 or

(resp. and) p2. For instance, the pattern p4 in Figure

3d specifies that we wish to view derivations that are

based solely on YAGO and do not use DBpedia fact.

3.2 Ranking Derivations

Even when restricting attention to derivation trees that

match the pattern, their number may be too large or

even infinite, as exemplified above. We thus propose to

rank different derivations based on the rules and facts

used in them. We allow associating weights with the

input database facts as well as the individual rules, and

aggregating these weights. Different choices of weights

and aggregation functions may be used, capturing dif-

ferent interpretations. We support a general class of

such functions via the notion of an ordered monoid,

which is a structure (M,+, 0, <) such that M is a set of

elements, + is a binary operation which we require to be

commutative, associative, and monotone non-increasing

in each argument, i.e. x + y ≤ min(x, y) (with respect

to the structure’s order), 0 is the neutral value with

respect to +, and < is a total order on M .

Definition 5 A weight-aware datalog instance is a triple

(P,D,w) where w, the weight function, maps rules in P

as well as tuples in D to elements of an ordered monoid

(M,+, 0, <). The monoid operation is referred to as the

aggregation function.

Example 9 We demonstrate multiple choices of monoid

and the corresponding applications.

Derivation size. To rank derivation trees by their size

we may use the monoid (Z−,+, 0, <), and set the weight

of every rule to be −1; then the weight of a derivation

tree is the negative of its size.

Derivation (total) confidence. Another way to rank

derivations is to associate confidence values with rules.

In AMIE, such confidence values reflect the rules’ sup-

port in underlying data. Here we use the monoid

([0, 1], ·, 1, <). This is the example that will be used in

the sequel; rules’ weights are specified next to them and

facts weights are all 1.

Derivation minimal confidence. One could alterna-

tively impose a preference relation on trees based on

the confidence in their “weakest” rule/fact (so that top

trees are those whose least trusted component is best

trusted among all trees). This can be captured by the

([0, 1],min, 1, <) monoid.

Access control. Consider the case where each fact/rule

is associated with a different access control credential,

e.g. one of A = {Top secret (T), Secret (S), Confiden-

tial (C), Unclassified (U)}. We may rank trees based on

their overall credential (typically defined as the maxi-

mum credential of fact/rule used), so that non-secret

trees are preferable as explanations. Here we use

(A,min,U, <), where T < S < C < U.

We may then define the weight of a derivation tree

as the result of aggregating the weights of facts and

derivation rules used in the tree.

Definition 6 The weight of a derivation tree τ with

respect to a weight-aware datalog instance, denoted,

abusing notation, as w(τ), is defined as
∑
r w(r)+

∑
t w(t)

where the sums (performed in the weights monoid) range

over all rules and tuples occurrences in τ .

Example 10 Setting the weight of every rule to be −1

and using the monoid (Z−,+, 0, <), the weights of the

trees in Figure 2 are w(τ1) = −1, w(τ2) = −2 and

w(τ3) = −3.

Using the weight function w defined by the confi-

dence value associated with rules (appearing next to

them, in brackets) and aggregating via multiplication,

the weights of exemplified trees (Figure 2) are w(τ1) =

0.5, w(τ2) = 0.5 · 0.8 = 0.4 and w(τ3) = 0.7 · 0.8 · 0.5 =

0.28.

Last, we may define top-k problem.

Definition 7 Given a pattern p, a weight-aware data-

log instance (P,D,w) and a natural number k, we use

top-k(p, P,D,w) to denote the set containing for each

fact t in P (D) the k derivation trees of t that are of high-

est weight (ties are decided arbitrarily) out of those in

p(P,D). We use TOP-K to denote the problem of find-

ing top-k(p, P,D,w) given the above input.

Example 11 In general, there are infinitely many finite

derivation trees for the fact dealsWith(Cuba, France)

(due to the recursive rule r1), as well as infinite deriva-

tions which we algorithmically avoid generating (see

Section 6). The top-2 results w.r.t. the pattern given

in Figure 3b are τ2 and τ3 in Figure 2 with weights of

0.4 and 0.28 respectively. Note that τ1 does not match

the pattern.

Note that if the database is large then it is unrea-

sonable (and typically unneeded) to specify a weight for

every individual tuple; instead, tuples can have a de-

fault weight of 1, which may be augmented by adding

custom rules to the datalog program, that copy tuples

of interest (e.g. all tuples of a particular relation or any

other selection criteria) to an auxiliary relation, and

assigning the weights to these custom rules.

Efficient Provenance Tracking For Datalog Using Top-K Queries 7

Instrument P w.r.t p
Instrumented program P’Instrumented program P’ Top-K Top-k treesTop-k trees

Program P, Pattern pProgram P, Pattern p

Database DDatabase D

kk

Fig. 4: High-level Framework

Specifying queries in selPQL. Some users may lack suf-

ficient understanding of the structure of the program

and the content of the database, creating a bootstrap-

ping problem in writing selPQL queries. A possible use

case is to first specify and evaluate a “general” pat-

tern, which e.g. only restricts the attention to partic-

ular output tuples. Then, after browsing through rel-

evant explanations, the user may refine her patterns

accordingly.

In the following sections we propose a two-step al-

gorithm for solving TOP-K, as explained in the Intro-

duction and depicted in Figure 4. The algorithm will

serve as proof for the following theorem.

Theorem 1 For any Program P , pattern p and database

D, we can compute the top-k derivation trees for each

fact matching the root of p in O(k3 ·|D|O(|P |w(p))+|out|)
time where w(p) is the pattern width (i.e. the maximal

number of children of a node in p) and |out| is the out-

put size.

The worst case time complexity is polynomial in the

database size with exponential dependency on the pro-

gram size (which is typically much smaller), and dou-

ble exponential in the pattern width (which is typically

even smaller), and linear in the output size. We note

that the output size (even the size of a single derivation

tree) may be exponential in the Database size (though

in practice top-k trees are typically small); the linear

dependency on the output size is of course optimal in

this respect.

4 Program Instrumentation

We now present the first step of the algorithm for solv-

ing TOP-K, which is instrumenting the program with

respect to a selPQL pattern. We first present an algo-

rithm for a single pattern instrumentation, and then

generalize it to Boolean combinations of patterns.

4.1 A single pattern

We first define relation names for the output program,

and then its rules.

New relation names. We say that a pattern node v is

a transitive child if it is connected with a transitive

edge to its parent. For every relation name R occur-

ring in the program and for every pattern node v we

introduce a relation name Rv. If v is a transitive child

we further introduce a relation name Rv
t

. Intuitively,

derivations for facts in Rv must match the sub-pattern

rooted by v; derivations for Rv
t

must include a sub-tree

that matches the sub-pattern rooted by v. These will

be enforced by the generated rules, as follows.

New rules. We start with some notations. Let v be a

pattern node, let v0, ..., vn be the immediate children

of v. Given an atom (in the program) atom, we say

that it locally matches v if the label of v is atom, or

the label of v may be obtained from atom through an

assignment A mapping variables of atom to constants

or wildcards (if such assignment exists, it is unique).

We further augment A so that a variable x mapped to

a wildcard, is now mapped to itself (Intuitively, this

is the required transformation to the atom so that a

match with the pattern node is guaranteed).

Example 12 The atom dealsWith(a, b) locally-matches

the pattern node v0 of the tree pattern shown in Figure

3b through the assignment A = {a ← Cuba, b ← ∗},
but doesn’t locally-match v1.

Overloading notation, we will then use A(β), where

β is a rule body, i.e. a set of atoms, to denote the set

of atoms obtained by applying A to all atoms in β.

Algorithm 1 then generates a new program, instru-

mented by the selPQL pattern, as follows. For brevity

we do not specify the weight of the new rules: they are

each simply assigned the weight of the rule from which

they originated, or 0 (neutral value of the monoid) if

there is no such rule. The algorithm traverses the pat-

tern in a top-down fashion, and for every pattern node

v it looks for rules in the program whose head locally

matches v (lines 3-4). For each such rule it generates a

new rule as follows: if v is a leaf (lines 6-7), then intu-

itively this “branch” of the pattern is guaranteed to be

matched and we add rules which are simply the “spe-

cializations” of the original rule, meaning that we apply

to their body the same assignment used in the match.

Otherwise (lines 8-9), we need derivations of atoms

in the body of the rule to satisfy the sub-trees rooted

in the children of v. To this end we define the set

of “expansions” ex(atoms, {v0, ..., vn}) as follows. Con-

sider all one-to-one (but not necessarily onto) functions

f that map the set {v0, ..., vn} to the set atoms =

{a0, ..., ak}. Each such function defines a new set of

atoms obtained from atoms by replacing atom ai =

R(x0, ..., xm) by Rvj (x0, ..., xm) if f(vj) = ai and vj

8 Daniel Deutch et al.

Algorithm 1: Instrumentation w.r.t. tree pattern

input : Weighted Program P and a pattern p
output: “Instrumented” Program Pp

1 foreach pattern node v ∈ p do

2 Let v0, . . . , vn be the immediate children of v;
3 foreach rule [R(x0, ..., xm) : −β] in P do

4 if R(x0, ..., xm) locally-matches v through partial

assignment A then
5 Let (y0, ..., ym) := A(x0, ..., xm);
6 if v is a leaf then
7 Add [Rv(y0, ..., ym) : −A(β)] to Pp;

8 else

9 foreach β′ ∈ ex(A(β), {v0, ..., vn}) do

10 Add [Rv(y0, ..., ym) : −β′] to Pp;

11 if v is a transitive child then

12 foreach β′ ∈ tr − ex(β, v) do

13 Add [Rvt
(x0, ..., xm) : −β′] to Pp;

14 foreach rule [Rv(y0, ..., ym) : −β] for transitive v do

15 Add [Rvt
(y0, ..., ym) : −β] to Pp;

16 HandleEDB ();

17 Clean failed rules in Pp ;
18 return the union of rules in P and Pp;

is not a transitive child, or by Rv
t
j (x0, ..., xm) if vj is

a transitive child (atoms to which no node is mapped

remain intact). We then define ex(atoms, {v0, ..., vn})
as the set of all atoms sets obtained for some choice of

function f .

Example 13 Consider the set of atoms in the body of

r3, and the pattern given in Figure 3b with the transi-

tive node v1. The set

ex({dealsWith(a, f), dealsWith(f, b)}, {v1}) consists of

{dealsWith(a, f)v
t
1 , dealsWith(f, b)} and

{dealsWith(a, f), dealsWith(f, b)v
t
1}

In line 10 the algorithm generates a rule for each set out

of these sets of atoms. Intuitively, each such rule cor-

responds to alternative “assignment of tasks” to atoms

in the body, where a “task” is to satisfy a sub-pattern.

The algorithm thus far deals with satisfaction of the

sub-tree rooted at v, by designing rules that propagate

the satisfaction of the sub-trees rooted at the children

of v to atoms in the bodies of relevant rules. However

if the current pattern node v is transitive (lines 11-12),

then more rules are needed, to account for the possibil-

ity of the derivation satisfying the tree rooted at v only

in an indirect fashion. A possibly indirect satisfaction

is either through a direct satisfaction (and thus for ev-

ery rule for Rv(...) we will have a copy of the same rule

for Rv
t

(...), lines 14-15), or through (indirect) satisfac-

tion by an atom in the body. For the latter, we define

tr − ex(atoms, v) as the set of all atoms sets obtained

from atoms by replacing a single atom R(x0, ..., xm) in

atoms by Rv
t

(x0, ..., xm) (and keeping the other atoms

intact), and add the corresponding rules (line 13). Then

the function HandleEDB adds rules for nodes that lo-

cally match edb facts, copying matching facts into the

new relations T v(. . .) and T v
t

(. . .). The final step of the

algorithm is “cleanup” (line 17), removing unreachable

rules. These rules have no derivation, i.e. each deriva-

tion requires use of at least one idb relation for which

there is no rule in Pp (this may be done in a bottom-up

fashion). In addition, new rules that are added by the

algorithm and are not reachable from the rules added

for the root node of the pattern (i.e rules for Rv0(...))

are deleted. This can be done in a top-down fashion.

The algorithm returns a new program consisting of the

set of newly generated rules together with the original

rules.

Example 14 Consider the program P consisting of the

rules r1, r2 and r3 given in Example 1, and the tree

pattern shown in Figure 3b, where v0 is the root node

in p2 and v1 is the leaf.

Since all rules in P locally match v0 through the

assignment A = {a ← Cuba, b ← ∗}, v0 is not a leaf

and {dealsWithv
t
1(b, Cuba)} is the only β′ obtained for

rule r1 and ex(A(dealsWith(b, a)), v1), we have that in

line 10 the algorithm adds the rule
dealsWithv0(Cuba, b):-dealsWithv

t
1(b, Cuba)

Similarly, the rules
dealsWithv0(Cuba, b):- imports(Cuba, a), exportsv

t
1(b, c)

dealsWithv0(Cuba, b):- importsv
t
1(Cuba, a), exports(b, c)

dealsWithv0(Cuba, b):- dealsWithv
t
1(Cuba, f),

dealsWith(f, b)

dealsWithv0(Cuba, b):- dealsWith(Cuba, f),

dealsWithv
t
1(f, b)

are generated using the rules r2 and r3
Next, the algorithm adds the rules for v1. Since,

exports(...) is an edb relation, there are no rules in P

that locally matches it and no new rules are added in

lines 3-11. v1 is a transitive node and thus in line 13 the

following rules are added
dealsWithv

t
1(a, b):- dealsWithv

t
1(b, a)

dealsWithv
t
1(a, b):- importsv

t
1(a, c), exports(b, c)

dealsWithv
t
1(a, b):- imports(a, c), exportsv

t
1(b, c)

dealsWithv
t
1(a, b):- dealsWithv

t
1(a, f), dealsWith(f, b)

dealsWithv
t
1(a, b):- dealsWith(b, f), dealsWithv

t
1(f, b)

Finally, since the edb relation exports(a, b) locally

matches v1 through the assignmentA = {a← Cuba, b←
tobacco}, the function HandleEDB adds the rules
exportsv1(Cuba, tobacco):- exports(Cuba, tobacco)

exportsv
t
1(Cuba, tobacco):- exports(Cuba, tobacco)

Intuitively derivations for facts in dealsWithv0(...)

must match the sub-pattern rooted by v0. Then deriva-

tions for facts in dealsWithv
t
1(...) must include a sub-

tree that matches the sub-pattern rooted by v1, and

generated rules for dealsWithv
t
1(...) enforce that (since

Efficient Provenance Tracking For Datalog Using Top-K Queries 9

a dealsWith atom cannot satisfy v1) one of the atoms

in the body of a used rule will be derived in a way

eventually satisfying v1.

The algorithm then performs a “cleanup” of atoms

for which there is no derivation, in this example the

idb relation importsv
t
1(...) has no rule in P ′ thus the

derivation rules that use it such as
dealsWithv

t
1(a, b):- importsv

t
1(a, c), exports(b, c)

are deleted. In addition the relation exportsv1(...) is not

reachable from the derivation rules for dealsWithv0(...)

and thus the derivation rule added for it is deleted. Fi-

nally the output program is:

dealsWith(a, b):- dealsWith(b, a)

dealsWith(a, b):- imports(a, c), exports(b, c)

dealsWith(a, b):- dealsWith(a, f), dealsWith(f, b)

dealsWithv0(Cuba, b):-dealsWithv
t
1(b, Cuba)

dealsWithv0(Cuba, b):- imports(Cuba, a), exportsv
t
1(b, c)

dealsWithv0(Cuba, b):- dealsWithv
t
1(Cuba, f),

dealsWith(f, b)

dealsWithv0(Cuba, b):- dealsWith(Cuba, f),

dealsWithv
t
1(f, b)

dealsWithv
t
1(a, b):- dealsWithv

t
1(b, a)

dealsWithv
t
1(a, b):- imports(a, c), exportsv

t
1(b, c)

dealsWithv
t
1(a, b):- dealsWithv

t
1(a, f), dealsWith(f, b)

dealsWithv
t
1(a, b):- dealsWith(b, f), dealsWithv

t
1(f, b)

exportsv
t
1(Cuba, tobacco):- exports(Cuba, tobacco) [r’]

The instrumented program satisfies the following

fundamental property. Given an atom R(...), Rv(...) or

Rv
t

(...) we define its origin to be R(...), i.e. the atom ob-

tained by deleting the annotation v or vt (if exists). For

a derivation tree τ we define origin(τ) as the tree ob-

tained from τ by replacing each atom by its origin and

pruning branches added due to the function HandleEDB

(“copying” edb facts). We now have:

Proposition 1 Let Pp be the output of Algorithm 1 for

input which is a program P and pattern p with root v0.

For every database D, we have that:

trees(P,D) =
⋃

τ∈trees(Pp,D)

origin(τ)(1)

p(P,D) =
⋃

t=Rv0 (...)

⋃
τ∈trees(Pp,D,t)

origin(τ)(2)

w(origin(τ)) = w(τ) ∀τ ∈ trees(Pp, D)(3)

Proof

1. Since P ⊆ Pp, every τ ∈ trees(P,D) is also in

trees(Pp, D) and it holds that origin(τ) = τ , thus

trees(P,D) ⊆
⋃
τ∈trees(Pp,D) origin(τ).

In addition, recall that every node in a derivation

tree τ ∈ trees(Pp, D) corresponds to a derivation

rule in Pp. From the construction of the new rules

in Pp, the set of rules obtained by removing the an-

notations from relation names in Pp is exactly the

set of rules in P (possibly with repetitions), and the

rules added by HandleEDB. origin(τ) is obtained

by removing the annotation from τ and pruning

branches added due to the function HandleEDB, thus

every node in origin(τ) corresponds to a derivation

rule in P , therefore

trees(P,D) ⊇
⋃
τ∈trees(Pp,D) origin(τ), namely

trees(P,D) =
⋃

τ∈trees(Pp,D)

origin(τ)

2. Let p|v be the sub-pattern of p rooted at v. We prove

by induction on the height of the pattern p|v that

for every pattern node v it holds that

p|v(P,D) =
⋃

t=Rv(...)

⋃
τ∈trees(Pp,D,t)

origin(τ)

Base case: v is a leaf. There are two possible cases:

– v locally matches an edb fact T (...). In this case

for each τ ∈ p|v(P,D), τ is simply an edb atom,

and the function HandleEDB adds rules that copy

the relevant tuple from the database into the

new relation T v(...) (and T v
t

(...)). The deriva-

tion tree τ of T v(...) (and T v
t

(...), in the case

where v is a transitive node) consists of two nods,

a root, T v(...) (or T v
t

(...)), and a leaf, T (...), and

origin(τ) is simply T (...) in this case.

– v locally matches an idb atom R(...) through

partial assignment A. In this case, in line 7 the

algorithm adds a new rule for each rule in P if its

head locally matches v (i.e. t = R(...) ∈ P (D)⇔
Rv ∈ Pp(D)). The relations in the body of each

such rule are not annotated and thus the deriva-

tion trees of facts in the body are derivation trees

in trees(P,D). Derivation trees τ of Rv(...) con-

sist of one of the rules added in line 7 and the

derivation trees of each fact in the rule’s body.

Therefore, origin(τ) is the tree obtained by re-

moving the annotation v, and it is a derivation

tree in trees(P,D).

For the case where v is transitive, the algorithm

adds two types of derivation rules for Rv
t

, (i)

the rules added in line 13 and (ii) in line 15.

Recall that (when v is a leaf) τ ∈ p|vt(P,D) ⇔
(1) the root of τ locally matches v (in this case

τ ∈ p|v(P,D)) or (2) there exists a node (not

the root) in τ that locally matches v. The rules

added in line 15 capture case (1) and this case

is similar to the case where v is not transitive.

The rules added in line 13 capture case (2). Note

that the body of such rules contains exactly one

annotated relation name Sv
t

(...) while the rest

are facts in P (D) and thus their derivation trees

10 Daniel Deutch et al.

are in trees(P,D). We can thus show by in-

duction that the proposition holds for Sv
t

(...).

A derivation tree τ that contains type (i) rules

must contain a derivation rules of type (ii) (since

initially there are no annotated facts in the

database). If Sv
t

(...) is derived using type (ii)

rule, then clearly, by removing the annotations

we obtain a derivation tree in trees(P,D).

Suppose that the proposition holds for all v s.t. the

p|v is with height < k. Let v be a pattern node where

p|v is with height k, with children v0, . . . , vn.

– If v is not transitive, then a derivation tree τ ∈
p|v(P,D)⇔ the root of τ locally matches v and

∀vj ∃u s.t. u is a child of the root in τ and for

the sub-tree rooted at it τj it holds that τj ∈
p|vj (P,D). Observe that the last derivation step

in any derivation tree τ ∈ p|v(P,D) can be done

by a derivation rule r added by the algorithm

in line 10. To see this, consider the root of τ .

The root must locally match v so the algorithm

adds a labeled rule with the partial assignment A

that make them locally match. This labeled rule

is r. The body of the rule β can consist of both

annotated and non-annotated atoms. Derivation

trees of atoms that are not annotated are trees

in trees(P,D). For annotated relation it holds

that τj ∈ p|vj (P,D) and since p|vj are at depth

k − 1 in the tree by the induction hypothesis it

holds that

τ ∈ p|vj (P,D) =
⋃

t=Rvj (...)

⋃
τ∈trees(Pp,D,t)

origin(τ)

Therefore, the derivation tree obtained by re-

placing Rv(...) with R(...) and replacing each

sub-tree τ ′ rooted at the children of the root of

τ with origin(τ ′) is origin(τ) and it holds that

origin(τ) ∈ p|v(P,D)

3. The weights of the new rules added by the algorithm

are assigned the weights of the rules from which

they originated, and rules added due to the func-

tion HandleEDB are added with weight 0 (i.e. the

natural with respect to + in the monoid). In addi-

tion, the set of edb facts occurring in τ is exactly

the set of edb facts occurring in origin(τ) (due to

the construction of the rules added by HandleEDB).

Therefore we have:

w(τ) =
∑
r∈τ

w(r) +
∑
t∈τ

w(t)

=
∑

r∈origin(τ)

w(r) +
∑

t∈origin(τ)

w(t) = w(origin(τ))

We refer to v and vt in Rv(...) and Rv
t

(...) as an-

notations. Intuitively, the first part of the proposition

means that for every database, Pp defines the same set

of trees as P if we ignore the annotations (in particular

we generate the same set of facts up to annotations);

the second part guarantees that by following the anno-

tations we get exactly the derivation trees that inter-

est us for provenance tracking purposes; and the third

part guarantees that the weights are kept. This will be

utilized in the next step, where we evaluate the instru-

mented program while retrieving relevant provenance.

4.2 Complexity and output size

Given a datalog program P of size |P | and a pattern p,

the algorithm traverses the pattern, and for each node

v ∈ p iterates over the program rules. Let w(p) be the

width of p, i.e. the maximal number of children of a

node in p. The maximal number of new rules the algo-

rithm adds is O(|P |w(p)). The exponential dependency

on the pattern width is due to the need to consider all

“expansions”. Note that the exponential dependency is

on the pattern width, which is expected to be small in

practice. Furthermore, we next show that a polynomial

dependency on the program and pattern is impossible

to achieve.

Proposition 2 (Lower Bound) There is a class of

patterns {p1, ...} and a class of programs {P1, ...}, such

that w(pn) = O(n), |Pn| = O(n) and there is no pro-

gram IPn of size polynomial in n that satisfies the three

conditions of Proposition 1 with respect to Pn, pn.

Proof Consider the following datalog program Pn
(a1, . . . , an are constants):
R(x1, x2, ..., xn):- R1(x1), ... Rn(xn)

R1(x):-B(x)

...

Rn(x):-B(x)

and the pattern pn:

Both the pattern width and program size are poly-

nomial in n (the pattern width w(pn) is n and the pro-

gram Pn consists of n + 1 rules). We claim that every

instrumented program P i satisfying the conditions of

Proposition 1 must include at least n! rules. To observe

that this is the case, first note that to satisfy the propo-

sition’s condition (1), P i must include a relation Rv0 ,

with rules that are “copies” of the first rule of Pn (we

say that a rule r′ is a copy of a rule r if r may be ob-

tained from r′ by replacing every relation name in r by

Efficient Provenance Tracking For Datalog Using Top-K Queries 11

its origin. We note that in fact our algorithm generates

the following n! “copies”:

r1: Rv0(x1, x2, ..., xn):- Rv11 (x1), ... Rvnn (xn)

...

Rv0(x1, x2, ..., xn):- Rvn1 (x1), ... Rv1n (xn)

For each R
vj
i there is a rule of the form

R
vj
i (aj) : −B(aj).

We then observe that P i must include these rules

(up to renaming) as well. First, without loss of gen-

erality, assume that P i includes all of the above rules

except for the rule r1. For the database D that con-

tains the facts B(ai) for 1 ≤ i ≤ n, the derivation tree

τ 6∈ trees(P i, D), although origin(τ) ∈ trees(Pn, D),

thus violating the proposition’s condition (2).

Alternatively, if P i “groups” two relation names

(w.l.o.g. say Rv11 and Rv21) together (say using relation

name Rv121), and then e.g. generates the two rules

Rv121 (a1) : −B(a1) and Rv121 (a2) : −B(a2) (and “groups

together” the corresponding rules for R) to allow sub-

derivations involving R1 to either use a1 or a2 (the “ex-

treme case” would go back to the original program, thus

allowing any constants to be used in conjunction with

R1. Then, we obtain a derivation τ2 ∈ trees(P i, D, t),
for t = Rv0(...), although origin(τ2) 6∈ pn(Pn, D), where

τ2 follows the same structure of τ having two occur-

rences of B(a2) and no occurrence of B(a1), again vi-

olating the equality in the proposition’s condition (2).

It is then easy to observe that no other alternative pro-
gram can satisfy the conditions.

5 Boolean combinations of patterns

Algorithm 1 allows intersection of a single pattern with

a program. We next explain how to account for selPQL

queries that involve boolean combinations of patterns,

i.e. negation, conjunction, and disjunction. The time

complexity and output program size remain polynomial

in the size of the original program, with exponential

dependency on the width of the pattern (the exponent

is multiplication of the individual size of patterns, in

the case of conjunction).

5.1 Negation

The algorithm for intersecting a negation of a pattern

is similar to Algorithm 1 with some modifications, as

follows. We use relation names R¬v and R¬v
t

for ev-

ery relation name R in the program and for every pat-

tern node v. Derivations for R¬v should not match

the sub-pattern rooted by v and derivations for R¬v
t

should not include a descendant that matches the sub-

pattern rooted by v. If the root of the pattern is labeled

v0, derivations of facts in annotated relations R¬v0 are

derivations that satisfy the negated pattern (i.e. does

not match the pattern).

We then extend the idea of “expansion set” to de-

fine neg-ex(atoms, {v0, ..., vn}) where atoms is a set

of atoms and the vi’s are pattern nodes as follows: if

|atoms| ≥ n, then neg-ex(...) is a set of n + 1 atoms

sets where the i’th set is the set obtain from atoms by

replacing every atom R(x0, ..., xm) by R¬v
t
i (x0, ..., xm),

if vi is a transitive child and by R¬vi(x0, ..., xm) oth-

erwise. If |atoms| < n then neg-ex(...) is the set that

contains only the set atoms. If the root of the pattern

is labeled v0, we track all rules whose head is labeled

by ¬v0.

Example 15 Consider the set of atoms in the body of r3,

and the pattern given in Figure 5. Intuitively, this pat-

tern matches all derivation trees that does not contain

the derivation tree τ2 shown in Figure 2 as sub tree. The

set neg-ex({dealsWith(Frnace, f), dealsWith(f, Cuba)},
{v′3, v′4}) consist of {dealsWith(Frnace, f)¬v

′
3 ,

dealsWith(f, Cuba)¬v
′
3} and {dealsWith(Frnace, f)¬v

′
4 ,

dealsWith(f, Cuba)¬v
′
4}.

Furthermore, given a pattern node v, and a rule

in the program r = R(x1, ..., xm):-β, we define the set

mis(v, r) as follows. If R(x1, ..., xm) does not locally

match v (i.e v cannot be obtain by any assignment)
then mis(v, r) = {β}. If R(x1, ..., xm) locally matches

v through a partial assignment A, then mis(v, r) con-

sist of β, xi 6= σi for each {xi ← σi} ∈ A. Note that

mis(v, r) may be empty (e.g. when R(x1, ..., xm) locally

matches v with an empty assignment).

Example 16 Consider the rule r2 given in Example 1,

and the pattern node v′2 of the negated tree pattern

shown in Figure 5. dealsWith(a, b) locally-matches v′2
through the assignment {a← France, b← Cuba} thus

mis(v′1, r2) consist of {dealsWith(b, a), a 6= France}
and {dealsWith(b, a), b 6= Cuba}.

Let v be a node in the pattern p, we define Tr(v) to

be the last transitive node on the path from the root of

p to v (including v if it is transitive). In the case where

no such node exists Tr(v) = ⊥.

Example 17 For the negated pattern shown in Figure

5, Tr(v′0) = ⊥ and Tr(v′i) = v′1 for 1 ≤ i ≤ 4.

12 Daniel Deutch et al.

Fig. 5: Negation of a Pattern

Finally, given a set of atoms atoms and a node v

we define tr-neg(atoms, v) as the set of atoms obtained

from atoms by replacing each atom R(...) in atoms by

R¬v
t

(...). Additionally, we define tr-neg(atoms,⊥) =

atoms.

Algorithm 2: Instrumentation w.r.t. negated

tree pattern

input : Weighted Program P and a negated pattern p

output: “Instrumented” Program Pp

1 foreach pattern node v ∈ p do
2 Let v0, . . . , vn be the immediate children of v;
3 foreach rule [r = R(x0, ..., xm) : −β] in P do
4 foreach β ∈ mis(v, r) do

5 Add [R¬v
∗
(...):-tr-neg(β, Tr(v))] to Pp;

6 if R(x0, ..., xm) locally-matches v, and v is not a

leaf then
7 Let A be the partial assignment that cause

the match and (y0, ..., ym) := A(x0, ..., xm);
8 foreach β′ ∈ neg-ex(A(β), {v0, ..., vn}) do

9 Add [R¬v
∗
(y0, ..., ym):-β′] to Pp;

10 HandleEDBneg ();
11 Clean failed rules in Pp ;
12 return the union of rules in P and Pp;

Algorithm 2 generates a new program, instrumented

by a negated pattern, as follows. We use the notation

v∗ to denote vt if v is transitive and v otherwise. Sim-

ilarly to Algorithm 1, we do not specify the weight of

the new rules. The algorithm traverses the pattern in a

top-down fashion and starts by generating rules using

mis(...) (lines 4-5). Intuitively, for a given node v and

rule r = R(x1, ..., xm):-β, if v is not transitive then for

any rule in R¬v(...):-β′ ∈ mis(v, r) either R(...) does

not locally match v, or it does locally match v through

a partial assignment A, and β′ contains the disequal-

ity xi 6= σi for some {xi ← σi} ∈ A. In both cases,

any derivation of R¬v(...) cannot match the sub-pattern

rooted by v, and thus we avoid derivations that match

it. Recall that derivations for R¬v
t

should not include

a descendant that matches the sub-pattern rooted by

v, thus we use tr-neg(...) to ensure that the derivation

tree does not include any descendant that matches the

sub-pattern of the last transitive node on the path from

the root to v. Intuitively, derivation trees the use the

rules for R¬v
∗
(...) match the sub-pattern that includes

all the nodes from the root to v and the last derivation

step “breaks” the match for the rest of the pattern, but

we still need to avoid derivations that match the sub-

pattern rooted at the last transitive node. If there is no

such transitive node, then any derivation that uses the

rules generated in line 5 does not match the pattern.

Example 18 Reconsider the program P consisting of

the rules r1, r2 and r3 given in Example 1, and the

negation of the tree pattern shown in Figure 5. The

rules
dealsWith¬v

′
2(a, b):-dealsWith¬v

′
1
t
(b, a), a 6= France

dealsWith¬v
′
2(a, b):-dealsWith¬v

′
1
t
(b, a), b 6= Cuba

are added in line 5 due to the node v′2 and the rule r2,

and since Tr(v′2) = v′1.

Then, in the case where R(...) locally-matches v

through a partial assignment A and v is not a leaf (line

6), in addition to the above rules, we further consider

derivations that contain the partial assignment A that

causes the match. In this case, a derivation that does

not match a sub-pattern rooted by v, either has less

than n children in the derivation, where n is the num-

ber of the children of v, or the derivation rooted by at

least one of R(...)’s children does not match one of the

children of v, which is captured by the neg-ex(...) set.

Thus we add for each β′ ∈ neg-ex(A(β), {v0, ..., vn})
the rule R¬v

∗
(y0, ..., ym) : −β′ in lines 8-9. If v is not

a leaf, any derivation that contains the partial assign-

ment A matches the sub-pattern and thus we do not

add rules in this case.

Example 19 R(a, b) locally matches v′2 through the as-

signment {a ← France, b ← Cuba}, and v′2 is not a

leaf, thus the rules
dealsWith¬v

′
2(France, Cuba):-dealsWith¬v

′
3(France, f),

dealsWith¬v
′
3(f, Cuba)

dealsWith¬v
′
2(France, Cuba):-dealsWith¬v

′
4(France, f),

dealsWith¬v
′
4(f, Cuba)

are added in line 9 by the algorithm to capture deriva-

tions that contain the partial assignment.

Finally, instead of adding rules for edb atoms that

locally-match v, the function HandleEDBneg in line 10

adds the rules T¬v(x0, ..., xm) : −T (x0, ..., xm) and

T¬v
t

(x0, ..., xm) : −T (x0, ..., xm) for each edb atom

T (x0, ..., xm) that does not locally-matches v. For edb

atom T (x0, ..., xm) that locally-matches v through a

partial assignment A, the function adds the rules

T¬v(x0, ..., xm) : −T (x0, ..., xm), xi 6= σi and

T¬v
t

(x0, ..., xm) : −T (x0, ..., xm), xi 6= σi for each xi ←
σi pair in the assignment A.

Efficient Provenance Tracking For Datalog Using Top-K Queries 13

Example 20 The edb atom imports(...) does not locally

match v′4 and thus the rules
imports¬v

′
4(a, b):-imports(a, b)

imports¬v
′t
4(a, b):-imports(a, b)

are added by HandleEDBneg. In addition, the function

HandleEDBneg adds the rules
imports¬v

′
3(a, b):-imports(a, b), a 6= France

imports¬v
′t
3(a, b):-imports(a, b), a 6= France

imports¬v
′
3(a, b):-imports(a, b), b 6= tobacco

imports¬v
′t
3(a, b):-imports(a, b), b 6= tobacco

Proposition 3 Let Pp be the output of Algorithm 2 for

input which is a program P and negated pattern p with

root v0. For every database D, we have that:

trees(P,D) =
⋃

τ∈trees(Pp,D)

origin(τ)(1)

p(P,D) =
⋃

t=R¬v0 (...)

⋃
τ∈trees(Pp,D,t)

origin(τ)(2)

w(origin(τ)) = w(τ) ∀τ ∈ trees(Pp, D)(3)

Proof

1. Clearly trees(P,D) ⊆ ∪τ∈trees(Pp,D)origin(τ) based

on the same reasoning of Proposition 1 (P ⊆ Pp).

For the opposite containment, consider the deriva-

tion tree τ formed from a rule generated by the algo-

rithm. Rules generated by the algorithm may differ

from the original rules in two ways: (1) an annotated

original body and therefore removing the annota-

tion from τ will result in a tree from trees(P,D),

(2) adding disequalities to the body which further

restrict the trees generated by the rule, so these rules

lead to the creation of a subset of derivation trees,

and thus if such a rule participated in τ , then surely

origin(τ) ∈ trees(P,D)

2. Let p|v be the sub-pattern of p rooted at v. We prove

by induction on the height of the pattern p|v that

for every pattern node v it holds that

p|v(P,D) =
⋃

t=R¬v(...)

⋃
τ∈trees(Pp,D,t)

origin(τ)

Base case: v is a leaf and τ is a derivation tree.

There are two possible cases:

– v is not transitive. τ ∈ p|v(P,D) iff one of the

following holds: (1) the root of τ does not have

the same relation name as v or (2) the root of

τ contains different constants than v. Given the

pattern p, the algorithm produced a rule with

the head relation labeled by ¬v for every rule

that does not locally match v. Therefore, in case

(1) τ ∈
⋃
t=R¬v(...)

⋃
τ∈trees(Pp,D,t)

origin(τ). In

case (2), let A be the assignment that makes

the root of τ locally-match v through the rule r.

For every pair x ← σi ∈ A the algorithm adds

a labeled rule r′ with the same head and body

relations but adding the disequality x 6= σi. This

way, the labeled rules are never assigned with

the same constants that make the root of τ and

v locally match. Similarly, if the relation of v

is edb, for case (1) we would add all rules of

the form T¬v(...) : −T (...) if v does not have the

relation T and for case (2) we also add rules with

disequalities.

– v is transitive. Now τ ∈ p|v(P,D) iff (1) or (2)

from the previous case holds and (3) no node of

τ satisfies v. In this case Tr(v) = v and thus in

the rules added by the algorithm the atoms in

the body are annotated by ¬vt (using tr-neg(...)

in line 5). Note that since v is a leaf, every rule

added by the algorithm where the head is anno-

tated with ¬vt, must be added in line 5 and thus

the every atom in the body of such rule must

be annotated with ¬vt as well, or by the func-

tion HandleEDBneg. Those rules are added only

for relation (and assignments) that does not sat-

isfy v, and thus every derivation that use such

rule clearly can not satisfy the pattern. Clearly,

for every derivation tree τ that use thus rules

origin(τ) ∈ trees(P,D)

Suppose that the proposition holds for all v s.t. p|v
has height < k. Let v be a pattern node where p|v
has height k, with children v0, . . . , vn.

– v is not transitive. Let τ ∈ p|v(P,D). This means

that at least one of the following holds: either

the root of τ does not satisfy v or a sub-tree of

τ does not satisfy a sub-pattern rooted at one of

the children of v. In the former case, the propo-

sition can be proven similarly to the base case

of the induction. The latter case holds iff (1)

the number of children of v in the pattern is

greater than the number of children of the root

of τ or (2) ∃pj ∀u s.t. u is the child of the root

of τ and for the sub-tree rooted at it, τj it holds

that τj ∈ p|¬vj (P,D). By the induction hypoth-

esis, τj ∈
⋃
t=R¬vj (...)

⋃
τ∈trees(Pp,D,t)

origin(τ)

for all τj who are rooted at the children of v.

There are two kinds of rules added by the algo-

rithm. Cases (1) and (2) are captured by neg −
ex(...) and thus the appropriate rules are added

by the algorithm. Hence, the last derivation step

in τ can be done using a labeled rule r because

either the head of r does not locally-match v

or a sub-tree of τ does not satisfy a sub-pattern

rooted at v. So the last derivation step in τ must

by done by a rule r produced by the algorithm.

Therefore, the derivation tree obtained by re-

14 Daniel Deutch et al.

placing R¬v(...) with R(...) and replacing each

sub-tree τ ′ rooted at the children of the root of

τ with origin(τ ′) is origin(τ) and it holds that

τ ∈
⋃
t=R¬v(...)

⋃
τ∈trees(Pp,D,t)

origin(τ).

– The case where v is transitive is similar to the

case of a transitive leaf.

3. This is immediate given Proposition 1, as the new

rules have the same weights as the original ones.

5.2 Disjunction and Conjunction

Disjunction and conjunction of patterns may be per-

formed by repeatedly applying Algorithm 1. In the fol-

lowing we refer a single (may be negated) tree pattern

as a simple pattern and pattern that is composed using

disjunctions and/or conjunctions of simple patterns as

a combined pattern.

Given a program P and a combined pattern p, Pp
can be computed using the following procedure: If p =

p1 ∨ p2, and pi (i = 1, 2) is a simple pattern, use Al-

gorithm 1 (or Algorithm 2) to intersect P with pi and

obtain Ppi . If pi is combined recursively apply the same

procedure to obtain Ppi , and return P2 = Pp1 ∪ Pp2 . If

p = p1 ∧ p2, first computes Pp1 to obtain Pp1 (either

by using Algorithms 1 or 2 for a simple pattern, or by

a recursive call if p1 is combined), then instrument Pp1
with p2 (using Algorithms 1 or 2) to obtain Pp.

Example 21 Recall the program P composed of r1, r2, r3
shown in Example 1, and consider the combined patten

p = p2 ∧ p′ where p2 is shown in Figure 3b and p′ is the

negated pattern depicted in Figure 5. The procedure for

combined patterns instrumentation first computes the

program Pp2 as shown in Example 14. Then it intersects

the program Pp2 with the pattern p′ using Algorithm 2.

The rules in Pp2p′ may consist of annotation from both

pattern. For instance, the rules
dealsWithv0¬v′1(Cuba, France):-

dealsWithv
t
1¬v
′
2(France, Cuba)

dealsWith¬v
′
1(Cuba, b):-dealsWith¬v

′
2(b, Cuba),

b 6= France

dealsWithv0¬vt
1(Cuba, b):-dealsWithv

t
1¬v

t
1(Cuba, a)

are generated by the algorithm using the node v′1 in p′

and the annotated rule
dealsWithv0(Cuba, b):-dealsWithv

t
1(b, Cuba)

which is obtained in the first instrumentation and thus

is part of Pp2 . Derivations of facts with the annotation

v0¬v′0 are derivations that match the combined pattern.

6 Finding top-k derivation trees

The second step of the algorithm is finding top-k deriva-

tion trees that conform to the selPQLquery pattern,

based on the instrumented program and now also the

input database. We next describe the algorithm for top-

k; then we will present a heuristic optimization.

The algorithm operates in an iterative manner. We

start by explaining the algorithm for finding the top-1

derivation. The generation of the top-1 qualifying tree is

done alongside with bottom-up standard (provenance-

oblivious) evaluation of the datalog program with re-

spect to the database. We then extend the construction

to top-k for k > 1.

6.1 Top-1

Algorithm 3 computes the top-1 derivation in a bottom-

up manner. Each entry in the data structure DTable

represents the top-1 derivation tree of a fact t, and con-

tains the fact itself, its top-1 derivation weight, and

pointers to the entries in the table corresponding to the

derivation trees of the “children” of t in the derivation.

Starting with a set of all edb facts (with empty trees) in

DTable (line 1), in each iteration, the algorithm finds

the set of facts that can be derived via facts in DTable

using a single application of a rule in P (line 3). For

each such candidate we compute its best derivation out

of those using facts in DTable and a single rule applica-

tion (this is done by a procedure called Top). The fact

for which the maximal (in terms of weight) such deriva-

tion is found is added to DTable (Line 4). Finally, the

algorithm returns the entries in DTable of facts that

match the root node v0 of the pattern.

Example 22 Consider the program given in Example

14, and the database D shown in Table 2. Algorithm 3

first initializes DTable with the edb atoms from D, each

with its weight (in this case all weights are 1). Then, in

lines 2-4, the algorithm finds the set of facts that can be

derived via the facts in DTable. In the first iteration the

fact t3 = exportsv
t
1(Cuba, tobacco) can be derived with

weight 1 using the edb fact t1 = exports(Cuba, tobacco)

and the rule denoted r′ in Example 14. Other facts can

be derived in the first iteration but t3 is the fact with

maximal weight. The algorithm thus adds (t3, 1, {∗t1})
to DTable, where ∗t1 is a pointer to the entry of t1 in

DTable. In the next iteration, the algorithm can de-

rive the fact t4 = dealsWithv
t
1(France, Cuba) using t3

and the edb fact t2 = imports(France, tobacco) with

overall weight of 0.5. When t4 is selected in Line 4

(other facts may be chosen due to ties), the algorithm

adds (t4, 0.5, {∗t2, ∗t3}) to DTable. After t4 is added to

DTable, the fact t5 = dealsWithv0(Cuba, France) can

be derived with overall weight of 0.5 · 0.8 = 0.4, and

(t5, 0.4, {∗t4}) is added to DTable.

Efficient Provenance Tracking For Datalog Using Top-K Queries 15

Algorithm 3: Top-1

input : Weighted Datalog Program P , Database D
output: Top-1 tree for facts of the form Rv0(...)

1 Init DTable with (t, 0, null) for all t ∈ D;
2 while DTable changes do
3 Let Cand be the set of all facts derived via facts in

DTable and are not in it;
4 Add [arg maxt∈Cand Top(t,DTable, P)] to DTable

5 return the entries of all e ∈ DTable s.t. the fact t of e
is of the form Rv0(...);

Complexity. The algorithm adds in each iteration a new

fact. The number of facts that can be derived is polyno-

mial in the Database size, thus this is an upper bound

on the number of iterations. Lines 3 and 4 are both

polynomial in the Database size, and therefore the over-

all time complexity and output size of Algorithm 3 are

polynomial in the Database size.

6.2 Top-K

The algorithm for TOP-K computes the top-i derivations

for each fact t ∈ Pp(D) in a bottom-up manner for

2 ≤ i ≤ k. For each i it essentially repeats the procedure

of Algorithm 3, but starting with DTable consisting of

the top-(i− 1) trees, i.e. τ jt for all t ∈ Pp(D) and j < i.

A subtlety is that different trees in Pp(D) may have the

same origin in P (D), thus computing top-k using the

instrumented program should be done carefully in order

to avoid generating the same tree (up to annotations)

over and over again.

To this end, we say that a derivation tree τt for a

fact t is a top-i candidate, if one of the following holds:

(i) τt uses at least one “new” fact that was added in

the i’th iteration or (ii) the last derivation step in τt
is different from the last derivation step in τ jt for all

1 ≤ j < i, such that origin(τt) 6= origin(τ jt). Given the

top-(i−1) derivation trees, to compute i’th best tree for

each fact we compute in a bottom up manner top-i can-

didates that can be derived from facts in DTable using

a single rule application. Then we select the candidate

τt with maximal weight (out of candidates computed for

all facts) and add it to a new entry ti in DTable. The

step of computing the i’th best tree terminates when

there are no more new facts to add to DTable. To find

the top-k derivations we may simply compute the top-i

for each 1 ≤ i ≤ k. After the k’th iteration DTable

contains a compact representation the top-k derivation

trees. The enumerate of top-k trees for each fact may

then simply be done by pointer chasing.

Complexity. The algorithm for TOP-K computes for each

1 ≤ i ≤ k the top-i derivation trees for each fact. For

each i, the computation of the top-i trees consists of

at most DTable iterations, each polynomial in DTable

with exponent |P |w(p). A subtlety is in the verifica-

tion that two compactly represented trees do not have

the same origin: we note that a recursive such com-

parison may be performed in time that is polynomial

in DTable with the exponent depending on the maxi-

mal tree width (maximal number of children of a tree

node), which in turn depends only on the program size.

Next, DTable contains at most k entries for each fact

t ∈ Pp(D) where Pp is the instrumented program given

the program P and pattern p. The number of facts t ∈
Pp(D) is at most |D||Pp| = |D|(|P |w(p)), where |D| is the

extensional database size, thus on the i’th step, the size

of DTable is bounded by i · |D|(|P |w(p)). Therefore the

time complexity of the i’th step is O(i2 · |D|O(|P |w(p))).

The complexity of computing the top-k derivation trees

is therefore

k∑
i=1

O(i2 · |D|O(|P |w(p))) = O(k3 · |D|O(|P |w(p)))

Finally, generating the top-k trees fromDTable is linear

in the output size, and thus the overall complexity of

TOP-K is O(k3 · |D|O(|P |w(p)) + |out|), where |out| is the

output size.

6.3 Alternative heuristic top-k computation

An alternative approach for finding top-k derivations is

based on ideas of the algorithm for k shortest paths in

a graph [20]. The basic idea is to obtain the i’th best

derivation tree of a fact t by modifying one of the top-

(i− 1) derivation trees of t. Each node u with children

u0, . . . , um in a derivation tree τ for a fact t ∈ Pp(D),

corresponds to an instantiation of a derivation rule r

in Pp. Given a node u ∈ τ , a modification of u in τ

is using a different instantiation to derive u, i.e. using

different derivation rule r′ ∈ Pp or a different assign-

ment to the variables in r s.t. for the obtained tree τ ′

it holds that origin(τ) 6= origin(τ ′). We say that two

modifications are different if for their results τ1 and τ2
satisfy origin(τ1) 6= origin(τ2).

Given a derivation tree τ , we denote by τu,r,σ the

derivation tree obtained by modifying u in τ using r and

σ. We define δ(u, r, σ) = w(τ) − w(τu,r,σ). Intuitively,

δ(u, r, σ) is the “cost” of the modification. Note that

the i’st best derivation tree can be obtained by a mod-

ification of any one of the top-(i − 1) trees. Given the

top-(i− 1) derivation trees for the fact t, the next best

derivation can be computed as follows: traverse each

one of the top-i trees τ in a top-down fashion, compute

16 Daniel Deutch et al.

(a) Top-1

(b) Top-2

Fig. 6: Top-2 Derivation Trees (with annotations)

the cost of all possible different modifications (with-

out recomputing trees that were already considered;

this can be done by tracking the rules and assignment

used for each modification), and find the modification

of minimal cost. The algorithm for top-k computes, for

each output fact, the top-k derivation trees as described

above, and terminates when we find top-k derivation or

when there are no more modifications to apply on the

trees found by the algorithm. Note that the considera-

tion of modifications can be done without materializing

the derivation trees, but rather only using DTable. A

subtlety is that a fact t may have multiple occurrences

in a derivation tree τ , however it appears only once

in DTable. Thus, modifying the entry of t in DTable

would result in modifying the sub-trees rooted at all

occurrences of t (instead of modifying a subtree rooted

at one occurrence of t). To avoid these modifications,

we generate a new copy of all the facts in the path from

the root of τ to t (including t) for each modification of

t’s sub-tree.

Example 23 Reconsider the output program of the al-

gorithm in Example 14. The top-2 derivation trees for

the fact dealsWith(Cuba, France) are shown in Figure

2, and we next partially illustrate the computation pro-

cess using the alternative approach. The top-1 deriva-

tion tree τ1 of the fact

dealsWith(Cuba, France) is depicted in Figure 6a. The

nodes u and u0 correspond to the derivation rule
[r] dealsWithv0(Cuba, b):- dealsWithv

t
1(b, Cuba)

with the assignment σ = {b← France}. The weight of

τ1 is 0.4. By replacing r with
[r′] dealsWithv0(Cuba, b):- dealsWithv

t
1(Cuba, f),

dealsWith(f,b)

and the assignment σ′ = {b ← France, f ← Mexico},
we obtain the top-2 derivation tree τ1δ(u,r′,σ′) = τ2. The

weight of τ2 is 0.28 and δ(u, r′, σ′) = 0.12. origin(τ1)

and origin(τ2) are shown in Figure 2 (as τ2 and τ3
respectively).

6.4 Diversification

Consider the Datalog program of our running example.

The following tree is the top-3 derivation tree w.r.t. the

pattern given in Figure 3b, which contains the top-1

tree as sub-tree.

Our paradigm may be adapted to support diversifica-

tion, and avoid such derivations, by intersecting the

program with the negated top-i result before computing

the top-(i+ 1) result.

For instance we may intersect the program with a

negated pattern consisting of a new root labeled by a

wildcard, connected by a transitive edge to a copy of

the i’th result (denoted by gen(τi) for the top-i deriva-

tion tree τi); this will make sure that the i’th tree will

not appear as a sub-tree in the (i+ 1) result. This ap-

proach is manifested in Algorithm 4 which iteratively

computes the top-i trees as follows. It first instruments

the program using Algorithm 1 with the pattern to form

the new program (line 1). The algorithm then iterates

k times to computes the top-i tree, τi using Algorithm

3 and the corresponding general pattern gen(τi) (line 3

– 4). In the final step of the iteration at line 5, it builds

a new program by intersecting the negated general pat-

tern gen(τi) with the current program to generate the

program computing the top-(i+ 1) result.

Algorithm 4: Top-K

input : Integer k, Weighted Datalog Program P0,
Database D, Pattern p0

output: Top-k tree for facts of the form Rv0(...)

1 P1 ← Instrumentation(P0, p0);
2 for i = 1, . . . , k do
3 τi ← Top− 1(Pi, D);
4 pi = ¬gen(origin(τi));
5 Pi+1 ← InstrumentationWithNegation(Pi, pi);

6 return τi for all i = 1, . . . , k;

Example 24 We exemplify Algorithm 4 with the input

k = 2, the program consisting of the rules r1, r2, r3
taken from the program depicted in Figure 1 as P0, the

Efficient Provenance Tracking For Datalog Using Top-K Queries 17

Fig. 7: Input Screen

database presented in Figure 2 as D and the pattern

depicted in Figure 3c as p0. At the first step we instru-

ment P0 with the pattern p0 to receive the instrumented

program P1 from Example 14 (line 1). We then assign

to τ1 the output of Algorithm 3 with p1 and D as input

(line 3). In this case, τ1 is the tree depicted in Figure 6a.

We conclude the first iteration by assigning to p1 the

pattern ¬gen(τ1) (line 4) and we use the instrumen-

tation algorithm with adaptation for negation (line 5)

to compute the instrumented program P2 partialy de-

picted in Examples 18, 19, 20 and 21. We then employ

Algorithm 3 again with the input P2 and D to receive

the tree τ2 depicted in Figure 6b and finally we assign

p2 the pattern ¬gen(τ2). Concluding the run of the al-

gorithm, in line 6, we return the trees τ1, τ2 depicted in

Figure 6.

7 Implementation and Optimizations

We have implemented a system prototype called selP

(for “selective provenance”), demonstrated in [17]). selP

serves both for demonstrating the usefulness of our solu-

tion and for conducting the experimental study detailed

in the next section. The system is implemented in JAVA

and runs on Windows 7. Its architecture is depicted in

Figure 4. The implementation extends and modifies the

implementation of IRIS [33], a JAVA-based system for

datalog evaluation. We start by describing the general

architecture of selP, then detail some important opti-

mizations.

The user feeds the system with a datalog program

(as text) and is provided with dedicated interfaces for

writing selPQLqueries: weights can be attached to rules

in the text (assigning weights to tuples can be simulated

through rules, see discussion in Section 3.2), and pat-

terns (as defined in Section 3.1) may be drawn using a

dedicated screen (shown in Figure 7). Then, the evalu-

ation proceeds by generating the instrumented program

using the appropriate algorithm based on the selPQLquery

structure(Algorithm 1, Algorithm 2, or their variants

described in Section 5.2). The instrumented program

along with an input database is fed to the TOP-K com-

ponent, that includes an implementation of Algorithm

4 (which involves invocations of Algorithms 3 and 2).

Unsurprisingly, we have observed that the most im-

portant factor affecting the system’s performance is the

complexity of the instrumented program. Specifically,

two features of the program were crucial: the number

of rules, and the generality of the program in terms

of the existence of constants. To improve performance

in practice, we employ optimizations that simplify the

instrumented program (without violating correctness in

the sense of Propositions 1 and 3), thereby reducing the

time of the top-k computation that follows. We next ex-

plain the optimizations; see discussion of the practical

effect on the execution time in Section 8.

Use of constants. Recall that the instrumentation algo-

rithms may assign constants in generated rules, when

such constants appear in the pattern. In this case, a sub-

set of the resulting rules, namely those generated for

“direct satisfaction” (see Section 4) will include vari-

ables that, by definition can only be assigned a con-

stant (for every database). The optimization is then to

“propagate” the assignment of constants in a bottom-

up manner (i.e. instantiating the appropriate constants

in the rules of the parent node, based on the constants

in the rules of the child node), thus generating rules

that are more specific and reduce the workload in the

top-k computation process.

Avoiding redundant rules. Several components of our

solutions may generate, in different circumstances, rules

that are redundant in the sense that they may be omit-

ted and Propositions 1 and 3 continue to hold. We next

detail 4 such cases and their treatment.

First, rules generated for direct satisfaction (either

non-transitive parent, or the direct satisfaction rules

for the transitive case) of leaves labeled by edb facts

are redundant. For a parent node vp of such a leaf vl,

Algorithm 1 generates rules that contain an atom in the

body with the same relation name as in the rules gen-

erated for vl. As a result, every derivation using these

rules will also use the atom corresponding to the leaf.

We therefore avoid generating those rules.

Second, Algorithm 2 may produce annotated rules

whose sole purpose is to copy a relation from the origi-

nal program (lines 4, 5). These rules can be discarded,

18 Daniel Deutch et al.

and the rules using their annotated head can be changed

back to the original relation.

Furthermore, some of the rules generated by Algo-

rithm 2 may be instantiations of other rules where the

variables are replaced by specific constants, and these

can also be safely omitted.

Finally, recall that Algorithm 4 iteratively intersects

a program with boolean combination of patterns. In

each iteration, rules that were generated in the pre-

ceding iteration may become redundant and can be

safely removed. For example, consider executing Algo-

rithm 4 with k = 3. In the third iteration of the loop,

rules whose head is annotated with v0¬v′0 are redun-

dant since the pattern can only be derived from rules

whose head is annotated with v0¬v′0¬v′′0 .

8 Experiments

We next describe the dedicated benchmark (including

both synthetic and real data) developed for the exper-

iments, and then the experimental results.

8.1 Evaluation Benchmark

We have used the following datasets, each with multi-

ple selPQL queries (different number of requested re-

sults and different patterns, varying in size and struc-

ture), and for increasingly large output databases. The

weights in the reported results are all elements of the

monoid ([0, 1], ·, 1, <); we have experimented with all

other monoids given in Example 9, but omit the results

for them since the observed effect of monoid choice was

negligible.

1. IRIS We have used the non-recursive datalog pro-

gram and database of the benchmark used to test

IRIS performance in [33]. The program consists of

8 rules and generates up to 4.26M tuples; weights

have been randomly assigned in the range [0,1]. The

program is:
ra(A,B,C,D,E) :- p(A),p(B),p(C),p(D),p(E)

rb(A,B,C,D,E) :- p(A),p(B),p(C),p(D),p(E)

r(A,B,C,D,E) :- ra(A,B,C,D,E), rb(A,B,C,D,E)

q(A) :- r(A,B,C,D,E)

q(B) :- r(A,B,C,D,E)

q(C) :- r(A,B,C,D,E)

q(D) :- r(A,B,C,D,E)

q(E) :- r(A,B,C,D,E)

2. AMIE We have used the recursive datalog program

presented in Figure 1 consisting of rules mined by

AMIE [24]. These rules were automatically trans-

lated into datalog syntax; the weights were also as-

signed to the rules by AMIE and reflect the con-

fidence of each of the rules. The underlying input

database is that of YAGO [57], and the program

generates up to 1.2M tuples.

3. Explain We have used a the following variant of

the recursive datalog program described in [3], as a

use-case for the “explain” system (aggregation and

arithmetics omitted):
b_o_m(Part, C) :- subpart_cost(Part, SubPart, C)

subpart_cost(Part, Part, Cost) :-

basic_part(Part, Cost)

subpart_cost(Part, Subpart, Cost) :-

assembly(Part, Subpart, Quantity),

b_o_m(Subpart, TotalSubcost),

The database was randomly populated and gradu-

ally growing so that the output size is up to 1.17M

tuples, and weights have been randomly assigned in

the range [0,1].

4. Transitive Closure Last, we have used a recursive

datalog program consisting of 3 rules and computing

Transitive Closure in an undirected weighted graph.

The database was randomly populated to represent

undirected fully connected weighted graphs, yield-

ing output sizes of up to 1.7M tuples.

Size of input instances. We have experimented with an

increasing database size for each of the datasets. We

list below the sizes of the input instances, per dataset.

1. IRIS: 11, 12, 13, 14, 15, 16, 17.

2. AMIE: 67314, 75318, 85449, 98787, 117661, 142677,

177718, 231916, 338642, 626799.

3. Explain: 156, 306, 456, 606, 756, 905, 1051, 1201,

1351, 1504, 1655.

4. Transitive Closure: 101, 201, 301, 401, 501, 601,

701, 801, 901, 1001, 1101, 1201, 1301.

Patterns. The selPQL patterns used in our experiments

are shown in Figures 8–11. For the AMIE, TC and Ex-

plain datasets, the program is recursive and so the pat-

terns select out of an infinite set of trees. For IRIS,

the selectivity of all 4 patterns is as follows: denoting

the size of the relation p by |p|, all patterns select |p|4
derivation trees out of 8 · |p|5 derivation trees overall.

8.2 Baselines: no provenance tracking and full

provenance tracking

To our knowledge, no solution for evaluation of top-k

queries (or tree patterns) over datalog provenance has

been previously proposed. To nevertheless gain insight

on alternatives, we have compared, in terms of incurred

time and space, our solution to two possible extremes:

(1) standard, semi-naive evaluation with no provenance

tracking, using IRIS implementation; and (2) compact

representation of full provenance. In this respect, re-

call that our proposed solution is based on the idea

Efficient Provenance Tracking For Datalog Using Top-K Queries 19

of having the user specify selPQL patterns before the

execution of the datalog program, and instrumenting

the program to generate only relevant provenance. An

alternative approach, and one that is pursued in differ-

ent contexts in previous work [34,36], is to track full

provenance information, and then visualize and/or al-

low users to query it. In the context of datalog, previous

work [3,19,30] has proposed full provenance tracking

methods; specifically [19] has proposed a circuit-based

construction to reduce the provenance size. However, we

observe that for complex recursive datalog programs,

full provenance size grows rapidly with respect to the

provenance-oblivious output database size, and so such

solutions fail to scale. Specifically, we have implemented

the (boolean) circuit-based approach of [19] in an itera-

tive fix-point algorithm, which is executed, similarly to

our solution, along side with standard seminaive evalu-

ation. The overhead of full provenance generation done

in this way is exemplified in Figure 14. In addition,

we note that a compact circuit-based representation is

highly complex and even when it can be realized, it can

only serve as an internal intermediate step towards an-

swering queries over provenance rather than be directly

visualized.

All experiments were executed on Windows 7, 64-

bit, with 8GB of RAM and Intel Core Duo i7 2.10 GHz

processor.

8.3 Experimental Results

Figure 12 presents the execution time of standard sem-

inaive evaluation and of selective provenance tracking

for the four datasets and for different selPQL queries

of interest (fixing k = 3 for this experiments set). Full

provenance tracking has incurred execution time that

is greater by order of magnitude, and is thus omitted

from the graphs and only described in text.

In Figure 12a, the results for the IRIS dataset are

presented for the 4 different patterns depicted in Fig-

ure 8: (p1) binary tree pattern with three nodes without

transitive edges and (p2) with two transitive edges, (p3)

three nodes chain pattern with two transitive edges, and

(p4) six node pattern with three levels and four tran-

sitive edges. The pattern width and structure unsur-

prisingly has a significant effect on the execution time,

but the overhead with respect to seminaive evaluation

was very reasonable: 38% overhead w.r.t. the evalua-

tion time of seminaive even for the complex six-node

pattern and only 3% - 21% for the other patterns. The

absolute execution time is also reasonable: 56–65 sec-

onds for the different patterns and for output database

of over 4.2M tuples (note that for this output size, the

execution time of standard semi-naive evaluation is al-

ready 53 seconds In contrast, generation of full prove-

nance was infeasible (in terms of memory consumption)

beyond output database of 1.6M tuples, taking over 5

minutes of computation for this size.

As explained above, the program we have consid-

ered for the AMIE dataset is much larger and more

complex. Full provenance tracking was completely in-

feasible in this complex settings, failing due to excessive

memory consumption beyond output database of 100K

tuples. Of course, the complex structure leads to sig-

nificantly larger execution time also for semi-naive and

selective provenance tracking. It also leads to a larger

overhead of selective provenance tracking, since instru-

mentation yields an even larger and more complex pro-

gram. Still, the performance was reasonable for patterns

of the flavor shown as examples throughout the paper.

We show results for the AMIE dataset and 9 different

representative patterns that are presented in Figure 9.

5 patterns without any constants (only wildcards): (p5)

a single node pattern, (p6) a 2-node pattern with a reg-

ular edge and (p7) with a transitive edge, (p8) a binary

3-node pattern with regular edges, and (p9) with one

transitive edge. The other 4 patterns are (p∗i) for all

6 ≤ i ≤ 9, where each (p∗i) has the same nodes and

edges of (pi), but with half of the wildcards replaced by

constants. The results are shown in Figure 12b. We ob-

serve that the “generality” of the pattern, i.e. the part

of provenance that it matches, has a significant effect

on the performance. For the “specific” patterns p∗i , the

computation time and overhead was very reasonable:

the computation time for 1.2M output tuples was only

44.5 seconds (1.3 times slower than seminaive) for p∗6.

For p∗7 and the same number of output tuples it took

62 seconds (less than 2 times slower than seminaive),

44.6 seconds (1.3 times slower than seminaive) for p∗8
and 105 seconds (3.2 times slower than seminaive) for

p∗9. The patterns containing only wildcards lead to a

larger instrumented program, which furthermore has

more eventual matches in the data, and so computa-

tion time was greater (but still feasible). the computa-

tion time for 1.2M output tuples was less than a minute

(and 61% overhead w.r.t. seminaive in average) for p5,

less than 2 minutes (3.5 times slower than seminaive)

for p6, 2.6 minutes (4.8 times slower) for p7, and less

than 2 and 2.9 minutes (3.6 and 5.4 times slower) for

p8 and p9 respectively.

In Figure 12c we present the results for the TC

dataset and 4 different patterns: (p10) a single node,

(p11) 3-nodes binary tree pattern with regular edges,

(p12) 3-nodes chain pattern with 2 transitive edges, and

(p13) binary tree pattern with three nodes and 2 tran-

sitive edges. All of these patterns are shown in Figure

20 Daniel Deutch et al.

(a) p1 (b) p2 (c) p3 (d) p4

Fig. 8: Example Patterns for IRIS

(a) p5 (b) p6 (c) p7 (d) p8 (e) p9

(f) p∗6 (g) p∗7 (h) p∗8 (i) p∗9

Fig. 9: Example Patterns for AMIE

(a) p10 (b) p11 (c) p12 (d) p13

Fig. 10: Example Patterns for TC

10. We observe a non-negligible but reasonable over-

head with respect to semi-naive evaluation (and the

execution time is generally smaller than for the AMIE

dataset). The execution time for 1.7M output tuples

for p10 was 31 seconds (and 56% overhead with re-

spect to seminaive in average), 33 seconds for p11 (1.8

times slower than seminaive in average), 74 seconds for

p12 (4 times slower) and 82 seconds for p13 (4.5 times

slower than seminaive). Here full provenance tracking

was extremely costly, requiring over 6.5 hours for out-

put database size of 1.7M tuples.

Figure 12d displays the results for the “explain”

dataset. We considered 3 different patterns: (p14) a sin-

gle node, (p15) a 3-nodes binary tree pattern with reg-

ular edges and (p16) a 2-node pattern with a transitive

edge (see Figure 11). The computation time for 1.16M

output tuples was less than 3.2 minutes (7% overhead

w.r.t seminaive) for p14, 3.3 minutes (10% overhead

w.r.t seminaive) for p15 and 4.4 minutes (85% overhead

w.r.t seminaive) for p16. Full provenance tracking has

required over 2 hours even for an output database size

of 115K.

From top-1 to top-k. So far we have shown experiments

with a fixed value of k = 3. In Figure 15 we demonstrate

the effect of varying k, using the TC dataset and fixing

the pattern to be p10. The overhead due to increasing k

is reasonable, due to our optimization using the heuris-

tic algorithm for TOP-K (after top-1 trees were com-

puted): about 6%, 13%, and 21% average overhead for

top-3, top-5 and top-7 respectively with respect to top-

1 execution time. Similar overheads were observed for

other patterns and for the other datasets. Our optimiza-

tion was indeed effective in this respect, outperforming

the non-optimized version with a significant gain, e.g.

average of 64% for k = 3, 77% for k = 5 and 82% for

k = 7 (and again the trend was similar for the other

patterns and datasets).

Full provenance tracking. We have highlighted through-

out the section the infeasibility of full provenance track-

ing for the various settings. To illustrate the size over-

head, we show in Figure 14 the size of full provenance

as a function of the output size, for the AMIE dataset.

Observe the huge overhead of full provenance tracking,

Efficient Provenance Tracking For Datalog Using Top-K Queries 21

(a) p14 (b) p15 (c) p16

Fig. 11: Example Patterns for Explain

0

20

40

60

80

0.0 M 1.0 M 2.0 M 3.0 M 4.0 M

Ti
m

e
[S

e
c]

Output DB size

Seminaive

P1

P2

P3

P4

(a) IRIS

0

40

80

120

160

200

0.0 M 0.3 M 0.6 M 0.9 M 1.2 M

Ti
m

e
[s

e
c]

Output DB Size

Seminaive P5 P6 P7 P8 P9 P6* P7* P8* P9*

(b) AMIE

0

20

40

60

80

0.0 M 0.5 M 1.0 M 1.5 M

Ti
m

e
[s

e
c]

Output DB Size

Seminaive

P10

P11

P12

P13

(c) Transitive Closure

0

80

160

240

320

0.0 M 0.4 M 0.8 M 1.2 M

Ti
m

e
[s

e
c]

Output DB Size

Seminaive

P14

P15

P16

(d) Explain

Fig. 12: Heuristic top-3: time of computation as a function of DB size

leading to failure of the solution beyond 25K output

tuples.

Boolean combinations of patterns. A näive way to ex-

amine Algorithm 2 is to input a negated pattern and

program and use the instrumented program as input to

Algorithm 3 which will derive the top-k trees (by one of

the approaches described in this paper). However, in-

tersecting a program with a negated pattern (especially

a selective one, containing constants) results in a com-

plex program that is designed to track almost the full

provenance, which we have demonstrated to be infeasi-

ble. Another possibility is to examine its performance

over a boolean combination of patterns which involves

a conjunction of a regular pattern and a negated pat-

tern of the form p1 ∧ ¬p2. That is, running Algorithms

1 and 2 on the input program (in that order) and then

inputting the instrumented program to Algorithm 3.

This approach results in a program focused on deriving

trees that match p1 but do not match p2. Specifically,

we have examined the case where p2 is a pattern that

only contains constants. Figure 16 shows the results for

all the patterns in the AMIE dataset. Runtimes for the

patterns p5, p6, p7, p8, p9, p∗6, p∗7, p∗8, p∗9 are 164, 161.4,

157.4, 157.9, 382.8, 82.3, 82.8, 85.1, 84.2 seconds, re-

spectively for 1.2M output tuples. As expected, there is

an overhead to the evaluation as opposed to the evalu-

ation of a program which was intersected with a single

regular pattern, even when using the heuristic approach

to find the top-3 (Figure 12b).

Performance of Algorithm 4. Figures 13a, 13b, 13c, and

13d show the results for Algorithm 4 for the aforemen-

tioned programs and patterns with k = 3. The instru-

mentation step is negligible in terms of runtime (for

both Algorithms 1 and 2), thus, most of the runtime

is spent during the evaluation of the instrumented pro-

gram. The overhead of the algorithm w.r.t seminaive is

higher than in the heuristic approach described above

since in the heuristic approach, Algorithm 3 runs once

22 Daniel Deutch et al.

0

20

40

60

80

100

120

140

160

180

200

220

0.0 M 1.0 M 2.0 M 3.0 M 4.0 M

Ti
m

e
[S

e
c]

Output DB size

Seminaive

P1

P2

P3

P4

(a) IRIS

0

100

200

300

400

500

600

700

800

900

1000

0.0 M 0.3 M 0.6 M 0.9 M 1.2 M

Ti
m

e
[s

e
c]

Output DB Size

Seminaive P5
P6 P7
P8 P9
P6* P7*
P8* P9*

(b) AMIE

0

50

100

150

200

250

0.0 M 0.5 M 1.0 M 1.5 M 2.0 M

Ti
m

e
[s

e
c]

Output DB Size

Seminaive

P10

P11

P12

P13

(c) Transitive Closure

0

80

160

240

320

400

480

560

0.0 M 0.4 M 0.8 M 1.2 M

Ti
m

e
[s

e
c]

Output DB Size

Seminaive

P14

P15

P16

(d) Explain

Fig. 13: Diverse top-3: Time of computation as a function of DB size

0.0 M

2.0 M

4.0 M

6.0 M

8.0 M

10.0 M

12.0 M

14.0 M

0.00 K 0.01 K 10 K 15 K 20 K 25 K 30 K

Si
ze

 o
f

p
ro

ve
n

an
ce

Size of output DB

Fig. 14: Full provenance size

(AMIE dataset)

0

10

20

30

40

0.0 M 0.5 M 1.0 M 1.5 M 2.0 M

T
im

e
[s

e
c]

Output DB Size

Top-1

Top-3

Top-5

Top-7

Fig. 15: Varying K

(TC dataset)

0

50

100

150

200

250

300

350

400

450

0.0 M 0.3 M 0.6 M 0.9 M 1.2 M

Ti
m

e
[s

e
c]

Output DB Size

Seminaive P5
P6 P7
P8 P9
P6* P7*
P8* P9*

Fig. 16: Boolean combination of

patterns (AMIE dataset)

and then the top-1 tree , while during Algorithm 4,

Algorithm 3 runs 3 times: first, for the intersected pro-

gram with the original pattern, P1; second, for P2 which

is P1 intersected with the negated derivation tree ob-

tained in the first iteration; and third, for P3 which is P2

intersected with the negated derivation tree obtained in

the second iteration. The patterns in the IRIS dataset

had reasonable performance times of 102.6, 166.4, 136.6,

197.9 seconds, for patterns p1, p2, p3, p4, respectively.

The results for the AMIE dataset is depicted in Figure

13b. For 1.2M output tuples, the execution times for

p5, p6, p7, p8, p9 were 521.6, 533.9, 526.9, 551.5, 861.4

seconds, respectively. Execution times for the more se-

lective patterns p∗6, p∗7, p∗8, p∗9 were unexpectedly faster

taking 313, 303.2, 304.1, 391.2 seconds, respectively for

1.2M output tuples. For the TC dataset and patterns

p10, p11, p12, p13 the results are 97.2, 209.8, 120.1, 198.4

seconds, respectively for 1.7M output tuples. Finally,

patterns p14, p15, p16 of the Explain dataset had the fol-

lowing runtimes: 530.7, 415.2, 398.5. Interestingly, the

Efficient Provenance Tracking For Datalog Using Top-K Queries 23

runtimes for p15, p16 (three-node and two-node pattern,

respectively) were faster than for the pattern p14 (a sin-

gle node pattern).

Effect of optimizations. Recall that the algorithm con-

sists of two steps: program instrumentation and top-k

evaluation. The instrumentation step is extremely fast

(less than 1 second in all experiments), since it is in-

dependent of the database. A crucial factor affecting

the performance of the top-k step is the complexity

of the obtained instrumented program, which in turn

is highly dependent on the size and complexity of the

pattern and of the original program. As observed in the

experiments, “simple” patterns (small, containing con-

stants rather than wildcards) lead to smaller programs

and good performance, while more complex patterns

can lead to meeting the lower bound of Proposition 2,

and consequently to a greater overhead (yet, unlike full

provenance tracking, execution time was still feasible

even for the complex programs and patterns we have

considered). The optimizations outlined in Section 7

played a vital role in reducing the top-1 and top-k over-

heads. For instance, for the AMIE dataset, the compu-

tation time has improved by 22% to 50%. Specifically,

for p8, the computation time for 1.2M output tuples has

improved by 50% and the time has decreased from 3.9

minutes to less than 2 minutes. For p9, the improve-

ment was more than 45% and the running time has

decreased from 5.4 minutes to less than 3 minutes. As

for TC dataset, the computation time for 1.7M output

tuples decreased from 108 seconds to 82 seconds (24%

improvement) for p13 and from 48 seconds to 33 seconds

(30% improvement) for p11. Overall, the optimizations

outlined in Section 7 have indeed improved the algo-

rithm’s performance by as much as 50%, by reducing

the number of rules, and restricting the generality of

the programs.

Effect of patterns. The input cases which we have mea-

sured also evaluate the effect of ”hardness” of the pat-

terns on the computation. Specifically, the patterns cho-

sen to measure the performance on the AMIE dataset

and are shown in Figure 9 can be divided into two sets.

Patterns p5−p9 are designed to show the system’s per-

formance in extreme situations. This was achieved by

using very general (non-selective) patterns that in par-

ticular contain only wildcards. On the other hand, the

pattern p∗i has an identical tree structure as the pat-

tern pi for all 5 ≤ i ≤ 9, respectively. However, p∗i
contains more constants than pi and thus is more spe-

cific. The performance of the patterns of the form p∗i
is much better (unfortunately it is not possible to set

a precise notion of selectiveness, since the pattern “se-

lects” out of an infinite set of trees; and so we simply

experiment with a large set of different patterns). These

experiments are depicted in Figure 12b. For example,

the computation time for 1.2M output tuples for the

partially instantiated patterns for the AMIE program

is 40%–65% better.

9 Related Work

Data provenance models. Data provenance has been

studied for different data transformation languages, from

relational algebra to Nested Relational Calculus, with

different provenance models (see e.g. [6,29,25,37,11,59,

7,21]) and applications [58,46,54,45,27], and with dif-

ferent means for efficient storage (e.g. [5,9,50,21]). In

particular, semiring-based provenance for datalog has

been studied in [30], and a compact way to store it, for

some class of semirings, was proposed in [19]. [14] intro-

duces a theoretical model for justifications/explanations

for datalog with negation. However, no notion of se-

lective provenance was proposed in these works. As we

have experimentally shown, tracking full datalog prove-

nance fails to scale.

Selective provenance for non-recursive queries. There

are multiple lines of work on querying data provenance,

where the provenance is tracked for non-recursive queries

(e.g. relational algebra or SQL). Here there are two ap-

proaches: one that tracks full provenance and then al-

lows the user to query it (as in [36,34]), and one that

allows on-demand generation of provenance based on
user-specified criteria. A prominent line of work in the

context of the latter is that of [28,26], where the sys-

tem (called Perm) supports SQL language extensions

to let the user specify what provenance to compute.

Three distinct features in our settings are (1) our sup-

port of recursion, (2) the use of tree patterns to query

derivations (which is natural for datalog), and (3) the

support of ranking of results. These differences lead to

novel challenges and consequently required novel mod-

eling and solutions (as explained in the Introduction

and in the description of the technical content).

Explanation for deductive systems. There is a wealth of

work on explaining executions for deductive DBMSs [3,

55,41], and some of them (e.g. [41]) compute expla-

nations by augmenting the program with new rules.

However, in contrast to our work, these works focus

on tracking full provenance (either of the full program

or of a given module as in [3]) and then analyzing it

(e.g. using CORAL queries [3]) or visualizing through

24 Daniel Deutch et al.

it using a dedicated interface. As we have shown, track-

ing full provenance is infeasible for large-scale data and

complex programs. For instance, experiments in [3] are

reported only for a relatively small scale data (up to

30K rule instantiations). A feature that is present in

[55] and absent here is the ability to query missing facts,

i.e. explore why a fact was not generated. Incorporating

such feature is an intriguing direction for future work.

Finally, we note that [42] defines preference relations for

datalog which allows to discard subsumed tuples on the

fly, thus effecting the derivations. However, the efficient

storage or presentation of provenance is not discussed.

Program slicing. In [10,51] the authors study the no-

tion of program slicing for a highly expressive model of

functional programs and for Nested Relational Calcu-

lus, where the idea is to trace only relevant parts of the

execution. Our focus here is on supporting provenance

for programs whose output data is large. Ranking and

top-k queries are also absent from this line of work.

Workflow provenance. Different approaches for captur-

ing workflow provenance appear in the literature (e.g.

[15,13,2,31,22,56,47]), however there the focus is typ-

ically on the control flow and the dataflow between

process modules, treating the modules themselves and

their processing of the data as black boxes. A form of

“instrumenting” executions in preparation for querying

the provenance is proposed in [4], but again the data is

abstracted away, the queries are limited to reachability

queries and there is no ranking mechanism.

Context Free Grammars. Analysis of Context Free Gram-

mars (CFGs) has been studied in different lines of work.

For instance, in [40] the author proposes an algorithm

for finding the top-1 weight of a derivation in a weighted

CFG; in [12] the authors study the problem of querying

parse trees of a given probabilistic context free gram-

mar. There are technical similarities between datalog

and CFGs; but a significant conceptual difference is

that in datalog there is a separation between the pro-

gram and the underlying data, which has no counter-

part in CFGs. This means that no counterpart of our

novel instrumentation algorithm appears in these works.

Then, the top-k trees computation requires again a novel

algorithm and subtle treatment of different cases.

Probabilistic XML. Multiple works have studied mod-

els and query languages for probabilistic XML (see e.g.

[38,39,43]), including top-k queries [48,8,43]. A techni-

cal similarity is in the use of tree patterns for querying

a compactly represented set of trees, each associated

with a weight (probability). However our different mo-

tivation of querying datalog provenance is then reflected

in many technical differences, including the separation

between the program and the underlying data; the use

of general weights rather than probabilities; their ag-

gregation (summation over all possible worlds) in the

context of probabilistic XML rather than the retrieval

of individual top-k trees; and the resulting complexity.

Markov Logic Networks and other probabilistic models.

The combination of highly expressive logical reasoning

and probability has been studied in multiple lines of

work. These include Markov Logic Networks [52,35,49]

and probabilistic datalog (e.g. [23,18]). However, the fo-

cus in these lines of work is on probabilistic inference; to

our knowledge, no counterparts of our query language

or techniques were studied in these contexts.

10 Conclusion

We have presented selPQL, a top-k query language for

datalog provenance, and an efficient algorithm for track-

ing selective provenance guided by a selPQL query. There

are many intriguing directions for future work, includ-

ing further optimizations, additional criteria for rank-

ing trees, different notions of diversification, and the

incorporation of user feedback.

Acknowledgements This research has been partially funded
by the Israeli Science Foundation (978/17) and the Blavat-
nik Interdisciplinary Cyber Research Center (TAU ICRC).
The contribution of Yuval Moskovitch is part of Ph.D. thesis
research conducted at Tel Aviv University.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
2. A. Ailamaki, Y. E. Ioannidis, and M. Livny. Scientific

workflow management by database management. In SS-

DBM, 1998.
3. T. Arora, R. Ramakrishnan, W. G. Roth, P. Seshadri,

and D. Srivastava. Explaining program execution in de-
ductive systems. In DOOD, 1993.

4. Z. Bao, S. B. Davidson, and T. Milo. Labeling recursive
workflow executions on-the-fly. In SIGMOD, 2011.

5. Z. Bao, H. Köhler, L. Wang, X. Zhou, and S. Sadiq. Ef-
ficient provenance storage for relational queries. CIKM,
2012.

6. O. Benjelloun, A. Sarma, A. Halevy, M. Theobald, and
J. Widom. Databases with uncertainty and lineage.
VLDB J., 17, 2008.

7. P. Buneman, J. Cheney, and S. Vansummeren. On the ex-
pressiveness of implicit provenance in query and update
languages. ACM Trans. Database Syst., 33(4), 2008.

8. L. Chang, J. X. Yu, and L. Qin. Query ranking in prob-
abilistic XML data. In EDBT, 2009.

Efficient Provenance Tracking For Datalog Using Top-K Queries 25

9. A. P. Chapman, H. V. Jagadish, and P. Ramanan. Ef-
ficient provenance storage. In ACM SIGMOD, SIGMOD
’08, 2008.

10. J. Cheney, A. Ahmed, and U. A. Acar. Database queries
that explain their work. CoRR, abs/1408.1675, 2014.

11. J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends

in Databases, 1(4), 2009.
12. S. Cohen and B. Kimelfeld. Querying parse trees of

stochastic context-free grammars. In ICDT, 2010.
13. D. Cohn and R. Hull. Business artifacts: A data-centric

approach to modeling business operations and processes.
IEEE Data Eng. Bull., 32(3), 2009.

14. C. V. Damásio, A. Analyti, and G. Antoniou. Justifica-
tions for logic programming. In Logic Programming and
Nonmonotonic Reasoning, 2013.

15. S. B. Davidson and J. Freire. Provenance and scientific
workflows: challenges and opportunities. In SIGMOD,
2008.

16. D. Deutch, A. Gilad, and Y. Moskovitch. Selective prove-
nance for datalog programs using top-k queries. PVLDB,
8(12), 2015.

17. D. Deutch, A. Gilad, and Y. Moskovitch. selp: Selective
tracking and presentation of data provenance (demo). In
ICDE, 2015.

18. D. Deutch, C. Koch, and T. Milo. On probabilistic fix-
point and markov chain query languages. In PODS, 2010.

19. D. Deutch, T. Milo, S. Roy, and V. Tannen. Circuits for
datalog provenance. In ICDT, 2014.

20. D. Eppstein. Finding the k shortest paths. SIAM J.

Comput., 28(2), 1998.
21. R. Fink, L. Han, and D. Olteanu. Aggregation in prob-

abilistic databases via knowledge compilation. PVLDB,
5(5), 2012.

22. I. Foster, J. Vockler, M. Wilde, and A. Zhao. Chimera:
A virtual data system for representing, querying, and au-
tomating data derivation. SSDBM, 2002.

23. N. Fuhr. Probabilistic datalog:a logic for powerful re-
trieval methods. In SIGIR, 1995.

24. L. A. Galárraga, C. Teflioudi, K. Hose, and F. M.
Suchanek. Amie: association rule mining under incom-
plete evidence in ontological knowledge bases. In WWW,
2013.

25. F. Geerts and A. Poggi. On database query languages
for k-relations. J. Applied Logic, 8(2):173–185, 2010.

26. B. Glavic and G. Alonso. Perm: Processing provenance
and data on the same data model through query rewrit-
ing. In ICDE, pages 174–185, 2009.

27. B. Glavic, G. Alonso, R. J. Miller, and L. M. Haas.
TRAMP: understanding the behavior of schema map-
pings through provenance. PVLDB, 3(1):1314–1325,
2010.

28. B. Glavic, R. J. Miller, and G. Alonso. Using sql for
efficient generation and querying of provenance informa-
tion. In In Search of Elegance in the Theory and Practice
of Computation. Springer, 2013.

29. B. Glavic, J. Siddique, P. Andritsos, and R. J. Miller.
Provenance for data mining. In Tapp, 2013.

30. T. J. Green, G. Karvounarakis, and V. Tannen. Prove-
nance semirings. In PODS, 2007.

31. D. Hull, K. Wolstencroft, R. Stevens, C. Goble,
M. Pocock, P. Li, and T. Oinn. Taverna: a tool for build-
ing and running workflows of services. Nucleic Acids Res.,
34, 2006.

32. T. Imieliński and W. Lipski, Jr. Incomplete information
in relational databases. J. ACM, 31(4), Sept. 1984.

33. http://www.iris-reasoner.org.

34. Z. G. Ives, A. Haeberlen, T. Feng, and W. Gatterbauer.
Querying provenance for ranking and recommending. In
TaPP, 2012.

35. A. K. Jha and D. Suciu. Probabilistic databases with
markoviews. PVLDB, 5(11), 2012.

36. G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying
data provenance. In SIGMOD, 2010.

37. B. Kenig, A. Gal, and O. Strichman. A new class of lin-
eage expressions over probabilistic databases computable
in p-time. In SUM, pages 219–232, 2013.

38. B. Kimelfeld, Y. Kosharovsky, and Y. Sagiv. Query eval-
uation over probabilistic XML. VLDB J., 18(5), 2009.

39. B. Kimelfeld and Y. Sagiv. Matching twigs in probabilis-
tic XML. In VLDB, 2007.

40. D. E. Knuth. A generalization of dijkstra’s algorithm.
Inf. Process. Lett., 6(1), 1977.

41. S. Köhler, B. Ludäscher, and Y. Smaragdakis. Declara-
tive datalog debugging for mere mortals. In Datalog in
Academia and Industry, 2012.

42. G. Köstler, W. Kießling, H. Thöne, and U. Güntzer. Fix-
point iteration with subsumption in deductive databases.
J. Intell. Inf. Syst., 4(2), 1995.

43. J. Li, C. Liu, R. Zhou, and W. Wang. Top-k keyword
search over probabilistic XML data. In ICDE, 2011.

44. B. T. Loo et al. Declarative networking: language, exe-
cution and optimization. In SIGMOD, 2006.

45. A. Meliou, W. Gatterbauer, and D. Suciu. Reverse data
management. PVLDB, 4(12), 2011.

46. A. Meliou and D. Suciu. Tiresias: the database oracle for
how-to queries. In SIGMOD, 2012.

47. P. Missier, N. Paton, and K. Belhajjame. Fine-grained
and efficient lineage querying of collection-based work-
flow provenance. In EDBT, 2010.

48. B. Ning, C. Liu, and J. X. Yu. Efficient processing of
top-k twig queries over probabilistic XML data. World
Wide Web, 16(3), 2013.

49. F. Niu, C. Zhang, C. Re, and J. W. Shavlik. Deepdive:
Web-scale knowledge-base construction using statistical
learning and inference. In VLDS, pages 25–28, 2012.

50. D. Olteanu and J. Zavodny. Factorised representations
of query results: size bounds and readability. In ICDT,
2012.

51. R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Func-
tional programs that explain their work. In SIGPLAN,
2012.

52. M. Richardson and P. Domingos. Markov logic networks.
Machine Learning, 62(1-2), 2006.

53. R. Ronen and O. Shmueli. Automated interaction in so-
cial networks with datalog. In CIKM, 2010.

54. S. Roy and D. Suciu. A formal approach to finding ex-
planations for database queries. In SIGMOD, 2014.

55. O. Shmueli and S. Tsur. Logical diagnosis of LDL pro-
grams. New Generation Comput., 9(3/4), 1991.

56. Y. L. Simhan, B. Plale, and D. Gammon. Karma2: Prove-
nance management for data-driven workflows. Int. J. Web
Service Res., 5(2), 2008.

57. F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a
core of semantic knowledge. In WWW, 2007.

58. D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilis-

tic Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

59. Prov-overview, w3c working group note. http://www.w3.

org/TR/prov-overview/, 2013.

