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Abstract Multiple lines of research have developed Nat-

ural Language (NL) interfaces for formulating database

queries. We build upon this work, but focus on present-

ing a highly detailed form of the answers in NL. The

answers that we present are importantly based on the

provenance of tuples in the query result, detailing not

only the results but also their explanations. We develop

a novel method for transforming provenance informa-

tion to NL, by leveraging the original NL query struc-

ture. Furthermore, since provenance information is typ-

ically large and complex, we present two solutions for

its effective presentation as NL text: one that is based

on provenance factorization, with novel desiderata rel-

evant to the NL case, and one that is based on sum-

marization. We have implemented our solution in an

end-to-end system supporting questions, answers and
provenance, all expressed in NL. Our experiments, in-

cluding a user study, indicate the quality of our solution

and its scalability.

1 Introduction

In the context of databases, data provenance cap-

tures the way in which data is used, combined and ma-

nipulated by the system. Provenance information can

for instance be used to reveal whether data was illegiti-
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mately used, to reason about hypothetical data modifi-

cations, to assess the trustworthiness of a computation

result, or to explain the rationale underlying the com-

putation.

As database interfaces constantly grow in use, in

complexity and in the size of data they manipulate,

provenance tracking becomes of paramount importance.

In its absence, it is next to impossible to understand

the system’s operation and to follow the flow of data

through the system, which in turn may be extremely

harmful for the quality of results.

A setting where the lack of provenance – and conse-

quently lack of explanations – is of particular concern,

is that of database interfaces geared to be used by non-

experts. Such non-expert users lack understanding of

the system inner workings, and are unable to verify that

it has operated correctly. Indeed, an important compo-

nent of such systems is the interface through which the

non-expert communicates her needs/query to the sys-

tem. But then, how does the system communicate its

results back to the non-expert user? And how does it

justify it in a manner that the non-expert can under-

stand? For each system, developers currently need to

develop dedicated solutions, if at all, and we are lack-

ing a generic framework for explanations in this setting.

A particularly flourishing line of work for allowing

non-experts to interact with a database, is that of Natu-

ral Language Interfaces to Databases (NLIDBs). Multi-

ple such interfaces have been developed in recent years

(see e.g. [55,7,52,76]). The accuracy of translation is

constantly improving. Still, it is far from perfect – in

general, automated translation of free text to a formal

language is an extremely difficult task. Since the users

of such systems are typically non-experts, they may

have a hard time understanding the result or verify-

ing its correctness. Consider for example a complex NL
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query over a publication database, of the form “return

all organizations of authors who published in database

conferences after 2005”. After translating this query

to SQL and running it using a query engine, the an-

swer is a list of qualifying organizations. By looking at

the answer, the user has no way of knowing whether

the retrieved organizations really satisfy her specified

constraints; a slight error in the translation process,

e.g. misunderstanding “database conferences” or erro-

neously associating “after 2005” with the conference in-

auguration date, could result in a list of organizations

that is completely wrong for the question asked.

In this work we complement the efforts of devel-

oping high-quality NLIDBs, by developing a generic

framework that explains the results of queries posed

to NLIDBs. Explanations are based on provenance, but

current provenance models are far too complex to allow

for their direct presentation to non-experts. The nov-

elty of our work is that we “translate” provenance into

NL explanations to the query answers. The explana-

tions that we provide elaborate upon answers with ad-

ditional important information, and are helpful for un-

derstanding why does each answer qualify to the query

criteria.

As an example, consider the Microsoft Academic

Search database [1] and consider the NL query in Fig-

ure 1a. A state-of-the-art NL query engine, NaLIR [55],

is able to transform this NL query into the SQL query

also shown (as a Conjunctive Query, which is the frag-

ment that we focus on in this paper) in Figure 1b. When

evaluated using a standard database engine, the query

returns the expected list of organizations. However, the

answers (organizations) in the query result lack justi-

fication, which in this case would include the authors

affiliated with each organization and details of the pa-

pers they have published (their titles, their publication

venues and publication years). Such additional infor-

mation, corresponding to the notion of provenance [41,

14,17,38,39] can lead to a richer answer than simply

providing the names of organizations: it allows users to

also see relevant details of the qualifying organizations.

Provenance information is also valuable for validation

of answers: a user who sees an organization name as an

answer is likely to have a harder time validating that

this organization qualifies as an answer, than if she was

presented with the full details of publications. An un-

derstanding of the results also allows users to conclude

whether their query was translated correctly and repro-

duce the results if needed. There are several models of

provenance previously suggested in the literature. The

tuple-based model [38,39] tracks the source tuples which

participated in the computation of the results, while the

value-based model [61,18] is a more fine grained model

and follows the values of these tuples.

We propose a novel approach of presenting prove-

nance information for answers of NL queries, again as

sentences in Natural Language. There are several as-

pects to account for towards a solution, as follows.

– The provenance model needs to be very detailed. For

example, the NL explanations that we aim for re-

quire storing not only which input tuples have con-

tributed to the answer in the above example these

may e.g. be the author, organization and publication

entries but also the way in which they contributed

to the answer. In our example, for generating the

required explanations we need to store that the or-

ganization entry has matched the query head and

was returned, that the author entry has been joined

with it to find authors of the specific organization,

that the publication entry was joined with the au-

thor entry, etc. Naturally, once the query is compiled

from NL/examples to e.g. SQL, one could in princi-

ple track provenance as if the query was described in

SQL to begin with. As we next explain, this would

be sub-optimal.

– As we shall demonstrate, the way in which the user

has phrased the question has a significant impact

on both which parts of the computation needs to

be tracked and on the way in which users expect

provenance information to be presented to them.

In general, in works on provenance, there is a typi-

cally a tight coupling between the query model and

the provenance model. In particular, as we already

observed, a suitable way for presenting the expla-

nations is again as NL sentences, so that we obtain
an end-to-end system where questions, answers and

explanations are all expressed in Natural Language.

Thus, the provenance model needs to keep track of

which parts of the NL question have contributed to

which parts of the computation. Furthermore, We

use the value-based model of provenance as it is the

implicitly enforced by the NLIDB which maps words

to variables. Once we have this mapping, we store

the mappings between variables to values to be able

to reverse it. A major challenge in this respect is

to design the model so that it correctly captures

those parts of the provenance that are “important”

based on the user question. As the basis for our

provenance model, we use the value-based model of

provenance (as opposed to tuple-based) as it is the

implicitly enforced by the NLIDB which maps words

to variables in the query. Once we have this map-

ping, we store the mappings between variables to

values to be able to assemble an explanation sen-

tence.
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return the organization of authors who published papers

in database conferences after 2005

(a) NL Query

query(oname) :- org(oid, oname), conf(cid, cname),

pub(wid, cid, ptitle, pyear), author(aid, aname, oid),

domainConf(cid, did), domain(did, dname),

writes(aid, wid), dname = ’Databases’, pyear > 2005

(b) CQ Q

Fig. 1: NL Query and CQ Q

TAU is the organization of Tova M. who published

’OASSIS...’ in SIGMOD in 2014

Fig. 2: Answer for a Single Assignment

– Then, given the tracked provenance, we further need

to translate it back from the formal model to an NL

sentence. Generating NL sentences is a difficult task

in general - but importantly, here we have the NL

question that can guide us. A challenge is then how

to “plug-in” different parts of the provenance back

into the NL question, to obtain a coherent, well-

formed answer.

– Last, we need to address the challenge of provenance

size. In particular, full information about the man-

ner in which a result is obtained from the input data

(and even full description of the input data itself)

is typically exhaustively long to present, especially

to a non-expert.

The end result for our running example is demon-

strated in Figure 2, which shows one of the explained

answers outputted by our system in response to the NL

query in Figure 1a.

Having explained the overall approach and chal-

lenges, we next provide more details on each of our key

contributions.

Provenance Tracking Based on the NL Query Structure

As mentioned above, a first key idea in our solution

is to leverage the NL query structure in constructing

NL provenance. Our solution is generic in that it is not

specific to a concrete NL interface (we do have some

requirements on the operation of the underlying inter-

face, as we detail below). In our implementation, we

use and modify NaLIR1 so that we store exactly which

parts of the NL query translate to which parts of the

formal query. Then, we evaluate the formal query us-

ing a provenance-aware engine (we use SelP [26]), fur-

ther modified so that it stores which parts of the query

1 We are extremely grateful to Fei Li and H.V. Jagadish
for generously sharing with us the source code of NaLIR, and
providing invaluable support.

“contribute” to which parts of the provenance. By com-

posing these two “mappings” (text-to-query-parts and

query-parts-to-provenance) we infer which parts of the

NL query text are related to which provenance parts.

Finally, we use the latter information in an “inverse”

manner, to translate the provenance to NL text.

Factorization A second key idea is related to the prove-

nance size. In typical scenarios, a single answer may

have multiple explanations (multiple authors, papers,

venues and years in our example). A näıve solution

is to formulate and present a separate sentence cor-

responding to each explanation. The result will how-

ever be, in many cases, very long and repetitive. As

observed already in previous work [16,62], different as-

signments (explanations) may have significant parts in

common, and this can be leveraged in a factorization

that groups together multiple occurrences. In our exam-

ple, we can e.g. factorize explanations based on author,

paper name, conference name or year. Importantly, we

impose a novel constraint on the factorizations that we

look for (which we call compatibility), intuitively cap-

turing that their structure is consistent with a partial

order defined by the parse tree of the question. This

constraint is needed so that we can translate the fac-

torization back to an NL answer whose structure is sim-

ilar to that of the question. Even with this constraint,

there may still be exponentially many (in the size of

the provenance expression) compatible factorizations,

and we look for the factorization with minimal size out

of the compatible ones; for comparison, previous work

looks for the minimal factorization with no such “com-

patibility constraint”. The corresponding decision prob-

lem remains coNP-hard (again in the provenance size),

but we devise an effective and simple greedy solution.

We further translate factorized representations to con-

cise NL sentences, again leveraging the structure of the

NL query.

Summarization We propose summarized explanations

by replacing details of different parts of the explana-

tion by their synopsis, e.g. presenting only the num-

ber of papers published by each author, the number of

authors, or the overall number of papers published by

authors of each organization. Such summarizations in-

cur by nature a loss of information but are typically

much more concise and easier for users to follow. Here

again, while provenance summarization has been stud-

ied before (e.g. [5,66]), the desiderata of a summariza-

tion needed for NL sentence generation are different,

rendering previous solutions inapplicable here. We ob-

serve a tight correspondence between factorization and
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summarization: every factorization gives rise to multi-

ple possible summarizations, each obtained by counting

the number of sub-explanations that are “factorized to-

gether”. We provide a robust solution, allowing to com-

pute NL summarizations of the provenance, of varying

levels of granularity.

Implementation and Experiments We have implemented

our solution in a system prototype called NLProv [23],

forming an end-to-end NL interface to database query-

ing where the NL queries, answers and provenance in-

formation are all expressed in NL. We have further con-

ducted extensive experiments whose results indicate the

scalability of the solution as well as the quality of the

results, the latter through a user study.

This paper is an extended version of our PVLDB

2017 paper [24] and includes a new section on the trans-

lation of provenance to NL for UCQs, a new section

on a generalized solution that is not specific to NaLIR

and a discussion of the use of other provenance models,

new and comprehensive experiments, and an extended

in-depth review of related work.

2 Preliminaries

We provide here the necessary preliminaries on Natu-

ral Language Processing, conjunctive queries and prove-

nance.

2.1 NL and Formal Queries

We start by recalling some basic notions from NLP, as

they pertain to the translation process of NL queries to
a formal query language. We further recall a particu-

lar formal query language of interest, namely Union of

Conjunctive Queries.

A key notion that we will use is that of the syntactic

dependency tree of NL queries:

Definition 1 A dependency tree T = (V,E, L) is a

node-labeled tree where labels consist of two compo-

nents, as follows: (1) Part of Speech (POS): the syn-

tactic role of the word [49,57] ; (2) Relationship (REL):

the grammatical relationship between the word and its

parent in the dependency tree [58].

We focus on a sub-class of queries handled by NaLIR,

namely that of Union of Conjunctive Queries, possibly

with comparison operators (=, >,<) and logical combi-

nations thereof (NaLIR further supports nested queries

and aggregation). Formally, fix a database schema, i.e.

a set of relation names along with their arities (number

of attributes). A query is then defined with respect to

a schema.

return

object

verb mod

properties

nsubj

others

(a) Verb Mod.

return

object

non-verb mod

propertiesothers

(b) Non-Verb Mod.

Fig. 3: Abstract Dependency Trees

Definition 2 (From [2]) A Union of Conjunctive Queries

Q is a set of Conjunctive Queries Qi.

In turn, a conjunctive query is an expression ans(u)←−
R1(u1), ..., Rn(un), C whereR1, ..., Rn are relation names

in the database schema, and u, u1, ..., un are tuples with

either variables or constants, with ui conforming to the

schema of Ri. Variables in u must appear in at least

one of u1, ...un. Finally, C is a sequence of compari-

son constraints (=, >,<) over variables in u1, ...un and

constants.

The corresponding NL queries in NaLIR follow one

of the two (very general) abstract forms described in

Figure 3: an object (noun) is sought for, that satisfies

some properties, possibly described through a complex

sub-sentence rooted by a modifier (which may or may

not be a verb, a distinction whose importance will be

made clear in our algorithms that follow).

Example 1 Reconsider the NL query in Figure 1a; its

dependency tree is depicted in Figure 4a (ignore for now

the arrows). The part-of-speech (POS) tag of each node

reflects its syntactic role in the sentence – for instance,

“organization” is a noun (denoted “NN”), and “pub-

lished” is a verb in past tense (denoted “VBD”). The

relation (REL) tag of each node reflects the semantic

relation of its sub-tree with its parent. For instance, the

REL of “of” is prep (“prepositional modifier”) mean-

ing that the sub-tree rooted at “of” describes a prop-

erty of “organization” while forming a complex sub-

sentence. The tree in Figure 4a matches the abstract

tree in Figure 3b since “organization” is the object and

“of” is a non-verb modifier (its POS tag is IN, meaning

“preposition or subordinating conjunction”) rooting a

sub-sentence describing “organization”.

The dependency tree is transformed by NaLIR, based

also on schema knowledge, to SQL. We focus in this

work on NL queries that are compiled into Union of

Conjunctive Queries (UCQs), and discuss extensions to

aggregates and nested queries below.
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(oname, TAU)

(aname, Tova M.)

(ptitle, OASSIS...)

(cname, SIGMOD)

(pyear, 2014)

return

organization
POS=NN, REL=dobj

of
POS=IN, REL=prep

authors
POS=NNS, REL=pobj

published
POS=VBD, REL=rcmod

in

conferences
POS=NNS, REL=pobj

database
POS=NN, REL=nn

after
POS=IN, REL=prep

2005
POS=CD, REL=pobj

paperswho

the

(a) Query Tree

organization

of

Tova M.

published

in

SIGMOD

in

2014

’OASSIS...’who

TAU (is the)

(b) Answer Tree

Fig. 4: Question and Answer Trees

Example 2 Reconsider our running example NL query

in Figure 1a; a counterpart Conjunctive Query is shown

in Figure 1b. Some words of the NL query have been

mapped by NaLIR to variables in the query, e.g., the

word “organization” corresponds to the head variable

(oname). Additionally, some parts of the sentence have

been complied to boolean conditions based on the MAS

schema, e.g., the part “in database conferences” was

translated to dname = ‘Databases’ in the CQ depicted

in Figure 1b. Figure 4a shows the mapping of some of

the nodes in the NL query dependency tree to variables

of Q (ignore for now the values next to these variables).

The translation performed by NaLIR from an NL

query to a formal one can be captured by a mapping

from (some) parts of the sentence to parts of the formal

query. This mapping is not a novel contribution of this

paper, but we will employ this mapping to generate the

NL explanation.

Definition 3 Given a dependency tree T = (V,E, L)

and a CQ Q, a dependency-to-query-mapping

τ : V → V ars(Q) is a partial function mapping a subset

of the dependency tree nodes to the variables of Q.

2.2 Provenance

After compiling a formal query corresponding to the

user’s NL query, we evaluate it and keep track of prove-

nance, to be used in explanations.

As explained in Section 1, there are essentially two

explanation models that will come into play here. The

first is a provenance model for the underlying formal

query, in our case Union of Conjunctive Queries. We

next discuss existing provenance models, then choose a

particular model that fits our construction. The second,

which we will discuss below, is coupled with the Natural

Language model.

In terms of provenance for formal database queries,

previous work has proposed a large number of differ-

ent models (see Section 7 for an overview of related

work). A basic distinction that we already need to make

is between fine-grained and coarse-grained provenance.

Generally speaking, the former keeps track of which

tuples (or even cells) have contributed to each result,

while the latter keeps track of the general input and

output of each query/workflow operator, without nec-

essarily connecting each input and output pieces. Here

our goal is to explain individual query results, and so a

fine-grained provenance model is sought for.

In context of database queries, capturing fine-grained

provenance means that we keep track of the assign-

ments of database tuples to query atoms. Assignments

are the basic building block of query evaluation, and

for UCQs they are defined as follows:

Definition 4 An assignment α for a query Q ∈ CQ

with respect to a database instance D is a mapping

of the relational atoms of Q to tuples in D that re-

spects relation names and induces a mapping over vari-

ables/constants, i.e. if a relational atom R(x1, ..., xn) is

mapped to a tuple R(a1, ..., an) then we say that xi is

mapped to ai (denoted α(xi) = ai, overloading nota-

tions) and we further say that the tuple was used in

α. We require that any variable will be mapped to a

single value, and that any constant will be mapped to

itself. We further define α(head(Q)) as the tuple ob-

tained from head(Q) by replacing each occurrence of a

head variable xi by α(xi). The set of assignments to Q

with respect to D is denoted by Γ (Q,D). Note that a

single tuple in the query result may have been obtained

by multiple assignments in Γ (Q,D).

Then, for a UCQ Q whose CQs are Q1, ..., Qn, the

set of assignments to Q is defined as the union of the

sets of assignments to its CQs, namely Γ (Q) =
n⋃
i=1

Γ (Qi).
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(oname,TAU)·(aname,Tova M.)·(ptitle,OASSIS...)·
(cname,SIGMOD)·(pyear,14’)+
(oname,TAU)·(aname,Tova M.)·(ptitle,Querying...)·
(cname,VLDB)·(pyear,06’)+
(oname,TAU)·(aname,Tova M.)· (ptitle,Monitoring..)·
(cname,VLDB)·(pyear,07’)+
(oname,TAU)·(aname,Slava N.)·(ptitle,OASSIS...)·
(cname, SIGMOD)·(pyear,14’)+
(oname,TAU)·(aname,Tova M.)·(ptitle,A sample...)·
(cname,SIGMOD)·(pyear,14’)+
(oname,UPENN)·(aname,Susan D.)·(ptitle,OASSIS...)·
(cname,SIGMOD)·(pyear,14’)

Fig. 5: Value-level Provenance

The notion of a tuple being obtained from an assign-

ment and the α notation immediately extend, noting

that a single tuple may be obtained from assignments

to multiple conjunctive queries.

Assignments allow for defining the semantics of CQs:

a tuple t is said to appear in the query output if there

exists an assignment α s.t. t = α(head(Q)). They will

also be useful in defining provenance below.

Example 3 Consider again the query Q in Figure 1b

and the database in Figure 6. The tuple (TAU) is an

output of Q when assigning the highlighted tuples to

the atoms of Q. As part of this assignment, the tu-

ple (2, TAU) (the second tuple in the org table) and

(4, Tova M., 2) (the second tuple of the author table)

are assigned to the first and second atom of Q, respec-

tively. In addition to this assignment, there are 4 more

assignments that produce the tuple (TAU) and one as-

signment that produces the tuple (UPENN).

Assignments may be used in provenance in multiple

ways, varying in their granularities. For instance, the

lineage [10] of a result tuple t is the set of input tu-

ples appearing in some assignment yielding t; the why-

provenance of t is the set of sets of tuples participat-

ing in such assignments, i.e. the contributing tuples are

grouped based on the assignments they are used in.

These approaches were shown in [38] to be concrete

examples of a general algebraic construction, termed

semiring provenance. At a high-level, the idea there is

that we introduce two symbolic operations “ + ” and

“ · ”, and use them to form algebraic representations of

the provenance. Concretely, “+” is used for alternative

derivations and “ ·” is used for combined derivation: for

a given output tuple, we sum over the assignments that

have yielded it, and each assignment is represented via

a multiplication over the terms that has contributed to

it. The idea is that assignments capture the reasons for

a tuple to appear in the query result, with each assign-

ment serving as an alternative such reason (indeed, the

existence of a single assignment yielding the tuple suf-

fices, according to the semantics, for its inclusion in the

query result).

In [38], the basic atomic units that appear in a

provenance expression are the “annotations” (intuitively

identifiers, or meta-data associated with the tuples) of

the tuples that contribute to an assignment. Here, in

order to form a detailed explanation of the result of

an NL query, we need to keep track of a finer-grained

resolution. Within each assignment, we keep record of

the value assigned to each variable, and note that the

conjunction of these value assignments is required for

the assignment to hold.

Definition 5 Let A(Q,D) be the set of assignments

for a UCQ Q and a database instance D. We define the

value-level provenance of Q w.r.t. D as∑
α∈A(Q,D)

Π{xi,ai|α(xi)=ai}(xi, ai)

.

The reason for our use of a value-based rather than

tuple-based provenance model is that, as we will next

show, we wish to connect different pieces of the prove-

nance back to the NL question, in order to form a de-

tailed NL explanation.

Rel. org
oid oname
1 UPENN
2 TAU

Rel. author
aid aname oid
3 Susan D. 1
4 Tova M. 2
5 Slava N. 2

Rel. pub
wid cid ptitle pyear
6 10 “OASSIS...” 2014
7 10 “A sample...” 2014
8 11 “Monitoring...” 2007
9 11 “Querying...” 2006

Rel. writes
aid wid
4 6
3 6
5 6
4 7
4 8
4 9

Rel. conf
cid cname
10 SIGMOD
11 VLDB

Rel. domainConf
cid did
10 18
11 18

Rel. domain
did dname
18 Databases

Fig. 6: DB Instance

Example 4 Re-consider our running example query and

consider the database in Figure 6. The value-level prove-

nance is shown in Figure 5. Each of the 6 summands

stands for a different assignment (i.e. an alternative rea-

son for the tuple to appear in the result). Assignments

are represented as multiplication of pairs of the form

(var, val) so that var is assigned val in the particu-

lar assignment. We only show here variables to which

a query word was mapped; these will be the relevant

variables for formulating the answer.
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It is important to note that we refer to provenance

as the mapping between the variables in the query to

the values in the database which occurs during the

evaluation process. This process is completely separate

from NaLIR’s framework. The provenance is stored as

part of the evaluation of the formal query inferred by

NaLIR over the database, and is therefore performed

after NaLIR has completed the query inference process.

3 First step: Conjunctive Queries and a Single

Assignment

We now start describing our transformation of prove-

nance to an NL sentence, leveraging the structure of

the original question. We focus in this section on the

case of a Conjunctive Query and a single assignment

to its clauses. In subsequent sections we show how to

extend the solution to multiple assignments and unions

of conjunctive queries, where the solution presented in

this section will serve as a building block.

3.1 Mapping NL to Provenance and Back

Our first important observation is that words in the NL

question can be connected to (variable,value) pairs in

the provenance polynomial. For instance, “conference”

corresponds to the assignment of cname to SIGMOD

or V LDB, “author” corresponds to the assignment of

aname to TovaM., and so on. The reason this connec-

tion is important is that it gives us strong hints on how

to form a detailed answer in Natural Language: given

this information we know for instance that SIGMOD

should replace/reside next to “database conferences”

(the decision of which of the two options to follow will

be discussed below based on the sentence structure).

Fortunately, the choice of models we have made in the

preliminaries gives us relatively straightforward means

to derive this mapping. The idea is to marry the two

mappings discussed in the previous section as a step to-

wards generating an NL explanation: the dependency-

to-query-mapping performed by NaLIR and the value-

based provenance to get a direct mapping from words

to database values. First, we have the dependency-to-

query-mapping mapping (Definition 3) from the NL

query’s dependency tree (e.g. “author”) to query vari-

ables (e.g. “aname”), which we get from the NLIDB.

Second, we have, in the value-based provenance, a de-

tailed account of the assignments of query variables to

values from the database (e.g. “aname” to “Tova. M.”).

If we compose this mapping, we get a (partial) mapping

from words in the NL question to data values.

Example 5 Continuing our running example, consider

the assignment represented by the first monomial of

Figure 5. Further reconsider Figure 4a, and now note

that each node is associated with a pair (var, val) of

the variable to which the node was mapped, and the

value that this variable was assigned in this particular

assignment. For instance, the node “organization” was

mapped to the variable oname which was assigned the

value “TAU”.

3.2 Building an Answer Tree

Having established the mapping from words in the NL

query to values in the provenance, we are ready to form

a basic tree for the provenance-aware answer. The idea

is now to follow the structure of the NL query depen-

dency tree and generate an answer tree with the same

structure by replacing/modifying the words in the ques-

tion with the values from the result and provenance that

were mapped using the dependency-to-query-mapping

and the assignment. Yet, note that simply replacing the

values does not always result in a coherent sentence, as

shown in the following example.

Example 6 Re-consider the dependency tree depicted

in Figure 4a. If we were to replace the value in the

organization node to the value “TAU” mapped to it,

the word “organization” will not appear in the answer

although it is needed to produce the coherent answer

depicted in Figure 2. Without this word, it is unclear

how to deduce the information about the connection

between “Tova M.” and “TAU”.

We next account for these difficulties and present

an algorithm that outputs the dependency tree of a

detailed answer, under some plausible assumptions on

the structure of the question tree.

Recall that we have assumed that the dependency

tree of the NL query follows one of the abstract forms

in Figure 3. We distinguish between two cases based

on nodes whose REL (relationship with parent node)

is modifier; in the first case, the clause begins with a

verb modifier (e.g., the node “published” in Fig. 4a is

a verb modifier) and in the second, the clause begins

with a non-verb modifier (e.g., the node “of” in Fig.

4a is a non-verb modifier). Algorithm 1 considers these

two forms of dependency tree and provides a tailored

solution for each one in the form of a dependency tree

that fits the correct answer structure. It does so by

augmenting the query dependency tree into an answer

tree.

The algorithm operates as follows. We start with

the dependency tree of the NL query, an empty an-
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swer tree TA, a dependency-to-query-mapping an as-

signment and a node object from the query tree. We

denote the set of all modifiers by MOD and the set

of all verbs by V ERB. The algorithm is recursive and

handles several cases, depending on object and its chil-

dren in the dependency tree. If the node object is a

leaf (Line 2), we replace it with the value mapped to it

by dependency-to-query-mapping and the assignment,

if such a mapping exists. Otherwise (it is a leaf without

a mapping), it remains in the tree as it is. Second, if

L(object).REL is a modifier (Line 5), we call the proce-

dure Replace in order to replace its entire subtree with

the value mapped to it and add the suitable word for

equality, depending on the type of its child (e.g., loca-

tion, year, etc. taken from the pre-prepared table), as

its parent (using procedure AddParent). The third case

handles a situation where object has a non-verb modi-

fier child (Line 9). We use the procedure Adjust with a

false flag to copy TQ into TA, remove the return node

and add the value mapped to object as its child in TA.

The difference in the fourth case (Line 12) is the value

of flag is now true. This means that instead of adding

the value mapped to object as its child, the Adjust pro-

cedure replaces the node with its value. Finally, if object

had a modifier child child (verb or non-verb), the al-

gorithm makes a recursive call for all of the children of

child (Line 16). This recursive call is needed here since

a modifier node can be the root of a complex sub-tree

(recall Example 1).

Example 7 Re-consider Figure 4a, and note the map-

pings from the nodes to the variables and values as re-

flected in the boxes next to the nodes. To generate an

answer, we follow the NL query structure, “plugging-

in” mapped database values. We start with “organi-

zation”, which is the first object node. Observe that

“organization” has the child “of” which is a non-verb

modifier, so we add “TAU” as its child and assign true

to the hasMod variable. We then reach Line 15 where

the condition holds and we make a recursive call to

the children of “of”, i.e., the node object is now “au-

thors”. Again we consider all cases until reaching the

fourth (Line 12). The condition holds since the node

“published” is a verb modifier, thus we replace “au-

thors” with “Tova M.”, mapped to it. Then, we make

a recursive call for all children of “published” since the

condition in Line 15 holds. The nodes “who” and “pa-

pers” are leaves so they satisfy the condition in Line

2. Only “papers” has a value mapped to it, so it is re-

placed by this value (“OASSIS...”). However, the nodes

“after” and “in” are modifiers so when the algorithm is

invoked with object = “after” (“in”), the second condi-

tion holds (Line 5) and we replace the subtree of these

nodes with the node mapped to their child (in the case

Algorithm 1: ComputeAnswerTree

input : A dependency tree TQ, an answer tree TA
(empty in the first call), a
dependency-to-query-mapping τ , an
assignment α, a node object ∈ TQ

output: Answer tree with explanations TA

1 child ..= null;
2 if object is a leaf then
3 value = α(τ(object));
4 Replace(object, value, TA);

5 else if L(object).REL is mod then
6 value = α(τ(childTQ

(object)));

7 Replace(tree(object), value, TA);
8 AddParent(TA, value);

9 else if object has a child v s.t. L(v).REL ∈MOD
and L(v).POS /∈ V ERB then

10 Adjust(TQ, TA, τ, α, object, false);
11 child ..= v;

12 else if object has a child v s.t. L(v).REL ∈MOD

and L(v).POS ∈ V ERB then
13 Adjust(TQ, TA, τ, α, object, true);
14 child ..= v;

15 if child 6= null then
16 foreach u ∈ childrenTQ

(child) do

17 ComputeAnswerTree(TQ, TA, τ, α, u);

18 return TA;

of “after” it is “2014” and in the case of “in” it is “SIG-

MOD”) and we attach the node “in” as the parent of

the node, in both cases as it is the suitable word for

equality for years and locations. We obtain a tree rep-

resentation of the answer (Fig. 4b).

3.3 From Answer Tree to an Answer Sentence

So far we have augmented the NL query dependency

tree to obtain the dependency tree of the answer. The

last step is to translate this tree to a sentence. To this

end, we recall that the original query, in the form of

a sentence, was translated by NaLIR to the NL query

dependency tree. To translate the dependency tree to

a sentence, we essentially “revert” this process, further

using the mapping of NL query dependency tree nodes

to (sets of) nodes of the answer. When generating the

sentence, we have two different scenarios; when a word

or phrase in the original dependency tree was replaced

by the value to which it was mapped to, we replace the

word/phrase in the NL query with the value mapped to

it. Otherwise, the value mapped to it was added as its

child, and in this case we add it either before or after

the mapped word/phrase according to its POS with

the appropriate connecting word taken from a stored

table.
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Example 8 Converting the answer tree in Figure 4b to

a sentence is done by replacing the words of the NL

query with the values mapped to them, e.g., the word

“authors” in the NL query (Figure 1a) is replaced by

“Tova M.” and the word “papers” is replaced by “OAS-

SIS...”. The word “organization” is not replaced (as it

remains in the answer tree) but rather the words “TAU

is the” are added prior to it, since its POS is not a verb

and its REL is a modifier. Completing this process, we

obtain the answer shown in Figure 2.

3.4 Logical Operators

Logical operators (and, or) and the part of the NL query

they relate to will be converted by NaLIR to a logical

predicate which will be mapped by the assignment to

one value that satisfies the logical statement (we con-

sider here logical operators that are compiled by NaLIR

into a single CQ, the UCQ case is considered in Sec-

tion 6). To handle these parts of the query, we augment

Algorithm 1 as follows: immediately following the first

case (before the current Line 5), we add a condition

checking whether the node object has a logical opera-

tor (“and” or “or”) as a child. If so, we call Procedure

HandleLogicalOps with the trees TQ and TA, the logical

operator node as u, the dependency-to-query-mapping

τ and the assignment α. The procedure initializes a

set S to store the nodes whose subtree needs to be re-

placed by the value given to the logical predicate (Line

2). Procedure HandleLogicalOps first locates all nodes

in TQ that were mapped by the dependency-to-query-

mapping to the same query variable as the sibling of the

logical operator (denoted by u). Then, it removes the

subtrees rooted at each of their parents (Line 8), adds

the value (denoted by val) from the database mapped

to all of them in the same level as their parents (Line 9),

and finally, the suitable word for equality is added as the

parent of val in the tree by the procedure AddParent

(Line 10).

4 Factorized Explanations for Multiple

Assignments

In the previous section we have considered the case

where the provenance consists of a single assignment. In

general, as illustrated in Section 2, it may include mul-

tiple assignments. This is the case already for Conjunc-

tive Queries, as illustrated in Section 2. We next gen-

eralize the construction to account for multiple assign-

ments. Note that a näıve solution in this respect is to

generate a sentence for each individual assignment and

concatenate the resulting sentences. However, already

Procedure HandleLogicalOps

input : A dependency tree TQ, TA, u ∈ VTA
,

dependency-to-query-mapping τ and an
assignment α

1 w ← parentTQ
(u);

2 S ← {w};
3 var ← τ(childrenTA

(w) \ u);
4 val← α(τ(childrenTA

(w) \ u));
5 for z ∈ siblingsTA

(w) do
6 if z has child mapped by τ to var then

7 S.Insert(z);

8 parentTA
(w).childrenTA

().Remove(S);
9 parentTA

(w).childrenTA
().Insert(val);

10 AddParent(TA, val) ;

[TAU] ·

A



([Tova M.] ·

B


([VLDB] ·

([2006] · [Querying...]
+ [2007] · [Monitoring...]))

+ [SIGMOD] · [2014] ·
([OASSIS...] + [A Sample...]))

 B

+ [Slava N.] · [OASSIS...] · [SIGMOD] · [2014])


A

+ [UPENN] · [Susan D.] · [OASSIS...] · [SIGMOD] · [2014]

(a) f1
[TAU] ·

([SIGMOD] · [2014] ·
([OASSIS...] ·

([Tova M.] + [Slava N.]))
+ [Tova M.] · [A Sample...])

+ [VLDB] · [Tova M.] ·
([2006] · [Querying...]

+ [2007] · [Monitoring...])
+ [UPENN] · [Susan D.] · [OASSIS...] · [SIGMOD] · [2014]

(b) f2

Fig. 7: Provenance Factorizations

for the small-scale example presented here, this would

result in a long and unreadable answer (recall Figure

5 consisting of six assignments). Instead, we propose

two solutions: the first based on the idea of provenance

factorization [62,16], and the second (in the following

section) leveraging factorization to provide a summa-

rized form.

4.1 NL-Oriented Factorization

Provenance size and complexity is a known and well-

studied issue, and various solutions were presented to

reduce it [26,8]. Observing that different assignments

in the provenance expression typically share significant

parts, one prominent approach [8,62,16] suggests us-

ing algebraic factorization. The idea is to regard the

provenance as a polynomial (see Figure 5) and use dis-

tributivity to represent it in a more succinct way. For

instance, the expression x · y+x · z can be factorized to

the equivalent expression x · (y + z).
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The main purpose of classical provenance factoriza-

tion, as in algebraic factorization, is to reduce the size

of the provenance by removing duplicate records and

nodes. In our setting, different considerations come into

play, as we shall show.

We start by defining the notion of factorization in a

standard way (see e.g. [62,27]).

Definition 6 Let P be a provenance expression. We

say that an expression f is a factorization of P if f may

be obtained from P through (repeated) use of some of

the following axioms: distributivity of summation over

multiplication, associativity and commutativity of both

summation and multiplication.

Example 9 Re-consider the provenance expression in Fig-

ure 5. Two possible factorizations are shown in Figure

7, keeping only the values and omitting the variable

names for brevity (ignore the A,B brackets for now).

In both cases, the idea is to avoid repetitions in the

provenance expression, by taking out a common factor

that appears in multiple summands. Different choices

of which common factor to take out lead to different

factorizations.

How do we measure whether a possible factoriza-

tion is suitable/preferable to others? Standard desider-

ata [62,27] are that it should be short or that the max-

imal number of appearances of an atom is minimal.

On the other hand, we factorize here as a step towards

generating an NL answer; to this end, it will be highly

useful if the (partial) order of nesting of value anno-

tations in the factorization is consistent the (partial)

order of corresponding words in the NL query. We will

next formalize this intuition as a constraint over factor-

izations. We start by defining a partial order on nodes

in a dependency tree:

Definition 7 Given an dependency tree T , we define

≤T as the descendant partial order of nodes in T : for

each two nodes, x, y ∈ V (T ), we say that x ≤T y if x is

a descendant of y in T .

Example 10 In our running example (Figure 4a) it holds

in particular that authors ≤ organization, 2005 ≤
authors, conferences ≤ authors and papers ≤ authors,
but papers, 2005 and conferences are incomparable.

Next we define a partial order over elements of a

factorization, intuitively based on their nesting depth.

To this end, we first consider the circuit form [13] of a

given factorization:

Example 11 Consider the partial circuit of f1 in Figure

8. The root, ·, has two children; the left child is the

leaf “TAU” and the right is a + child whose subtree

includes the part that is “deeper” than “TAU”.

Given a factorization f and an element n in it, we

denote by levelf (n) the distance of the node n from

the root of the circuit induced by f multiplied by (−1).

Intuitively, levelf (n) is bigger for a node n closer to the

circuit root.

·

+

·

sub-circuit

Tova M.

·

SIGMOD2014OASSISSlava N.

TAU

Fig. 8: Sub-Circuit of f1

Our goal here is to define the correspondence be-

tween the level of each node in the circuit and the level

of its “source” node in the NL query’s dependency tree

(note that each node in the query corresponds to possi-

bly many nodes in the circuit: all values assigned to the

variable in the different assignments). In the following

definition we will omit the database instance for brevity

and denote the provenance obtained for a query with

dependency tree T by provT . Recall that dependency-

to-query-mapping maps the nodes of the dependency

tree to the query variables and the assignment maps

these variables to values from the database (Definitions

3, 4, respectively).

Definition 8 Let T be a query dependency tree, let

provT be a provenance expression, let f be a factoriza-

tion of provT , let τ be a dependency-to-query-mapping

and let {α1, ...αn} be the set of assignments to the

query. For each two nodes x, y in T we say that x ≤f y
if ∀i ∈ [n] : levelf (αi(τ(x))) ≤ levelf (αi(τ(y))).

We say that f is T -compatible if each pair of nodes

x 6= y ∈ V (T ) that satisfy x ≤T y also satisfy that

x ≤f y.

Essentially, T -compatibility means that the partial

order of nesting between values, for each individual as-

signment, must be consistent the partial order defined

by the structure of the question. Note that the compati-

bility requirement imposes constraints on the factoriza-

tion, but it is in general far from dictating the factoriza-

tion, since the order x ≤T y is only partial – and there is

no constraint on the order of each two provenance nodes

whose “origins” in the query are unordered. Among the

T -compatible factorizations, we will prefer shorter ones.

Definition 9 Let T be an NL query dependency tree

and let provT be a provenance expression for the an-

swer. We say that a factorization f of provT is optimal

if f is T -compatible and there is no T -compatible fac-

torization f ′ of provT such that | f ′ |<| f | (| f | is the

length of f).
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The following example shows that the T -compatibility

constraint still allows much freedom in constructing the

factorization. In particular, different choices can (and

sometimes should, to achieve minimal size) be made

for different sub-expressions, including ones leading to

different answers and ones leading to the same answer

through different assignments.

Example 12 Recall the partial order≤T imposed by our

running example query, shown in part in Example 10.

It implies that in every compatible factorization, the

organization name must reside at the highest level, and

indeed TAU was “pulled out” first in Figure 8; similarly

the author name must be pulled out next. In contrast,

since the query nodes corresponding to title, year and

conference name are unordered, we may, within a single

factorization, factor out e.g. the year in one part of the

factorization and the conference name in another one.

As an example, Tova M. has two papers published in

VLDB (“Querying...” and “Monitoring”) so factorizing

based on VLDB would be the best choice for that part.

On the other hand, suppose that Slava N. had two paper

published in 2014; then we could factorize them based

on 2014. The factorization could, in that case, look like

the following (where the parts taken out for Tova and

Slava are shown in bold):
[TAU] ·
([Tova M.] ·
([VLDB] ·

([2006] · [Querying...]

+ [2007] · [Monitoring...]))

+ [SIGMOD] · [2014] ·
([OASSIS...] + [A Sample...]))

+ ([Slava N.] ·
([2014] ·

([SIGMOD] · [OASSIS...]

+ [VLDB] · [Ontology...])))

The following example shows that in some cases,

requiring compatibility can come at the cost of com-

pactness.

As a sanity check, note that the identity factor-

ization that simply keeps the provenance intact is T -

compatible. Further, T -compatible factorizations are fac-

torizations that keep the answer (the object node in

Figure 3) at the start of the sentence and only then

refer to the provenance. When many answers and as-

signments are involved, it is thus possible to obtain a

T -compatible factorization by factorizing each answer

with its provenance by itself and then combining all of

them under a joint root.

Example 13 Consider the query tree T depicted in Fig-

ure 4a and the factorizations provT (the identity factor-

ization) depicted in Figure 5, f1, f2 presented in Figure

7. provT is of length 30 and is 5-readable, i.e., the maxi-

mal number of appearances of a single variable is 5 (see

[27]). f1 is of length 20, while the length of f2 is only

19. In addition, both f1 and f2 are 3-readable. Based on

those measurements f2 seems to be the best factoriza-

tion, yet f1 is T -compatible with the question and f2 is

not. For example, conferences ≤T authors but “SIG-

MOD” appears higher than “Tova M.” in f2. Choosing

a T -compatible factorization in f1 will lead (as shown

below) to an answer whose structure resembles that of

the question, and thus translates to a more coherent

and fitting NL answer.

As mentioned above, the identity factorization is al-

ways T -compatible, so we are guaranteed at least one

optimal factorization (but it is not necessarily unique).

We next study the problem of computing such a factor-

ization.

4.2 Computing Factorizations

Recall that our notion of compatibility restricts the fac-

torization so that its structure resembles that of the

question. Without this constraint, finding shortest fac-

torizations is coNP-hard in the size of the provenance

(i.e. a boolean expression) [40]. The compatibility con-

straint does not reduce the complexity since it only re-

stricts choices relevant to part of the expression, while

allowing freedom for arbitrarily many other elements

of the provenance. Also recall (Example 12) that the

choice of which element to “pull-out” needs in general

to be done separately for each part of the provenance so

as to optimize its size (which is the reason for the hard-

ness in [40] as well). In general, obtaining the minimum

size T -compatible factorization of provT is coNP-hard

by a reduction from [40].

Greedy Algorithm. Despite this result, the con-

straint of compatibility does help in practice, in that

we can avoid examining choices that violate it. For

choices that do maintain compatibility, we devise a sim-

ple algorithm that chooses greedily among them. More

concretely, the input to Algorithm 2 is the query tree

TQ (with its partial order ≤TQ
), and the provenance

provTQ
. The algorithm output is a TQ-compatible fac-

torization f . Starting from prov, the progress of the

algorithm is made in steps, where at each step, the

algorithm traverses the circuit induced by prov in a

BFS manner from top to bottom and takes out a vari-

able that would lead to a minimal expression out of

the valid options that keep the current factorization

T -compatible. Naturally, the algorithm does not guar-

antee an optimal factorization (in terms of length), but

performs well in practice (see Section 8).

In more detail, we start by choosing the largest

nodes according to ≤TQ
which have not been processed
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yet (Line 2). Afterwards, we sort the corresponding

variables in a greedy manner based on the number of

appearances of each variable in the expression using the

procedure sortByFrequentV ars (Line 3). In Lines 4–5,

we iterate over the sorted variables and extract them

from their sub-expressions. This is done while preserv-

ing the ≤TQ
order with the larger nodes, thus ensuring

that the factorization will remain TQ-compatible. We

then add all the newly processed nodes to the set

Processed which contains all nodes that have already

been processed (Line 6). Lastly, we check whether there

are no more nodes to be processed, i.e., if the set Processed

includes all the nodes of TQ (denoted V (TQ), see the

condition in Line 7). If the answer is “yes”, we return

the factorization. Otherwise, we make a recursive call.

In each such call, the set Processed becomes larger un-

til the condition in Line 7 holds.

Algorithm 2: GreedyFactorization

input : TQ - the query tree, ≤TQ
- the query

partial order, prov - the provenance, τ, α -
dependency-to-query-mapping and
assignment from nodes in TQ to
provenance variables, Processed - subset
of nodes from V (TQ) which were already
processed (initially, ∅)

output: f - TQ-compatible factorization of provTQ

1 f ← prov;
2 Frontier ← {x ∈ V (TQ)|∀(y ∈

V (TQ) \ Processed) s.t. x 6≤TQ
y};

3 vars← sortByFrequentV ars({α(τ(x))|x ∈
Frontier}, f);

4 foreach var ∈ vars do
5 Take out var from sub-expressions in f not

including variables from
{x|∃y ∈ Processed : x = α(τ(y))};

6 Processed← Processed ∪ Frontier;
7 if |Processed| = |V (TQ)| then
8 return f ;

9 else

10 return

GreedyFactorization(TQ, f, τ, α, Processed);

Example 14 Consider the query tree TQ depicted in

Figure 4a, and provenance prov in Figure 5. As ex-

plained above, the largest node according to ≤TQ
is

organization, hence “TAU” will be taken out from the

brackets multiplying all summands that contain it. Af-

terwards, the next node according to the order relation

will be author, therefore we group by author, taking out

“Tova M.”, “Slava N.” etc. The following choice (be-

tween conference, year and paper name) is then done

greedily for each author, based on its number of occur-

rences. For instance, V LDB appears twice for Tova.M.

whereas each paper title and year appears only once;

so it will be pulled out. The polynomial [SlavaN.] ·
[OASSIS...] · [SIGMOD] · [2014] will remain unfactor-

ized as all values appear once. Eventually, the algorithm

will return the factorization f1 depicted in Figure 7,

which is TQ-compatible and much shorter than the ini-

tial provenance expression.

Complexity Denote the provenance size by n. The algo-

rithm complexity is O(n2 · log n): at each recursive call,

we sort all nodes in O(n · log n) (Line 3) and the we

handle (in Frontier) at least one node (in the case of a

chain graph) or more. Hence, in the worst case we would

have n recursive calls, each one costing O(n · log n).

Optimization Since T -compatible factorizations keep the

answer (the object node in Figure 3) at the start of the

sentence, we can utilize the abstract factorization struc-

ture for one answer in the factorization of all other an-

swers. For this, we need to augment Algorithm 2 in the

following manner. First, only the monomials that con-

tain the first answer will be factorized using Algorithm

2. Then, an abstract factorization structure fa can be

inferred from this factorization by replacing some of

the values with the variables mapped to them. The

values that are replaced with variables are those that

have a clear hierarchy between them in TQ while val-

ues that were mapped to words in the same level of

TQ are not part of the abstract factorization structure

as the hierarchy between them may vary based on the

nature of the assignments each results has. Namely, if

x 6= y ∈ V (TQ) satisfy x ≤TQ
y, the variables that x

and y are mapped to will be part of fa and will hold

var(x) ≤fa var(y) where var(x) is the variable x is

mapped to. Intuitively, the circuit induced by fa main-

tains the partial order of nodes in TQ. Finally, given the

provenance polynomial of another answer, we replace

the variables in fa with the corresponding constants

and greedily factorize only the parts of the polynomial

that are not included in fa.

4.3 Factorization to Answer Tree

The final step is to turn the obtained factorization into

an NL answer. Similarly to the case of a single assign-

ment (Section 3), we devise a recursive algorithm that

leverages the mappings and assignments to convert the

query dependency tree into an answer tree. Intuitively,

we follow the structure of a single answer, replacing

each node there by either a single node, standing for a

single word of the factorized expression, or by a recur-

sively generated tree, standing for some brackets (sub-

circuit) in the factorized expression.
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In more detail, the algorithm operates as follows.

We iterate over the children of root (the root of the

current sub-circuit), distinguishing between two cases.

First, for each leaf child, p, we first (Line 4) assign to

val the database value corresponding to the first ele-

ment of p under the assignment α (recall that p is a

pair (variable,value)). We then lookup the node con-

taining the value mapped to p’s variable in the answer

tree TA and change its value to val in Lines 5, 6 (the

value of p). Finally, in Line 7 we reorder nodes in the

same level according to their order in the factorization

(so that we output a semantically correct NL answer).

Second, for each non-leaf child, the algorithm performs

a recursive call in which the factorized answer subtree

is computed (Line 9). Afterwards, the set containing

the nodes of the resulting subtree aside from the nodes

of TA are attached to TF under the node corresponding

to their LCA in TF (Lines 10 – 13). In this process,

we attach the new nodes that were placed lower in the

circuit in the most suitable place for them semantically

(based on TA), while also maintaining the structure of

the factorization.

Algorithm 3: ComputeFactAnswerTree

input : α - an assignment to the NL query, TA -
answer dependency tree based on α, root -
the root of the circuit induced by the
factorized provenance

output: TF - tree of the factorized answer

1 TF ← copy(TA);
2 foreach p ∈ childrenf (root) do
3 if p is a leaf then

4 val← α(var(p));
5 node← Lookup(var(p), α, TA);
6 ReplaceV al(val, node, TF );
7 Rearrange(node, TA, TF );

8 else
9 T rec

F = ComputeFactAnswerTree(α, TA, p);
10 RecNodes = V (T rec

F ) \ V (TA);
11 parentrecF ← LCA(recNodes);
12 parentF ← Corresponding node to

parentrecF in TF ;
13 Attach recNodes to TF under the parentF ;

14 return TF ;

Example 15 Consider the factorization f1 depicted in

Figure 7, and the structure of single assignment answer

depicted in Figure 4b which was built based on Algo-

rithm 1. Given this input, Algorithm 3 will generate an

answer tree corresponding to the following sentence:

TAU is the organization of

Tova M. who published

in VLDB

’Querying...’ in 2006 and

’Monitoring...’ in 2007

and in SIGMOD in 2014

’OASSIS...’ and ’A sample...’

and Slava N. who published

’OASSIS...’ in SIGMOD in 2014.

UPENN is the organization of Susan D. who published

’OASSIS...’ in SIGMOD in 2014.

Note that the query has two results: “TAU” and

“UPENN”. “UPENN” was produced with a single as-

signment, but there are 5 different assignments pro-

ducing “TAU”. We now focus on this sub-circuit de-

picted in Figure 8. After initializing TF , in Lines 3 –

7 the algorithm finds the value TAU and the node

corresponding to it in TA (which originally contained

the variable organization). It then copies this node

to TF and assigns it the value “TAU”. Next the al-

gorithm handles the + node with a recursive call in

Line 9. This node has the two sub-circuits rooted at the

two · nodes (Line 8); one containing [authors, TovaM.]

and the other [authors, SlavaN.]. When traversing the

sub-circuit containing “Slava N.”, the algorithm sim-

ply copies the subtree rooted at the authors node with

the values from the circuit and arranges the nodes in

the same order as the corresponding variable nodes

were in TA (Line 7) as they are all leaves on the same

level. Those values will be attached under the LCA “of”

(Lines 9 – 13). The sub-circuit of “Tova M.” also has

nested sub-circuits. Although the node paper appears

before the nodes year and conference in the answer

tree structure, the algorithm identifies that f1 extracted

the variables “VLDB”, “SIGMOD” and “2014”, so it

changes their location so that they appear earlier in
the final answer tree. Finally, recursive calls are made

with the sub-circuit containing [authors, TovaM.].

Intuitively, “of” is indeed the root of a sub-tree spec-

ifying the authors in an institution in the structure of

our answers.

5 From Factorized to Summarized Answers

So far we have proposed a solution that factorizes mul-

tiple assignments, leading to a more concise answer.

When there are many assignments and/or the assign-

ments involve multiple distinct values, even an optimal

factorized representation may be too long and convo-

luted for users to follow.

Example 16 Reconsider Example 15; if there are

many authors from TAU then even the compact repre-

sentation of the result could be very long. In such cases

we need to summarize the provenance in some way that
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(A) [TAU] · Size([Tova M.],[Slava N.]) · Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],

[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])
(B) [TAU]·(

[Tova M.] ·
Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

[Slava N.] · [OASSIS...] · [SIGMOD] · [2014])

Fig. 9: Summarized Factorizations

(A) TAU is the organization of 2 authors who published

4 papers in 2 conferences in 2006 - 2014.

(B) TAU is the organization of Tova M. who published

4 papers in 2 conferences in 2006 - 2014 and Slava N.

who published ’OASSIS...’ in SIGMOD in 2014.

Fig. 10: Summarized Sentences

will preserve the “essence” of all assignments without

actually specifying them, for instance by providing only

the number of authors/papers for each institution.

To this end, we employ summarization, as follows.

First, we note that a key to summarization is under-

standing which parts of the provenance may be grouped

together. For that, we use again the mapping from nodes

to query variables: we say that two nodes are of the

same type if both were mapped to the same query vari-

able. Now, let n be a node in the circuit form of a given

factorization f . A summarization of the sub-circuit of

n is obtained in two steps. First, we group the descen-

dants of n according to their type. Then, we summa-

rize each group separately. The latter is done in our

implementation simply by either counting the number

of distinct values in the group or by computing their

range if the values are numeric. In general, one can eas-

ily adapt the solution to apply additional user-defined

“summarization functions” such as “greater / smaller

than X” (for numerical values) or “in continent Y” for

countries.

Example 17 Re-consider the factorization f1 from Fig-

ure 7. We can summarize it in multiple levels: the high-

est level of authors (summarization “A”), or the level of

papers for each particular author (summarization “B”),

or the level of conferences, etc. Note that if we choose

to summarize at some level, we must summarize its en-

tire sub-circuit (e.g. if we summarize for Tova. M. at

the level of conferences, we cannot specify the papers

titles and publication years).

Figure 9 presents the summarizations of sub-trees

for the “TAU” answer, where “size” is a summarization

operator that counts the number of distinct values and

“range” is an operator over numeric values, summariz-

ing them as their range. The summarized factorizations

are further converted to NL sentences which are shown

in Figure 10. Summarizing at a higher level results in a

shorter but less detailed summarization.

6 Unions of Conjunctive Queries

So far our solution has been limited to Conjunctive

Queries, and we next extend it to account for Unions

thereof (UCQs). We next describe the necessary aug-

mentations of the algorithms, illustrating them through

examples. Recall that in the first step, the system takes

a natural language query and translates it to a depen-

dency tree, while maintaining the dependency-to-query-

mapping mapping. The difference here is that a tree

node can now be mapped to several variables. This im-

plies a generalization of Definition 3:

Definition 10 Given a dependency tree T = (V,E, L)

and a UCQQ1, . . . , Qm, a dependency-to-UCQ-mapping

is a set of dependency-to-query-mapping {τ1, . . . , τm},
where τi : T → Qi.

Example 18 Consider the NL query “return the organi-

zation of authors who published papers in database con-

ferences before 2005 or after 2015”, whose dependency

tree is depicted in Figure 11. The “or” here defines two

different CQs (depicted in Figure 12). Since the two

numerical values cannot form a conjunctive condition

and thus cannot be compiled into a single boolean con-

dition, NaLIR translates this NL query into two CQs.

The two CQs define two different dependency-to-query-

mapping that map nodes from the single dependency

tree to two different sets of variables. Consider an or-

ganization (e.g., TAU) which appears as an answer. It

is mapped both to oname1 and to oname2. Thus, we

would like to present the assignments to both queries as

explanations. Here, the dependency-to-UCQ-mapping

is {τ1, τ2} where τ1 maps the nodes from the depen-

dency tree to the variables of the first query in Figure 12

and τ2 maps the nodes from the dependency tree to the

variables of the second query. Thus, the dependency-

to-UCQ-mapping captures the assignments from both

queries. Note that τ1 differs from τ2 for some words.

Specifically, τ1 maps the nodes “before” and “2005”

to pyear1 < 2005 and τ2 maps the nodes “after” and

“2015” to pyear2 > 2005.

We further give an unique integer identifier to each

mapped word in the dependency tree as exemplified by

the superscript in Figure 11 for reasons we explain in

the sequel.

After determining the dependency-to-UCQ-mapping,

we rely on an augmentation of Definition 5. The fol-

lowing definition essentially generalizes the definition

for CQs by also summing the pairs of (word identifier,

value) from all the CQs participating in the union.

Definition 11 Let A(Q,D) be the set of assignments

for a UCQ Q = {Q1, . . . , Qm} and a database instance
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return

organization1

of

authors2

published

in

conferences4

database

after

or20156

before

20055

papers3who

the

Fig. 11: Dependency Tree With “Or” Condition

query(oname1) :- org(oid1, oname1), author(aid1, aname1,

oid1), pub(wid1, cid1, ptitle1, pyear1), conf(cid1,

cname1), domainConf(cid1, did1), domain(did1, dname1),

writes(aid1, wid1), dname1 = ’Databases’, pyear1 < 2005

query(oname2) :- org(oid2, oname2), author(aid2, aname2,

oid2), pub(wid2, cid2, ptitle2, pyear2), conf(cid2,

cname2), domainConf(cid2, did2), domain(did2, dname2),

writes(aid2, wid2), dname2 = ’Databases’, pyear2 > 2015

Fig. 12: Two CQs from the Same NL Query

D, and let {τ1, . . . , τm} be the dependency-to-UCQ-

mapping of Q. We define the NL value-level provenance

of Q w.r.t. D as∑
Qi∈Q

∑
α∈A(Qi,D)

Π{xi,ai|α(xi)=ai}(τ
−1
i (xi), ai).

Rel. org
oid oname
2 TAU

Rel. author
aid aname oid
4 Tova M. 2

Rel. pub
wid cid ptitle pyear
6 10 “Positive Active XML” 2004
7 11 “Rudolf...” 2016

Rel. writes
aid wid
4 6
4 7

Rel. conf
cid cname
10 PODS
11 VLDB

Rel. domainConf
cid did
10 18
11 18

Rel. domain
did dname
18 Databases

Fig. 13: DB Instance for Example 19

Example 19 Reconsider the UCQ defined by the union

of the two CQs depicted in Figure 12 and the database

in Figure 13 with tuples standing for two more publica-

tions by the author Tova Milo: “Positive Active XML”

A

{
(1,TAU)·(2,Tova M.)·(3,Positive Active XML)·
(4,PODS)·(5,04’)+

}
A

B

{
(1,TAU)·(2,Tova M.)·(3,Rudolf...)·
(4,VLDB)·(6,16’)+...

}
B

Fig. 14: Value-level Provenance for Example 19

published in PODS in 2004 and “Rudolf: Interactive

Rule Refinement System for Fraud Detection” published

in VLDB in 2016. The first of the two summands in Fig-

ure 14 (in the “A” brackets) stands for an assignment to

the top query in Figure 12, while the second summand

(in the “B” brackets) stands for an assignment for the

bottom query. Assignments are represented as multi-

plication of pairs of the form (id, val) so that id is the

unique identifier of a word in the NL query mapped to

the variable var in a specific query Qi that is assigned

val in the particular assignment.

We now have a polynomial containing sets of pairs

where the first element is the unique word in the NL

query and the second is the value from the database

mapped to it. This allows us to consider explanations

for the same answer regardless of the query from which

they originated.

By replacing the variable name in each pair with the

unique word identifier from the NL query, we are able

to treat the assignment of different variable names as

relating to the same word or phrase in the NL query.

This allows us to factorize the provenance of the dif-

ferent queries in the union in the context of a single

NL query to which we will build a single NL answer.

Now, we can use the procedure described in Section 4

to produce a T -compatible factorization and summa-

rization of the provenance. The only change needed in

Algorithm 3 is to replace all nodes that form the logical

“or” condition with the words mapped to them. In our

example, replacing the subtrees rooted at “before” and

“after” with the year from the provenance assignments.

7 Implementation and Generalizations

7.1 Implementation

NLProv is implemented in JAVA 8, extending NaLIR.

Its web UI is built using HTML, CSS and JavaScript.

It runs on Windows 8 and uses MySQL server as its

underlying database management system (the source

code is available in [34]). Figure 15a depicts the system

architecture. First, the user enters a query in Natural

Language. This NL sentence is fed to the augmented

NaLIR system which interprets it and generates a for-

mal query. This includes the following steps: a parser

[58] generates the dependency tree for the NL query.

Then, the nodes of the tree are mapped to attributes in

the tables of the database and to functions, to form a

formal query. In fact, NaLIR may generate several can-

didate queries, from which it will choose the one that is

ranked highest according to an internal ranking func-

tion. We use the highest ranked as the chosen query. As
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explained, to be able to translate the results and prove-

nance to NL, NLProv stores the mapping from the nodes

of the dependency tree to the query variables. Once a

query has been produced, NLProv uses the SelP system

[26] to evaluate it while storing the provenance, keep-

ing track of the mapping of dependency tree nodes to

parts of the provenance. The provenance information is

then factorized (see Algorithm 2) and the factorization

is compiled to an NL answer (Algorithm 3) containing

explanations. Finally, the factorized answer is shown to

the user. If the answer contains excessive details and is

too difficult to understand, the user may choose to view

summarizations.

User Interface We now discuss the user interface NLProv.

First the user writes a natural language question in

the web interface. The question is inputted to the aug-

mented NaLIR box, converted to an SQL query while

storing the mapping from words to variables and eval-

uated over the database, where the query results . All

results are then shown to the user, where each result

can be further explored by viewing its natural language

provenance, in each of the three forms described earlier:

an explanation formed by a single assignment, an ex-

planation which encapsulates all assignments as a fac-

torized representation of the provenance, and a sum-

marized explanation based on the factorization.

7.2 Replacing the Black Boxes

Our solution “marries”, for the first time to our knowl-

edge, two fields: (1) Natural Language Interfaces to

Databases, and (2) Data Provenance. For each of these

two, we have made choices in our implementation: NaLIR

for the NLIDB, as well as a semiring-like value-level

provenance model. We next revisit these choices and

discuss alternatives in detail.

7.2.1 Alternatives NLIDBs

As mentioned above, NaLIR is a prominent interface

for querying relational databases in Natural Language.

Yet the problem of transforming an NL query into a

formal query has been researched extensively, by both

the database and NLP communities, and it includes a

variety of different approaches for the solution. As the

field keeps progressing, the question rises: how flexi-

ble is our approach of Natural Language Provenance,

with respect to NLIDB development? Namely, if an im-

proved NLIDB is developed, can it be incorporated in

our framework?

To address this question, we will analyze our re-

quirements and briefly discuss state-of-the-art algorithms
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Fig. 15: NLProv and General Architectures

for the problem of translating text to SQL or similar

formal languages, reviewing their compatibility to these

requirements and consequently the possibility of their

binding to NLProv. Further in-depth discussion of the

works themselves appears in our review of related work

in Section 10.

The DB community has been studying Natural Lan-

guage Interfaces to Databases for several decades. Many

solutions focus on matching the query parts to the DB

schema, and infer the SQL based on this mappings, Ob-

taining a matching from natural language query to the

DB schema in various ways, such as pattern matching,

grammar matching, or intermediate representations lan-

guage (see Section 9 for more details).

The NLP community has also extensively studied

the translation of natural language question to logical

representations that query a knowledge base [79,56,11,

9]. One of the earliest statistical models for mapping

text to SQL was the PRECISE system [65,64]; it was

able to achieve high precision on specific class of queries

that were able to be linked tokens and database values,

attributes, and relations. However, PRECISE did not at-

tempt to generate SQL for questions outside this class.

Later work considered generating queries based on rela-

tions extracted by a syntactic parser [33] and applying

techniques from logical parsing research [63]. Recently

there is a flourish of work on generating SQL [78,45,

80], typically applying Machine Learning methods such

as seq2seq networks and reinforcement learning.

NLProv architecture, as depicted in Figure 15a and

explained previously, is coupled with an augmented ver-

sion of NaLIR in the following sense: we get from NaLIR

both its translation to a formal query, along with the
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dependency-to-query-mapping τ . These are the two es-

sential factors for the operation of NLProv. That is,

NLProv can use any existing system that transform nat-

ural language question to formal query and also return

partial mapping from the dependency tree nodes to the

query parts. Indeed, many of the other techniques for

Natural Language Interface design mentioned above,

could be adapted to return τ and support our require-

ments. For example PRECISE has a component called

“matcher”, that generates mapping from tokens and

database values, attributes, and relations. However, not

all of the methods described above are designed in a way

that allows generation of this mapping. E.g., a semantic

parser that relies on seq2seq Deep Neural Network may

be unable to return this mapping. The DNN would be

trained on a large corpus of natural language questions

along with their relevant SQL queries, and its objec-

tive would be to generalize to new questions. Due to

the network complex representation it may be hard to

extract the desired mapping.

To this end, we propose an alternative architecture,

depicted in Figure 15b. This architecture does not rely

on the query builder to also generate the partial map-

ping τ from the dependency tree nodes to the query

parts. Instead, we have added an additional block, Map-

per, that receives as input the dependency tree along

with the generated query and outputs the mapping τ .

Note that generating the dependency tree may be done

using existing tools such as the Stanford Parser, inde-

pendently of whether the NLIDB generates it (as NaLIR

does) or not (as is the case with semantic parsers).

Algorithm 4: Mapper

input : Dependency tree nodes V ,
Conjunctive Query Q,
Similarity Threshold β

output: Partial Mapping τ

1 Gvertices
..= V ∪ V AR(Q);

2 Gedges
..= ∅;

3 foreach v ∈ V do
4 foreach q ∈ V AR(Q) do

5 if Sim(v, q) ≥ β then

6 e ..= (v, q);
7 eweight

..= Sim(v, q);
8 Gedges

..= Gedges ∪ {e};

9 return MaximalMatching(G);

We then present Algorithm 4 responsible for the

mapping generation. The algorithm is similar in spirit

to the default mapping algorithms of NaLIR and PRECISE,

but could be used as a stand-alone component without

these systems. It generates a bipartite graph, with the

dependency tree nodes at one side, and the query parts

in the second side. For each pair the algorithm calcu-

lates a similarity between the two, and in case they

are similar enough (similarity is higher than the input

constant β) an edge will be generated with the corre-

sponding weight. Eventually, the algorithm will perform

maximal matching, and will return the mapping τ with

the highest match score.

Note that the similarity threshold β balance be-

tween the mapping precision and recall. Low β values

will enable more edges in the bipartite graph, which

results in higher recall. However, more edges may in-

troduce noise, which in turn will be harmful to the pre-

cision. For our use case it is crucial to have a mapping

with high precision, hence high β values will be used.

Example 20 Recall our running example, and consider

the two mapping functions presented in Figure 16. τ1
depicted in the orange nodes has high recall, as all of

the relevant tree nodes mapped to query parts, however

it does not have perfect precision as organization node

is incorrectly mapped to aname and authors node is

mapped to oname. As a result our answer will be:
Tova M. is the organization of TAU who

published ’OASSIS...’ in SIGMOD in 2014

This answer makes no sense, and will cause the user

to mistrusts the answer and the system. On the other

hand τ2, depicted in the green nodes, has perfect preci-

sion but low recall as papers and conferences nodes are

not mapped to any variable; this will result in:
TAU is the organization of Tova M. who

published papers in database conferences

in 2014

Even though the answer does not supply all relevant in-

formation, it is a coherent sentence, and clearly a better

answer than the previous one.

Since the dependency tree can be artificially made

by our system from the NL query, the only recom-

mended component of this NLIDB is a mapping from

words of the NL query to the parts of the formal query.

Therefore, any NLIDB with such a component could

work well with our system (e.g. PRECISE [65] and

ATHENA [68]). But even this component can be re-

placed by Algorithm 4 which artificially generates such

a mapping. If we do use this algorithm, any NLIDB can

be fitted to the system.

7.2.2 Alternative Provenance Models

We have used a detailed value-level provenance model

for UCQs, which we have leveraged to connect different

pieces of the provenance with different parts of the NL

question, eventually resulting in a detailed answer. We

next briefly discuss alternatives and extensions.
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(aname, Tova M.)
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(ptitle, OASSIS...)
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Fig. 16: Dependency-To-Query Partial Mappings

Tuple-level provenance Using value-level provenance has

been essential in our construction of the NL representa-

tion of provenance, and consequently in the generation

of answers with NL explanations.

If the system is connected to a system that only

allows coarser-grained provenance, then the mapping

between words and values needs to be otherwise con-

structed. Namely, one could use provenance that is only

at a tuple-level, as is typically done in provenance mod-

els (including the standard semiring model [38], why-

provenance [14], lineage [66], etc.). Then, considering

all values in the tuple participating in the provenance,

we can reconstruct the mapping to NL query words in

alternative means, such as word embeddings and se-

mantic similarity.

Operator-level provenance An even coarser grain view

of the provenance is at the operator level. For instance,

in the context of relational queries one may consider

tracking tuples that are the input and output of each

operator in the query plan, while not necessarily keep-

ing track of which input contributed to which output.

Can such form of provenance be useful in our setting?

One use-case of marrying operator-level provenance

with NL queries is in the context of provenance for non-

answers. Examining the set of input and output tuples

of each operator in the query plan, the work of [15]

defines the notion of a “picky” operator with respect to

a tuple, as one that is responsible for its omission from

the output. This opens up possibilities for explaining

non-answers. In a recent preliminary work [25] we have

combined NaLIR’s mapping of words to query operators,

with the work of [15] to identify the words that map to

picky operators. Then, for each requested non-answer,

we can highlight this word as “responsible”.

Example 21 Reconsider our running example, but this

time assume it is executed on a smaller dirty DB as

depicted in Figure 17, where the papers “OASSIS: . . . ”

and “A sample . . . ” are erroneously associated with the

publication year 2004 instead of 2014. Due to the errors

in the database “TAU” will not return as an answer to

the query, and a user who expects to see “TAU” in the

results screen will be interested to understand the rea-

son for its absence (and fix the database accordingly).

Consider the query evaluation plan in Figure 18, for

the query in Figure 1a. The frontier picky operator for

“TAU” is σpyear > 2005, thus the system depicted in

[25] will highlight the relevant part in the NL query,

and return
return the organization of authors who

published papers in database conferences

after 2005.
Indicating “TAU” is a non-answer because the authors

associated with it did not published papers after 2005.

Similarly to the approach discussed here, the sys-

tem utilizes the mappings from words to operators,

constructed by the NLIDB, and highlights the relevant

term which filtered the queried tuple. A challenge arises

when the filtering operator has no direct word or phrase

in the NL query mapped to it.

Example 22 Continuing Example 21, if the query was

about an organization whose authors did not publish

in any database conference after 2005, the filtering op-

erator would have been the join between the author

and writes tables. Since there is no direct mapping be-

tween a word in the NL query and the join operator, it

is unclear which word/phrase to highlight.

Rel. org
oid oname
1 UPENN
2 TAU

Rel. author
aid aname oid
3 Susan D. 1
4 Tova M. 2
5 Slava N. 2

Rel. pub
wid cid ptitle pyear
6 10 “OASSIS...” 2004
7 10 “A sample...” 2004

Rel. writes
aid wid
4 6
3 6
5 6
4 7

Rel. conf
cid cname
10 SIGMOD

Rel. domainConf
cid did
10 18

Rel. domain
did dname
18 Databases

Fig. 17: Faulty DB Instance

Provenance Beyond UCQs A limitation of our work is

that it is limited to the SPJU fragment of SQL (UCQs),

while NLIDBs have considerable success in handling

questions that compile to far more expressive formalisms.

NaLIR in particular also supports nesting and aggrega-

tion, both lacking support in our solution.

Provenance models for such formalisms do exist,

from [6] and [62] for aggregate queries, [53] for nested



Explaining Natural Language Query Results 19
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./cid
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domainConfdomain

conf

Fig. 18: Query Plan with Frontier Picky

queries, [54] for queries with negation to [35] for full

SQL, just as few examples. By and large, these solu-

tions are intended as internal representations. Present-

ing them as explanations is an important task that lack

satisfactory solutions. For instance, the model of [6] for

aggregate results includes in a sense a record of all tu-

ples participating in the aggregate computation, which

may be far too many to show to the user. The work

of [62] discusses a factorized circuit-based form, yet it

is also too complicated to allow its presentation to a

user. We view devising an effective way of showing such

provenance instances to users – e.g. summarizing the

contribution of individual tuples in aggregate queries –

as an important goal for future work.

8 Experiments

We have performed an experimental study to assess

NLProv through two prisms: (1) the quality of answers

produced by the system, and (2) the efficiency of the

algorithms in terms of execution time.

8.1 User Study

We have examined the usefulness of the system through

a user study, involving 22 non-expert users. The user

study was conducted in two phases, first we asked 15

users to evaluate the solution for SPJ queries, where

in the second phase 7 different users were requested

to evaluate the solution for union queries. For the SPJ

evaluation we presented to each user 6 NL queries, namely

No. 1–4, 6, and 7 from Table 1 (chosen as a represen-

tative sample), where for the union evaluation users

were presented with queries 13–15. We have also al-

lowed each user to freely formulate an NL query of her

choice, related to the MAS database [1]. 2 users have

not provided a query at all, and for 5 users the query ei-

ther did not parse well or involved aggregation (which

is not supported), leading to a total of 119 success-

fully performed tasks. For each of the NL queries, users

Table 1: NL queries

Num.
Queries

1 Return the homepage of SIGMOD

2 Return the papers whose title contains ’OASSIS’

3 Return the papers which were published in
conferences in database area

4 Return the authors who published papers in
SIGMOD after 2005

5 Return the authors who published papers in
SIGMOD before 2015 and after 2005

6 Return the authors who published papers in
database conferences

7 Return the organization of authors who published
papers in database conferences after 2005

8 Return the authors from TAU who published
papers in VLDB

9 Return the area of conferences

10 Return the authors who published papers in
database conferences after 2005

11 Return the conferences that presented papers
published in 2005 by authors from organization

12 Return the years of paper published
by authors from IBM

13 Return the authors who published papers in
VLDB or SIGMOD after 2005

14 Return the authors from TAU or HUJI who published
papers in VLDB or SIGMOD

15 Return the papers published by authors from
TAU or HUJI

were shown the NL provenance computed by NLProv

for cases of single derivations, factorized and summa-

rized answers for multiple derivations (where applica-

ble). Multiple derivations were relevant in 71 of the 119

cases. Examples of the results are shown in Table 2.

We have asked users three questions about each

case, asking them to rank the results on a 1–5 scale

where 1 is the lowest score: (1) is the answer relevant

to the NL query? (2) is the answer understandable?

and (3) is the answer detailed enough, i.e. supply all

relevant information? (asked only for answers including

multiple assignments).

The results of our user study are summarized in Fig-

ure 19. In all cases, the user scores were in the range 3–

5, with the summarized explanation receiving the high-

est scores on all accounts. Note in particular the dif-

ference in understandability score, where summarized

sentences ranked as significantly more understandable

than their factorized counterparts. Somewhat surpris-

ingly, summarized sentences were even deemed by users

as being more detailed than factorized ones (although

technically they are of course less detailed), which may

be explained by their better clarity (users who ranked

a result lower on understandability have also tended to

ranked it low w.r.t. level of detail).

8.2 Scalability

Another facet of our experimental study includes run-

time experiments to examine the scalability of our al-

gorithms. Here again we have used the MAS database
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Table 2: Sample use-cases and results
Query Single Assignment Multiple Assignments - Summarized
Return authors from TAU Tova M. from TAU
Return the homepage of SIGMOD http://www.sigmod2011.org/ is

the homepage of SIGMOD
Return the domain of VLDB Databases is the domain of

VLDB
Return the domain of conferences Databases is the domain of

VLDB
Databases is the domain of 260 conferences

Return the year of VLDB paper 2007 is the year of VLDB “Graph
Partitioning...” paper

2007 is the year of VLDB 152 papers

Return authors who published in pa-
pers in a journal

Tova M. published “Putting lip-
stick on Pig...” in CORR

Tova M. published 60 papers in 17 journals

Return the authors who published
papers in SIGMOD before 2015 and
after 2005

Tova M. published “Auto-
completion...” in SIGMOD in
2012

Tova M. published 10 papers in SIGMOD in 2006-
2014

Return the authors from TAU who
published papers in VLDB

Tova M. from TAU published
“XML Repository...” in VLDB

Tova M. from TAU published 11 papers in VLDB

Return the authors who published
papers in database conferences

Tova M. “published Auto-
completion...” in SIGMOD

Tova M. published 96 papers in 18 conferences

Return the organization of authors
who published papers in database
conferences after 2005

TAU is the organization of Tova
M. who published ‘OASSIS...’ in
SIGMOD in 2014

TAU is the organization of 43 authors who pub-
lished 170 papers in 31 conferences in 2006 - 2015

Return the authors who published
papers in VLDB or SIGMOD after
2005

Tova M. published “Auto-
completion...” in SIGMOD in
2012

Tova M. published 12 papers in VLDB or SIG-
MOD in 2006-2014

SPJ Queries Union Queries

Category 3 4 5 Avg. 3 4 5 Avg.

Single
Relevant 4 10 84 4.82 0 5 16 4.76
Understandable 7 25 66 4.60 0 4 17 4.81

Multiple
Relevant 0 7 43 4.86 0 6 15 4.71
Understandable 4 13 33 4.58 1 7 13 4.57
Detailed 3 7 40 4.74 0 7 14 4.67

Summarized
Relevant 2 2 46 4.88 0 4 17 4.81
Understandable 3 3 44 4.82 0 3 18 4.86
Detailed 2 5 43 4.82 0 6 15 4.71

Fig. 19: Users ranking

Table 3: Computation time (sec.), for the MAS

database

Query
Query Eval.

Time
Fact.
Time

Sentence
Gen. Time

NLProv
Time

4 0.9 0.038 0.096 0.134
5 0.6 0.03 0.14 0.17
6 33 0.62 2.08 2.7
7 20.5 1.1 3.1 4.2
8 2.4 0.001 0.001 0.002
9 0.01 0.011 0.001 0.012
10 21.3 0.53 2.23 2.76
11 53.7 3.18 6.46 9.64
12 18.8 3.22 1.73 4.95
13 1.4 0.07 0.33 0.4
14 14.4 0.001 0.004 0.005
15 5.5 0.1 0.41 0.51

whose total size is 4.7 GB, and queries No. 1–15 from

Table 1, running the algorithm to generate NL prove-

nance for each individual answer. The experiments were

performed on a i7 processor and 32GB RAM with Win-

dows 8. As expected, when the provenance includes a

single assignment per answer, the runtime is negligible

(this is the case for queries No. 1–3). We thus show the

results only for queries No. 4–15.

Table 3 includes, for each query, the runtime re-

quired by our algorithms to transform provenance to

NL in factorized or summarized form, for all query re-

sults (as explained in Section 4, we can compute the

factorizations independently for each query result). We

show a breakdown of the execution time of our solu-

tion: factorization time, sentence generation time, and

total time incurred by NLProv (we note that the time

to compute summarizations given a factorization was

negligible). For indication on the complexity level of

the queries, we also report the time incurred by stan-

dard (provenance-oblivious) query evaluation, using the

mySQL engine. We note that our algorithms perform

quite well for all queries (overall NLProv execution has

15% overhead), even for fairly complex ones such as

queries 7, 11, and 12.

Figure 20a (see next page) presents the execution

time of NL provenance computation for an increasing

number of assignments per answer (up to 5000, note

that the maximal number in the real data experiments

was 4208). The provenance used for this set of experi-

ments was such that the only shared value in all assign-

ments was the result value, so the factorization phase is

negligible in terms of execution time, taking only about

one tenth of the total runtime in the multiple assign-

ments case. Most computation time here is incurred by

the answer tree structuring. We observe that the com-

putation time increased moderately as a function of the

number of assignments (and is negligible for the case of

a single assignment). The execution time for 5K assign-

ments with unique values was 1.5, 2, 1.9, 4.9, 0.006,

0.003, 2.6, 5.3, 3.7, 3.5, 5.7, and 3.7 seconds resp. for

queries 4–15. Summarization time was negligible, less

than 0.1 seconds in all cases.
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(a) Computation time as a function of
the number of assignments

(b) Computation time as a function of
the number of unique values

(c) Factorization size as a function of the
number of unique values

Fig. 20: Results for synthetic data

(a) Factorization time (b) Sentence gen. time

Fig. 21: Breakdown for synthetic experiments

For the second set of experiments, we have fixed the

number of assignments per answer at the maximum 5K

and changed only the domain of unique values from

which provenance expressions were generated. The do-

main size per answer, per query variable varies from

0 to 5000 (this cannot exceed the number of assign-

ments). Note that the running time increases as a func-

tion of the number of unique values: when there are

more unique values, there are more candidates for fac-

torization (so the number of steps of the factorization

algorithm increases), each factorization step is in gen-

eral less effective (as there are more unique values for

a fixed size of provenance, i.e. the degree of value shar-

ing across assignments decreases), and consequently the

resulting factorized expression is larger, leading to a

larger overhead for sentence generation. Indeed, as our

breakdown analysis (Figure 21) shows, the increase in

running time occurs both in the factorization and in

the sentence generation time. Finally, Figure 20c shows

the expected increase in the factorized expression size

w.r.t the number of unique values.

For the third scalability experiment we evaluated

the computation time for different classes of queries. In

this experiment we have used a larger set of queries,

consisting of 45 different NL queries (available in [34])

which vary in their size, structure, and complexity. For

each query we have fixed both the number of assign-

ments per answer and the domain of unique values at

(a) (b)

(c) (d)

(e)

Fig. 22: Computation time as function of (a) NL query

length (b) depth of the NL query dependency tree (c)

number of query selection operations (d) number of

query join operations (e) number of provenance at-

tributes

5K. NLProv computation time varied between 0.005 to

4.69 seconds, where the mean and median computation

times were 1.73 and 1.8 seconds respectively. Figure 22

depict aggregation of the computation times with re-

spect to different query aspects. Figures 22a and 22b

explore the influence of the original NL query sentence

structure, recall that both Algorithms 1 and 3 utilize
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the query tree in order to generate the answer sentence,

hence the computation time increase as function of the

query sentence length \ tree depth, with Pearson cor-

relation of 0.74 and 0.78 respectively. The impact of

the formal query complexity on NLProv running time

is presented in Figures 22c and 22d, notice that the

query complexity influence the query evaluation time,

but does not have direct impact on the explanation gen-

eration, hence a lower correlation was measured (0.55

and 0.64 for number of selection and join operations

respectively). Finally, Figure 22e depict the impact of

provenance size on the computation time, the number

of provenance attributes is crucial for the factorization

step, hence it is influential on Algorithm 3 running time

as exhibited by the 0.71 correlation.

9 Related Work

In this section we review and compare our work to ex-

isting approaches in the context of database theory and

database interfaces.

Provenance The tracking, storage and presentation of

provenance have been the subject of extensive research

in the context of database queries, scientific workflows,

and others (see e.g. [14,41,38,17,39,22,21,37,48]) while

the field of provenance applications has also been broadly

studied (e.g. [26,59,67]). A longstanding challenge in

this context is the complexity of provenance expres-

sions, leading to difficulties in presenting them in a user-

comprehensible manner. Approaches in this respect in-

clude showing the provenance in a graph form [74,60,

43,31,22,20,4], allowing user control over the level of

granularity (“zooming” in and out [19]), or otherwise

presenting different ways of provenance visualization

[41]. Other works have studied allowing users to query

the provenance (e.g. [47,44]) or to a-priori request that

only parts of the provenance are tracked (see for exam-

ple [26,35,36]). Importantly provenance factorization

and summarization have been studied (e.g., [16,8,62,

66]) as means for compact representation of the prove-

nance. Usually, the solutions proposed in these works

aim at reducing the size of the provenance but nat-

urally do not account for its presentation in NL; we

have highlighted the different considerations in context

of factorization/summarization in our setting. We note

that value-level provenance was studied in [61,18] to

achieve a fine-grained understanding of the data lin-

eage, but again do not translate the provenance to NL.

Detailed Answers to Keyword Queries There is an ex-

tensive line of work on answering keyword queries which

focuses on providing not just the query answer (tuples

that contain the queried value), but also comprehen-

sive details about it. Works such as [3,12,42] focus on

answering keyword queries over a relational database,

by outputting tuples that are related to one or more

of the queried keywords. In particular, [50,73] studies

the subject of prećis queries over relational database.

These queries are logical combinations of keywords. The

query along with constraints on the schema is inputted

to the system, and the answer returned should include

the most relevant tuples to the keyword(s), according

to the constraints, as relations that form a logical sub-

set of the original database (i.e., contain not only items

directly related to the given query terms but also items

implicitly related to them). Still in the field of answer-

ing keyword queries, [28,30,29] deal with snippets of a

database object, which is an entity that has its iden-

tity in the result tuple. In this scenario, the system

provides a snippet which is a summary of the relevant

information related to these objects. This information

is taken from tuples that relate to the queried object’s

tuple and is prioritized in different manners (e.g., diver-

sity and proportionality). All of these works, similarly

to ours, provide the query answer along with further

details about it, these details stem from tuples that re-

late in some defined manner to the answer. While there

is a commonality between these works and ours, our

work supports complex CQs formulated in NL as op-

posed to keyword queries. Answers to keyword queries

are not always explicitly specified in the query, e.g., we

can ask about and author and get the name of her or-

ganization, or get tuples that contain this author from

different tables. For CQs, users explicitly specify the

form of answer they would like, from which relation

they would like it, and what conditions it has to sat-

isfy. Additionally, our work defines the related tuples by

their membership in the provenance of the result, i.e,

the query structure (formulated by the user) is a ma-

jor factor in determining which tuples will be included

in the explanation. Furthermore, our system generates

the NL explanation based on the NL query given by the

user, and not a textual template.

Summarization of Database Content There have been

previous works that proposed a summarized presenta-

tion of the query results. In the context of keyword

queries, the approach of [30] gives short summaries on

information regarding data object by limiting the num-

ber of related tuples (according to the schema), showing

only the highest ranked. The summary is represented

as a tree where the root is a tuple containing the key-

words and the neighboring tuples are the related ones.

In the context of top aggregate queries, [77] presents an

approach that summarizes the results using clustering
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of the top ranked results, by formulating the clustering

problem as an optimization problem. The framework of

this work is interactive and allows users to choose the

number of clusters and other parameters. After observ-

ing the results, users can update the parameters and get

different results. The summarization aims to serve as an

overview of all query results through a summarized rela-

tion. Another related approach is [46] which devised the

smart drill-down operator. the operator allows users to

obtain interesting summarizations of the tuples in the

relation. The summary is essentially the top-k clusters,

according to a goal function, of tuples with dont-care

values. Similarly to these approaches, we focus on tu-

ples with the same values or similar values and The

SaintEtiQ system [69] summarizes entire database re-

lations using background knowledge with a vocabulary

to translate raw tuple values. Summarization is done

using a clustering approach. Like our system, there is a

notion of getting a more detailed and precise summary

containing more information, and a less detailed one

which is more compact. Provenance summarization has

also been proposed by [5], yet it offers an approximated

summary of the provenance based on distance, seman-

tic constraints and size, with a possible loss of infor-

mation. Our summarization technique compacts all the

tuples in the provenance, through functions like SUM

and RANGE, as opposed to showing/summarizing a

few representative tuples. We base this summarization

on the factorization of the provenance done as an ini-

tial step. Furthermore, we focus here on UCQs and do

not cover aggregate queries. Finally, we do not rely on

background knowledge of a vocabulary, or other exter-

nal constraints to summarize, but rather use the prove-

nance factorization. Additionally, we translate the sum-

marization into NL which is geared towards non-expert

users.

NL Interfaces Multiple lines of work (e.g. [52,7,55,76,

75,3,65]) have proposed NL interfaces for the formu-

lation of database queries, and additional works [32]

have focused on presenting the answers in NL, typically

basing their translation on the schema of the output

relation. Among these, works such as [7,55] also har-

ness the dependency tree in order to make the trans-

lation form NL to SQL by employing mappings from

the NL query to formal terms. The work of [51] has

focused on the complementary problem of translating

SQL queries (rather than their answers or provenance)

to NL. Another work has devised an interactive chat-

bot interface to drill down and zoom-in on a specific

part of the database which the user is interested in

[70]. This work helps guide the user with NL but does

not show the query answers and their explanations in

natural language. In the context of answering keyword

queries, [71] shows an approach that presents the re-

sults of prećis queries as a narrative text so that the

output is more user friendly. To do so, there is a need

for predefined textual templates to embed the relevant

tuples in. The templates are predefined by a designer

or the administrator of the database. Synthesizing text

directly from databases has also been explored in [72]

which extended [71]. This work revolves around the gen-

eration of textual representation for database subsets.

The text is generated based on templates rather than

on user formulated queries in NL. Moreover, the ex-

planation is composed of tuples from related database

tables, as opposed to tuples from the provenance which

provide a targeted explanation tailored to the specific

details provided by a user in an NL query. To our knowl-

edge, no previous work has focused on formulating the

provenance of output tuples in NL. This requires funda-

mentally different techniques (e.g. that of factorization

and summarization, building the sentence based on the

input question structure, etc.) and leads to answers of

much greater detail.

10 Conclusion

We have studied in this paper, for the first time to

our knowledge, provenance for NL queries. We have

devised a novel model of “word-to-provenance” map-

ping, thereby leveraging the structure of the original NL

question for the generation of a new NL sentence that

captures the answers along with their provenance-based

explanations. Since there may be many explanations,

even for a single answer, we have developed factoriza-
tion and summarization techniques that are geared to-

wards sentence generation, showing that they result in

new criteria for preferring one factorized/summarized

form over another. We have implemented the approach

and demonstrated its effectiveness through use cases

and experiments.

Our work presented a simple yet effective approach

of generating NL explanations based on the user NL

query. We have demonstrated that by applying basic

transformations on the original question we are able

to get understandable and relevant NL explanations.

Usage of more advanced Natural Language Generation

techniques can farther improve the explanations qual-

ity; this is an interesting direction for future work.

Our implementation is based on a particular NL in-

terface to Databases and on a particular provenance

model for UCQs, but we have also discussed at some

depth the extension of our solution beyond these set-

tings. This discussion provides indication of the generic

nature of the approach, but further research is required
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to fully realize its potential in these other settings. In

particular, we believe that the need to handle more

complex queries with nesting, aggregation etc. may lead

to new and exciting research avenues.

Acknowledgements This research has been funded by

the European Research Council (ERC) under the Eu-

ropean Unions Horizon 2020 research and innovation

programme (Grant agreement No. 804302), the Israeli

Science Foundation (ISF) Grant No. 978/17, and the

Google Ph.D. Fellowship. The contribution of Amir Gi-

lad is part of a Ph.D. thesis research conducted at Tel

Aviv University.

References

1. Mas. http://academic.research.microsoft.com.
2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of

databases: the logical level. Addison-Wesley Longman Pub-
lishing Co., Inc., 1995.

3. S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A sys-
tem for keyword-based search over relational databases.
In ICDE, pages 5–16, 2002.

4. A. Ailamaki, Y. E. Ioannidis, and M. Livny. Scientific
workflow management by database management. In SS-
DBM, pages 190–199, 1998.

5. E. Ainy, P. Bourhis, S. B. Davidson, D. Deutch, and
T. Milo. Approximated summarization of data prove-
nance. In CIKM, pages 483–492, 2015.

6. Y. Amsterdamer, S. B. Davidson, D. Deutch, T. Milo,
J. Stoyanovich, and V. Tannen. Putting lipstick on
pig: Enabling database-style workflow provenance. Proc.

VLDB Endow., 2011.
7. Y. Amsterdamer, A. Kukliansky, and T. Milo. A natu-

ral language interface for querying general and individual
knowledge. VLDB, pages 1430–1441, 2015.

8. N. Bakibayev, D. Olteanu, and J. Zavodny. FDB: A query
engine for factorised relational databases. PVLDB, pages
1232–1243, 2012.

9. I. Beltagy, K. Erk, and R. Mooney. Semantic parsing
using distributional semantics and probabilistic logic. In
Proceedings of the ACL 2014 Workshop on Semantic Pars-
ing, pages 7–11, 2014.

10. O. Benjelloun, A. Sarma, A. Halevy, M. Theobald, and
J. Widom. Databases with uncertainty and lineage.
VLDB J., 2008.

11. J. Berant and P. Liang. Semantic parsing via paraphras-
ing. In Proceedings of the 52nd Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 1415–1425, 2014.

12. G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti,
and S. Sudarshan. Keyword searching and browsing in
databases using BANKS. In ICDE, pages 431–440, 2002.

13. P. Brgisser, M. Clausen, and M. A. Shokrollahi. Alge-

braic Complexity Theory. Springer Publishing Company,
Incorporated, 2010.

14. P. Buneman, S. Khanna, and W. chiew Tan. Why and
where: A characterization of data provenance. In ICDT,
pages 316–330, 2001.

15. A. Chapman and H. V. Jagadish. Why not? In SIGMOD,
pages 523–534, 2009.

16. A. P. Chapman, H. V. Jagadish, and P. Ramanan. Effi-
cient provenance storage. In SIGMOD, pages 993–1006,
2008.

17. J. Cheney, L. Chiticariu, and W. C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends

in Databases, pages 379–474, 2009.
18. L. Chiticariu, W. C. Tan, and G. Vijayvargiya. Dbnotes:

a post-it system for relational databases based on prove-
nance. In SIGMOD, pages 942–944, 2005.

19. S. Cohen-Boulakia, O. Biton, S. Cohen, and S. David-
son. Addressing the provenance challenge using zoom.
Concurr. Comput. : Pract. Exper., pages 497–506, 2008.

20. D. Cohn and R. Hull. Business artifacts: A data-centric
approach to modeling business operations and processes.
IEEE Data Eng. Bull., pages 3–9, 2009.

21. S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher,
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