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Abstract
Differential privacy (DP) is the state-of-the-art and rigorous notion of privacy for answering aggregate database queries while
preserving the privacy of sensitive information in the data. In today’s era of data analysis, however, it poses new challenges
for users to understand the trends and anomalies observed in the query results: Is the unexpected answer due to the data
itself, or is it due to the extra noise that must be added to preserve DP? In the second case, even the observation made by
the users on query results may be wrong. In the first case, can we still mine interesting explanations from the sensitive data
while protecting its privacy? To address these challenges, we present a three-phase framework DPXPlain, which is the first
system to the best of our knowledge for explaining group-by aggregate query answers with DP. In its three phases,DPXPlain
(a) answers a group-by aggregate query with DP, (b) allows users to compare aggregate values of two groups and with high
probability assesses whether this comparison holds or is flipped by the DP noise, and (c) eventually provides an explanation
table containing the approximately ‘top-k’ explanation predicates along with their relative influences and ranks in the form of
confidence intervals, while guaranteeing DP in all steps. We perform an extensive experimental analysis of DPXPlain with
multiple use-cases on real and synthetic data showing that DPXPlain efficiently provides insightful explanations with good
accuracy and utility.

Keywords Privacy · Explanations · Aggregate queries

1 Introduction

Differential privacy (DP) [15, 41–43] is the gold standard for
protecting privacy in query processing and is critically impor-
tant for sensitive data analysis. It has been widely adopted
by organizations like the U.S. Census Bureau [4, 39, 60, 88]
and companies like Google [45, 103], Microsoft [30], and
Apple [93]. The core idea behind DP is that a query answer
on the original database cannot be distinguished from the
same query answer on a slightly different database. This is
usually achieved by adding randomnoise to the query answer
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to create a small distortion in the answer. Recent works have
made significant advances in the usability of DP, allowing
for complex query support [33, 58, 61, 62, 71, 95, 103], and
employing DP in different settings [33, 46, 49, 81, 95, 105].
These works assist in bridging the gaps between the func-
tionality of non-DP databases and databases that employ DP.

Automatically generating meaningful explanations for
query answers in response to questions asked by users is an
important step in data analysis that can significantly reduce
human efforts and assist users. Explanations help users val-
idate query results, understand trends and anomalies, and
make decisions about next steps regarding data process-
ing and analysis, thereby facilitating data-driven decision
making. Several approaches for explaining aggregate and
non-aggregate query answers have been proposed in database
research, including intervention [85, 86, 104], Shapley val-
ues [69], counterbalance [77], (augmented) provenance [6,
67], responsibility [75, 76], and entropy [44] (discussed in
Sect. 7).

One major gap that remains wide open is to provide
explanations for analyzing query answers from sensitive data
under DP. Several new challenges arise from this need. First,
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Fig. 1 Database instance and the three phases of the DPXPlain framework

in DP, the (aggregate) query answers shown to users are dis-
torted due to the noise that must be added for preserving
privacy, so the explanations need to separate the contribu-
tions of the noise from the data. Second, even after removing
the effect of noise, new techniques have to be developed to
provide explanations based on the sensitive data and mea-
sure their effects. For instance, standard explanationmethods
in non-DP settings are typically deterministic, while it is
known that DP methods must be randomized. Therefore,
no deterministic explanations can be provided, and even no
deterministic scores or ranks of explanations canbedisplayed
in response to user questions if we want to guarantee DP in
the explanation system. Third, the system needs to ensure
that the returned explanations, scores, and ranks still have
high accuracy while being private.

In this paper, we propose DPXPlain, a novel three-phase
framework that generates explanations1 under DP for aggre-
gate queries based on the notion of intervention [86, 104]2.
DPXPlain surmounts the aforementioned challenges and is
the first system combining DP and explanations to the best of
our knowledge. We illustrate DPXPlain through an exam-
ple.

Example 1.1 Consider the Adult (a subset of
Census) dataset [36] with 48,842 tuples. We con-
sider the following attributes: age, workclass,
education, marital-status, occupation,
relationship, race, sex, native-country,
and high-income, where high-income is a binary

1 The explanations we provided should not be considered causal expla-
nations.
2 See [101] for a graphical user interface for DPXPlain.

attribute indicating whether the income of a person is above
50K or not; some relevant columns are illustrated in Fig. 1a.

In the first phase (Phase-1) of DPXPlain, the user sub-
mits a query and gets the results as shown in Fig. 1b. This
query is asking the fraction of people with high income
in each marital-status group. As Fig. 1b shows, the
framework returns the answer with two columns: group
andPriv-answer. Heregroup corresponds to the group-
by attribute marital-status. However, since the data
is private, instead of seeing the actual aggregate values
avg-high-income, the user sees a perturbed answer
Priv-answer for each group as output by some differen-
tially private mechanism with a given privacy budget (here
computed by the Gaussian mechanism with privacy budget
ρ = 0.1 [15]). The third column True-answer shown in
grey (hidden for users) in Fig. 1b shows the true aggregated
output for each group.

In the second phase (Phase-2) of DPXPlain, the user
selects two groups to compare their aggregate values and
asks for explanations. However, unlike standard explanation
frameworks [44, 67, 77, 86, 104]where the answers to a query
are correct and hence the question asked by the user is also
correct, in the DP setting, the answers that the users see are
perturbed. Therefore, the user question and the direction of
comparisonmay not be valid. Hence our system first tests the
validity of the question. If the question is valid, our system
provides a data-dependent explanation of the user question.
We explain this below with the running example.

First, consider the question inFig. 2 comparing the last two
groups in Fig. 1b (spouse in armed forces vs. a civilian). In
this example, even though the noisy avg-high-income
for"Married-AF-spouse" is larger than the noisy value
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Fig. 2 A user question explained by high noise

for "Married-civ-spouse", this might not be true in
the real data (as is the case in the True-answer column).
Hence, our system tests whether the user question could
potentially be explained just using the noise introduced by
DP rather than from the data itself. To do this, our system tests
the validity of the user question by computing a confidence
interval around the difference between these two outputs.
In this case, the confidence interval is (−0.259, 0.460).
Since it includes 0 and negative values, we cannot conclude
with high probability that "Married-AF-support" >

"Married-civ-spouse" is true in the original data.
Since the validity of the user question is uncertain, we
know that any further explanation might not be mean-
ingful and theusermay choose to stophere. In otherwords,
the explanation for the comparison in the user question is pri-
marily attributed to the added noise by the DP mechanism.
If the user chooses to proceed to the next phase for further
explanations from the data, they might not be meaningful.

Now consider the comparison between two other groups
"Never-married" and"Married-civ-spouse", in
Fig. 1c. In this case, the confidence interval about the differ-
ence does not include zero and is tight around a positive
number of 0.4, which indicates that the user question is cor-
rect with high probability. Notice that it is still possible for a
valid question to have a confidence interval that includes zero
given sufficiently large noise. Since the question is valid, the
user may continue to the next phase.

In the third phase (Phase-3) of DPXPlain, for the ques-
tions that are likely to be valid, DPXPlain can provide a
further detailed data-dependent explanation for the question.
To achieve this again with DP, our framework reports an
“Explanation Table”3 to the user as Fig. 1d shows, which
includes the top-5 explanation predicates. The explanation
predicates explain the user question using the notion of
intervention as done in previous work [86, 104] for explain-
ing aggregate queries in the non-DP setting. Intuitively, if
we intervene in the database by (hypothetically) remov-
ing tuples that satisfy the predicate, and re-evaluate the
query, then the difference in the aggregate values of the two
groups mentioned in the question will reduce. In the sim-
plest form, explanation predicates are singleton predicates of

3 We note that our notion of explanation table is unrelated to that
described by Gebaly et al. [44] for summarizing dimension attributes
to explain a binary outcome attribute.

the form “attribute = <value>”, while in general,
our framework supports more complex predicates involv-
ing conjunction, disjunction, and comparison (>,≥ etc.). In
Fig. 1d, the top-5 simple explanation predicates, as computed
by DPXPlain, are shown out of 103 singleton predicates,
according to their influences on the question but perturbed
by noises to satisfyDP. The amount of noise is proportional to
the sensitivity of the influence function, the maximum possi-
ble change of the influence of any explanation predicatewhen
adding or removing a single tuple from the database. Once
the top-5 predicates are selected, the explanation table also
shows both their relative influence (intuitively, how much
they affect the difference of the group aggregates in the ques-
tion) and their ranks (that might be far away from the true
top-5) in the form of confidence interval under DP.

From this table, occupation =
"Exec-managerial" is returned as the top expla-
nation predicate, indicating that the people with this job
contribute more to the average high income of the married
group compared to the never-married group. In other words,
managers tend to earn more if they are married than those
who are single, which probably can be attributed to the
intuition that married people might be older and have more
seniority, which is consistent with the third explanation
age = "(40, 50]" in Fig. 1d as well. Although these
explanations are chosen at random, we observe that the first
three explanations are almost constantly included. This is
consistent with the narrow confidence interval of rank for
the first three explanation predicates, which are all around
[1, 8]. Looking at the confidence intervals of the relative
influence and ranks in the explanation table, the user also
knows that the first three explanations are likely to have
some effect on the difference between the married and
unmarried groups. However, for the last two explanations,
the confidence intervals of influences are closer to 0 and the
confidence intervals of ranks are wider, especially for the
fifth one which includes negative influences in the interval
and has a wide range of possible ranks (96 out of 103 simple
explanation predicates in total).

Our contributions

• We develop DPXPlain, the first framework, to our
knowledge, that generates explanations for query
answers underDPadapting the notion of intervention [86,
104]. It explains user questions comparing two group-by
aggregate query answers (COUNT, SUM, or AVG) with
DP in three phases: private query answering, private user
question validation, and private explanation table. We
also discuss the extension of user questions to more than
two answers.

• We develop multiple novel techniques that allow DPX-
Plain to provide explanations under DP including (a)
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computing confidence intervals to check the validity of
user questions, (b) choosing explanation predicates, and
(c) computing confidence intervals around the influence
and rank of the predicates.

• Wedesign a low sensitivity influence function inspired by
previous work on non-private explanations [104], which
is the key to the accurate selection of the top-k explana-
tion predicates.

• We design an algorithm that uses a noisy binary search
technique to find the confidence intervals of the expla-
nation ranks, which overcomes the high sensitivity chal-
lenge of the rank function.

• We have implemented a prototype of DPXPlain [2] to
evaluate our approach. We include two case studies on a
real and a synthetic dataset showing the entire process and
the obtained explanations. We have further performed
a comprehensive accuracy and performance evaluation,
showing that DPXPlain correctly indicates the validity
of the question with 100% accuracy for 8 out of 10 ques-
tions, selects at least 80% of the true top-5 explanation
predicates correctly for 8 out of 10 questions, and gen-
erates descriptions about their influences and ranks with
high accuracy.

Extensions of the conference paper This paper is an
extendedversionof ourPVLDB2023paper [94] and includes
full proofs for all the lemmas, propositions and theorems
(Sects. 2 and 4), a detailed description of all algorithms
of phases 1, 2 and 3 including pseudocodes (Sect. 4), a
generalized form of our model (Sect. 5), and a use-case
demonstrating it (Sect. 6).

2 Preliminaries

We now give the necessary background for our model.
The DPXPlain framework supports single-block SELECT
- FROM - WHERE - GROUP BY queries with aggre-
gates (Fig. 3) on single tables,4. Hence the database schema
A = (A1, . . . , Am) is a vector of attributes of a single rela-
tional table. Each attribute Ai is associated with a domain
dom(Ai ), which can be continuous or categorical. A database
(instance) D over a schema A is a bag of tuples (dupli-
cate tuples are allowed) ti = (a1, . . . , am), where ai ∈
dom(Ai ) for all i . The domain of a tuple is denoted as
dom(A) = dom(A1) × dom(A2) × . . . × dom(Am). We
denote Amax

i = max{|a| | a ∈ dom(Ai )} as the maximum

4 Unlike some standard explanation framework [104], in DP, we can-
not consider materialization of join-result for multiple tables, since the
privacy guarantee depends on sensitivity and removing one tuple from
a table may change the join and query result significantly. We leave it
as an interesting future work.

Fig. 3 Group-by query with aggregates supported by DPXPlain. The
true results are denoted by (αi , oi ) and the noisy results released by a
DPmechanism are denoted by (αi , ôi )where αi is the value of Agb and
oi , ôi are aggregate values

absolute value of Ai . The value of the attribute Ai of tuple t
is denoted by t .Ai .

We consider group-by aggregate queries q of the form
shown in Fig. 3. Here Agb is the group-by attribute and Aagg

is the aggregate attribute, φ is a predicate without subqueries,
and agg ∈ {COUNT , SUM, AVG} is the aggregate func-
tion. When query q is evaluated on database D, its result
is a set of tuples (αi , oi ), where αi ∈ dom(Agb) and
oi = agg({t .Aagg | t ∈ D, φ(t) = true, t .Agb = αi }). For
brevity, wewill useφ′(D) to denote {t |φ′(t) = true} for any
predicate φ′, and agg(Aagg, D′), or simply agg(D′) when
it is clear from context, to denote agg({t .Aagg | t ∈ D′})
for any D′ ⊆ D. Hence, oi = agg(Aagg, gi (D)), where
gi = φ ∧ (Agb = αi ).

Example 2.1 Consider Example 1.1. The schema is
A = (marital-status, occupation, age,
relationship, race, workclass, sex,
native-country, education, high-income).
All the attributes are categorical attributes and the
domain of high-income is {0, 1}. The query
is shown in Fig. 1b and the true result for each
group is shown in the True-answer column. Here
Agb = marital − status, Aagg = high − income,
and agg = AVG.

Differential Privacy In this work, we consider query-
answering and providing explanations using differential
privacy (DP) [42] to protect private information in the data.
In standard databases, a query result can give an adversary
the option to find the presence or absence of an individual in
the database, compromising their privacy. DP allows users
to query the database without compromising the privacy by
guaranteeing that the query result will not change too much
(defined in the sequel) even if it is evaluated on any two
different but neighboring databases defined below.

Definition 2.1 (NeighboringDatabase)Twodatabases D and
D′ are neighboring (denoted by D ≈ D′) if D′ can be trans-
formed from D by adding or removing 5 a tuple in D.

5 There are two variants of neighboring databases. The definition by
addition/deletion of tuples is called “unbounded DP”, and by updating
tuples is called “boundedDP”, since the size of data is fixed. In thiswork,
we assume the unbounded version, while DPXPlain can be adapted
also for the bounded version by adapting the noise scale.
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In this paper, we consider a relaxation of DP called ρ-
zero-concentrated differential privacy (zCDP) [15, 43] for
several reasons, and refer to it simply as DP if not other-
wise stated. First, we use Gaussian noise to perturb query
answers and derive confidence intervals, which does not sat-
isfy pure ε-DP [42] but satisfies approximate (ε, δ)-DP [42]
and ρ-zCDP. Second, ρ-zCDP only has one parameter ρ,
compared to (ε, δ)-DP which has two parameters, so it is
easier to understand and control. Third, ρ-zCDP allows for
tighter analyses for tracking the privacy budget (controlled
by ρ) over multiple private releases, which is the case for this
framework. A lower ρ value implies a lower privacy loss.

Definition 2.2 (Zero-Concentrated Differential Privacy
(zCDP) [15]) A mechanism M is said to be ρ-zero-
concentrated differential private, or ρ-zCDP for short, if for
any neighboring datasets D and D′ and all α ∈ (1,∞) it
holds that

Dα(M(D)‖M(D′)) ≤ ρα

where Dα(M(D)‖M(D′)) denotes the Rényi divergence of
the distributionM(D) from the distributionM(D′) at order
α [78].

A popular approach for providing zCDP to a query result
is to add Gaussian noise to the result before releasing it to a
user. This approach is called Gaussian mechanism [15, 42].

Definition 2.3 (Gaussian Mechanism) Given a query q and
a noise scale σ , Gaussian mechanism MG is given as:

MG(D; q, σ ) = q(D) + N (0, σ 2)

where N (0, σ 2) is a random variable from a normal distri-
bution6 with mean zero and variance σ 2.

Example 2.2 Suppose there is a database D with 100 tuples.
Consider a query q = “SELECT COUNT(*) FROM D”,
which counts the total number of tuples in a database D.
Here q(D) = 100. Now we use Gaussian mechanism to
release q(D), which is to randomly sample a noise z from
distribution N (0, σ 2). Here we assume σ = 1. Finally, we
got a noisy result q̂(D) = 102.32, which we may round to
an integer in postprocessing without sacrificing the privacy
guarantee (Proposition 2.1 below).

The privacy guarantee from the Gaussian mechanism
depends on both the noise scale it uses and the sensitivity of
the query. Query sensitivity reflects how sensitive the query
is to the change of the input. More noise is needed for a more
sensitive query to achieve the same level of privacy protec-
tion.

6 The probability density function of a normal distribution N (μ, σ 2) is
given as exp(−((x − μ)/σ)2/2)/(σ

√
2π).

Definition 2.4 (Sensitivity) Given a scalar query q that out-
puts a single number, its sensitivity is defined as:

Δq = sup
D≈D′

|q(D) − q(D′)|

Example 2.3 Continuing Example 2.2, since the query q
returns the database size, for any two neighboring databases,
their sizes always differ by 1, so the sensitivity of q is 1.

Theorem 2.1 (Gaussian Mechanism [15]) Given a query q
with sensitivity Δq and a noise scale σ , its Gaussian mech-
anism MG satisfies (Δ2

q/2σ
2)-zCDP. Equivalently, given a

privacy budgetρ, choosingσ = Δq/
√
2ρ inGaussianmech-

anism satisfies ρ-zCDP.

Composition Rules In our analysis, we will use the fol-
lowing standard composition rules and other known results
from the literature of DP [74] (in particular, zCDP [15]) fre-
quently:

Proposition 2.1 The following holds for zCDP [15, 74]:

• Parallel composition: if mechanisms take disjoint data
as input, the total privacy loss is the maximum privacy
loss from each.

• Sequential composition: if mechanisms take overlap-
ping data as input, the total privacy loss is the sum of
each privacy loss.

• Post-processing: if we run a mechanism and post-
process the result without accessing the data, the total
privacy loss is only the privacy loss from the mechanism.

We next survey several basic results that will come in
handy in the sequel.

Lemma 2.1 (Chernoff bound of Q function) Given a Q
function: Q(x) = Pr [X > x], where X ∼ N (0, 1) is a
standard Gaussian distribution, if x ≥ 0, we have Q(x) ≤
exp(−x2/2).

Proof By Chernoff bound, we have Pr [X > x] ≤
E[et X ]/etx for any t ≥ 0. By the property of Gaussian
distribution, we have E[et X ] = et

2/2. Together, we have
Pr [X > x] ≤ et

2/2−t x . Since x ≥ 0, we can choose t = x ,
and have Pr [X > x] ≤ e−x2/2. �
Lemma 2.2 Given two functions f ang g with sensitivities
Δ f andΔg, the sumof two functions have sensitivityΔ f +Δg

Proof BY definition, we have maxD≈D′ | f (D) − f (D′)| ≤
Δ f and maxD≈D′ |g(D) − g(D′)| ≤ Δg . Therefore,
maxD≈D′ |( f (D) + g(D)) − ( f (D′) + g(D′))| =
maxD≈D′ |( f (D) − f (D′) + (g(D) − g(D′))| ≤
maxD≈D′ |( f (D) − f (D′)| +maxD≈D′ |(g(D) − g(D′))| =
Δ f + Δg . The inequality is due to the property of absolute.

�
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Lemma 2.3 (Gaussian Confidence Interval [102]) Given a
Gaussian random variable Z ∼ N (μ, σ 2) with unknown
location parameter μ and known scale parameter σ . Let
IL = Z − σ

√
2 erf−1(γ ) and IU = Z + σ

√
2 erf−1(γ ),

then I = (IL , IU ) is a γ level confidence interval of μ.

Lemma 2.4 Given events A1, A2, . . . , A�, the following
inequality holds:

Pr [
�∧

i=1

Ai ] ≥
�∑

i=1

Pr [Ai ] − (� − 1)

Proof First we show that given events A and B, we have
Pr [A ∧ B] ≥ Pr [A] + Pr [B] − 1 since 1 ≥ Pr [A ∨ B] =
Pr [A] + Pr [B] − Pr [A ∧ B]. Next we show that

Pr [
�∧

i=1

Ai ] ≥ Pr [
�−1∧

i=1

Ai ] + Pr [A�] − 1

using the previous rule. This gives a recursive expression and
can be reduced to the final formula in the lemma. �
Lemma 2.5 Given aCOUNTor SUMquery q with sensitivity
Δq , a predicate φ, a non-negative query f : D → N0 with
sensitivity 1 and another monotonic7 and positive query g :
D → N

+ with sensitivity 1. Denote h(D) = q(φ(D))
f (D)
g(D)

.

For any two neighboring datasets D and D′ such that |D′| =
|D| + 1, we have

|h(D′) − h(D)| ≤ 2|φ(D)| + f (D) + 1

g(D)
Δq

Proof Denote x = q(φ(D)), x ′ = q(φ(D′)), n = |φ(D)|.
Since x is the aggregation over tuples from φ(D) and x has
sensitivity Δq , we have |x | ≤ nΔq . Denote δx = x ′ − x .
Since x has sensitivity Δq , we have |δx | ≤ Δq . Since
g(D) is monotonic and has sensitivity 1, we have g(D) ≤
g(D′) ≤ g(D) + 1. Since f has sensitivity 1, we have
| f (D) − f (D′)| ≤ 1.

|h(D′) − h(D)|
=|x ′ f (D′)

g(D′)
− x

f (D)

g(D)
|

=|(x + δx )
f (D′)
g(D′)

− x
f (D)

g(D)
|

=|x
(

f (D′)
g(D′)

− f (D)

g(D)

)
+ δx

f (D′)
g(D′)

|

Now we divide into two cases depending on the sign of the
factor of x in the formula above.

7 A query q is monotonic if for any two databases D′ and D such that
|D′| ≥ |D|, we have q(D′) ≥ q(D).

Case 1 the factor of x is non-negative.

|h(D′) − h(D)|
≤nΔq

(
f (D′)
g(D′)

− f (D)

g(D)

)
+ Δq

f (D′)
g(D′)

=
[
(n + 1)

f (D′)
g(D′)

− n
f (D)

g(D)

]
Δq

≤
[
(n + 1)

f (D) + 1

g(D)
− n

f (D)

g(D)

]
Δq

≤ f (D) + n + 1

g(D)
Δq

Case 2 the factor of x is non-positive.

|h(D′) − h(D)|
≤nΔq

(
f (D)

g(D)
− f (D′)

g(D′)

)
+ Δq

f (D′)
g(D′)

≤
[
n

(
f (D′) + 2

g(D′)
− f (D′)

g(D′)

)
+ f (D′)

g(D′)

]
Δq

≤2n + f (D′)
g(D′)

Δq

≤2n + f (D) + 1

g(D)
Δq

In conclusion, |h(D′) − h(D)| ≤ 2n+ f (D)+1
g(D)

Δq . �
Private Query Answering Recall that we have group-

by aggregation query of the form q = SELECT Agb,
agg(Aagg) FROM D WHERE φ GROUP BY Agb, and it
returns a list of tuples (αi , oi ) where αi ∈ dom(Agb) and oi
is the corresponding aggregate value. Since no single tuple
can exist in more than one group, adding or removing a sin-
gle tuple can at most change the result of a single group. As
mentioned earlier, Phase-1 returns noisy aggregate values ôi
for each αi instead of oi . The following holds:

Observation 2.1 According to the parallel composition rule
(Proposition 2.1), if for each αi , its (noisy) aggregate value
ôi is released under ρq-zCDP, the entire release of results
including all groups {αi , ôi : αi ∈ dom(Agb)} satisfies
ρq-zCDP.

For a COUNT or SUM query, we use the Gaussian mech-
anism for each group αi : ôi = oi + N (0, σ 2), where the
noise scale σ = Δq/

√
2ρq to satisfy ρq -zCDP by The-

orem 2.1. The sensitivity term Δq is 1 for COUNT and
Amax
agg for SUM , the maximum absolute value of the aggre-

gation attribute in its domain. For an AVG query, since
AVG = SUM/COUNT , we decompose it into a SUM
and aCOUNT query, privately answer each of them by half
of the privacy budget ρq/2 to get ôSi and ôCi for each group
αi , and release ôi = ôSi /ôCi as a post-processing step. The

123



Differentially private explanations for aggregate query answers Page 7 of 25    20 

noisy query answers of the group-by query with AVG satisfy
ρq -zCDP by the sequential composition rule (Proposition
2.1).

Confidence Level and Interval Confidence intervals are
commonly used to determine the error margin in uncer-
tain computations and are used in various fields including
machine learning [57] and DP [47]. In our context, we use
confidence intervals to measure the uncertainty in the user
question and our explanations.

Definition 2.5 (Confidence Level and Interval [102]) Given
a confidence level γ and an unknown but fixed parameter θ ,
a random interval I = (IL , IU ) is said to be its confidence
interval, or CI, with confidence level γ if the following holds:

Pr [IL ≤ θ ≤ IU ] ≥ γ

Example 2.4 Let θ = 0. Suppose with probability 50% we
have I L = −1 and IU = 1, and with another probability
50% we have I L = 1 and IU = 2. Therefore, Pr [IL ≤ θ ≤
IU ] = 50%, and we can conclude that the random interval
I = (IL , IU ) is a 50% level confidence interval for θ .

3 Private explanations inDPXPlain

In this section, we provide the model for private explanations
of query results at the center of DPXPlain.

User Question and Standard Explanation Framework In
Phase-2 of DPXPlain, given the noisy results of a group-
by aggregation query from Phase-1, users can ask questions
comparing the aggregate values of two groups8

Definition 3.1 (User Question) Given a database D, a group-
by aggregate query q as shown in Fig. 3, aDPmechanismM,
and two noisy answer tuples (αi , ôi ), (α j , ô j ) ∈ M(D; q)

where ôi > ô j , a user question has the form “why is the
(noisy) aggregate value ôi of group αi larger than the aggre-
gate value ô j of group α j?”), which is denoted by “why
(αi , α j ,>)?”.

Example 3.1 The question from Fig. 1c is denoted as “why
(‘Married-civ-spouse’, ‘Never-married’,
>)?”.

To explain a user question, several previous approaches
return top-k predicates that have the highest influences over
the group difference in the question [44, 67, 86, 104]. We
follow this paradigm and define explanation predicates.

Definition 3.2 (Explanation Predicate) Given a database D
with a set of attributes A, a group-by aggregation query q

8 Our framework can handle more general user questions involving
single group or more than two groups; see more details in Sect. 5.

(Fig. 3) with group-by attribute Agb and aggregate attribute
Aagg and a predicate size l, an explanation predicate p is a
Boolean expression of the form p = ϕ1∧ ...∧ϕl , where each
ϕi has the form Ai = ai such that Ai ∈ A \ {Agb, Aagg} is
an attribute, and ai ∈ dom(Ai ) is its value.

We assume dom(Ai ) is discrete, finite, and data-
independent. We focus here on the conjunction of equality
predicates. However, our framework can also handle predi-
cates that contain disjunctions and inequalities of the form
Ai ◦ ai where ◦ ∈ {>,<,≥,≤, �=} when the constant ai is
from a finite and data-independent set.

New challenges for explanations with DPUnlike standard
explanation framework on aggregate queries [67, 86, 104],
the existing frameworks are not sufficient to support DP and
need to be adapted: (i) the question itself might not be valid
due to the noise injected into the queries, (ii) the selection
of top-k explanation predicates needs to satisfy DP, which
further requires the influence function to have low sensitiv-
ity so that the selection is less perturbed, and (iii) since the
selected explanation predicates are not guaranteed to be the
true top-k, it is also necessary to output extra descriptions
under DP for each selected explanation predicate about their
actual influences and ranks. We detail the adjustments as fol-
lows.

Question Validation with DP (Phase-2) While the user is
asking “why is ôi > ô j?”, in reality, it may be the case that
the true results satisfy oi ≤ o j , i.e., they have opposite rela-
tionship than the one observed by the user. This indicates that
ôi > ô j is the result of the noise being added to the results.
In this scenario, one option to explain the user’s observation
of ôi > ô j will be releasing the true values (equivalently, the
added exact noise values), which will violate DP. Instead, to
provide an explanation in such scenarios, we generate a con-
fidence interval for the difference of two (hidden) aggregate
values oi −o j , which can include negative values (discussed
in detail in Sect. 4.1). This leads to the first problem we need
to solve in DPXPlain:

Theorem 3.1 (Private Confidence Interval of Question)
Given a dataset D, a query q, a DP mechanism M, a pri-
vacy budget ρq , a confidence level γ , and a user question
(αi , α j ,>) on the noisy query answers output byM satisfy-
ing ρq-zCDP, find a confidence interval (see Definition 2.5)
for the user question Iuq = (IL

uq , IU
uq) for oi − o j at confi-

dence level γ without extra privacy cost.

In Phase-2, the framework returns a confidence interval of
oi −o j to the user. If it includes zero or negative numbers, it is
possible that oi ≤ o j , and the user’s observation of ôi > ô j

is the result of the noise added by the DPmechanism. In such
cases, the user may stop at Phase-2. If the user is satisfied
with the confidence interval for the validity of the question,
she can proceed.
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Influence Function (Phase-3) When considering DP, the
order of the explanation predicates is perturbed by the noise
we add to the influences according to the sensitivity of the
influence function (discussed in detail in Sect. 4.3.1). To pro-
vide useful explanations, this sensitivity needs to be low,
which means the influence does not change too much by
adding or removing a tuple from the database. For exam-
ple, a counting query that outputs the database size n has
sensitivity 1, since its result can only change by 1 for any
neighboring databases. Following this concept, we propose
a core problem for the DPXPlain framework, which is also
critical to the subsequent problems defined below.

Theorem 3.2 (Influence Function with Low Sensitivity) Find
an influence function Inf : P → R that maps an explanation
predicate to a real number and has low sensitivity.

Private Top-k Explanations (Phase-3) In DPXPlain, to
satisfy DP, in Phase-3 we output the top-k explanation
predicates ordered by the noisy influences, and release the
influences and ranks of these predicates in the form of con-
fidence intervals to describe the uncertainty. To achieve this
goal, we tackle the following three sub-problems.

Theorem 3.3 (Private Top-k Explanation Predicates) Given
a set of explanation predicatesP , an integer k, and a privacy
parameter ρTopk , find the top-k highest influencing predi-
cates p1, p2, . . . , pk from P while satisfying ρTopk-zCDP.

Theorem 3.4 (Private Confidence Interval of Influence)
Given a confidence level γ , k explanation predicates
p1, p2, . . . , pk, and a privacy parameter ρI n f lu , find a
confidence interval I in f lu = (IL

in f lu, IU
in f lu) for influence

Inf(pu) at confidence level γ for each u ∈ {1, . . . , k} satis-
fying ρI n f lu-zCDP (overall privacy budget).

Theorem 3.5 (Private Confidence Interval of Rank) Given a
confidence level γ , k explanation predicates p1, p2, . . . , pk,
and a privacy parameter ρRank , find a confidence interval
Irank = (IL

rank, IU
rank) for rank of pu at confidence level

γ for each u ∈ {1, . . . , k} satisfying ρRank-zCDP (overall
privacy budget).

4 Computing explanations under DP

Next we provide solutions to problems 3.1, 3.2, 3.3, 3.4, and
3.5 in Sects. 4.1, 4.2, 4.3.1, 4.3.2, and 4.3.3 respectively, and
analyze their properties.We summarize the entireDPXPlain
framework in Sect. 4.4.

4.1 Confidence interval for a user question

For Theorem 3.1, the goal is to find a confidence interval of
oi − o j for the user question at the confidence level γ with-
out extra privacy cost in Phase-2. We divide the solution into

two cases. (1) When the aggregation is COUNT or SUM, the
noisy difference ôi −ô j followsGaussian distribution, which
leads to a natural confidence interval. (2) When the aggrega-
tion is AVG, the noisy difference does not follow Gaussian
distribution, but we show that the confidence interval in this
case can be derived throughmultiple partial confidence inter-
vals. The solutions below only take the noisy query result as
input, which does not incur extra privacy loss according to
the post-processing property of DP (Proposition 2.1).

We now describe the pseudo code for the algorithm.
Confidence interval for COUNTand SUM InAlgorithm1,

at line 2, we set the noise scale σ according to aggregation as
COUNT (SUM), and at line 6 and 7, we set the confidence
interval from the standard properties of Gaussian distribution
by a margin as

√
2(

√
2σ) erf−1(γ ) for both bounds 9 [102].

Confidence interval for AVG In Algorithm 1, at line 9, we
set the sub confidence level β = 1 − (1 − γ )/4 for each
individual confidence interval, so that the final confidence
level for oi − o j is γ . At line 10 and 11, we set the noise
level σ for SUM and COUNT . From line 12 to 16, we
extract all the intermediate numerators and denominators,
and construct individual confidence intervals. At line 17 and
18, we compute the infimum and supremum of the image of
the cross product of individual confidence intervals, which
is also the confidence interval at level γ .

Algorithm 1Compute Confidence Interval of User Question
Require: A user question Q = (αi ,>, α j ) with respect to the query

SELECT Agb, agg(Aagg) FROM R WHERE φ GROUP BY Agb,
the noisy results ôi and ô j , the privacy budget ρq for the private
query answering, and the confidence level γ .

Ensure: A γ -level confidence interval of oi − o j .
1: if agg = COUNT or agg = SUM then
2: if agg = COUNT then
3: σ ← 1/

√
2ρq

4: else if agg = SUM then
5: σ ← Amax

agg /
√
2ρq

6: IL ← ôi − ô j − 2σ erf−1(γ )

7: IU ← ôi − ô j + 2σ erf−1(γ )

8: else if agg = AVG then
9: β ← 1 − (1 − γ )/4
10: σS ← Amax

agg /
√
2ρq/2

11: σC ← 1/
√
2ρq/2

12: for t ∈ {i, j} do /* Recall that ôt = ôSt /ôCt */
13: ôSt ← numerator of ôt .
14: IS

t ← (ôSt − σS
√
2 erf−1(β), ôSt + σS

√
2 erf−1(β))

15: ôCt ← denominator of ôt .
16: IC

t ← (ôCt − σC
√
2 erf−1(β), ôCt + σC

√
2 erf−1(β))

17: IL ← inf{IS
i / IC

i − IS
j / IC

j }
18: IU ← sup{IS

i / IC
i − IS

j / IC
j }

19: I ← (IL , IU )

20: return I

9 erf−1 is the inverse function of the error function erf.
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We next provide the guarantee for the obtained interval.

Lemma 4.1 GivenIS andIC as twoβ level confidence inter-
vals of oSi and oCi separately, the derived interval I A =
{x/y | x ∈ IS, y ∈ IC } is a 2β −1 level confidence interval
of oSi /oCi .

Proof The following holds: Pr [oSi /oCi ∈ IA] ≥ Pr [oSi ∈
IS ∧oCi ∈ IC ] ≥ 1 − (Pr [oSi /∈ IS] + Pr [oCi /∈ IC ]) ≥ 1 − ((1 −
β)+ (1−β)) = 2β − 1 The first inequality above is due to fact
that the second event is sufficient for the first event: if two
numbers are from IS and IC , their division belongs to the
set I A by definition. The next inequality holds by applying
the union bound. The third inequality is by definition. �

Furthermore, the difference ôi − ô j is a subtraction
between two ratios of two Gaussian variables, which can be
expressed as an arithmetic combination of multiple Gaussian
variables: ôi − ô j = Xi/Yi −X j/Y j , where Xt = N (oSt , σ 2

S )

and Yt = N (oCt , σ 2
C ) for t ∈ {i, j}. Similar to Lemma 4.1,

we can derive the confidence interval for ôi − ô j based on
4 partial confidence intervals of oSi , o

C
i , o

S
j , and oCj instead

of 2. The confidence level we set for each partial confidence
interval is β = 1 − (1 − γ )/4 by applying union bound on
the failure probability 1 − γ that one of the four variables
is outside its interval. After we have 4 partial confidence
intervals IS

i , IC
i , IS

j , and IC
j for oSi , o

C
i , o

S
j , and oCj sepa-

rately, similar to Lemma 4.1, we combine them together as

I A = IS
i / IC

i − IS
j / IC

j and derive the confidence interval

for oi − o j as (inf I A, sup I A), which is guaranteed to be at
confidence level γ . If 0 is included in either IC

i or IC
j , we set

the confidence interval to be (∞,−∞) instead. Although
there is no theoretical guarantee of the interval width, from
two case studies in Sect. 6.2, we demonstrate narrow confi-
dence intervals of AVG queries in practice, and observe no
extreme case (∞,−∞) in the experiments.

4.2 Influence function with low sensitivity

For Theorem 3.2, the goal is to design an influence function
that has low sensitivity. Inspired by PrivBayes [106], we start
by adapting a known influence function to our framework.

Our influence function of an explanation predicate with
respect to a comparison user question is inspired by the
Scorpion framework [104], where the user questions seek
explanations for outliers in the results of a group-by aggre-
gate query. Scorpion identifies predicates on the input that
cause the outliers to disappear from the output. Given the

group-by aggregation query shown in Fig. 3 and a group αi ∈
dom(Agb), recall fromSect. 2 that the true aggregate value for
αi is oi = agg(Aagg, gi (D)), where gi = φ ∧ (Agb = αi ),
i.e., gi (D) denotes the set of tuples that contribute to the
group αi .

Scorpion measures the influence of an explanation predi-
cate p to some group αi as the ratio between the change of
output aggregate value and the change of group size:

agg(gi (D)) − agg(gi (¬p(D)))

|gi (p(D))| (4.1)

Here ¬p(D) denotes D − p(D), i.e., the set of tuples in D
that do not satisfy the predicate p. To adapt this influence
function toDPXPlain, we make the following two changes.

• First, it should measure the influence w.r.t. the compari-
son from the user question (αi , α j ,>) instead of a single
group.
A natural extension is to change the target aggregate on
gi in the numerator in (4.1)
to the difference between the aggregate values of two
groups gi , g j

before and after applying the explanation predicate p,
and change the denominator
as the maximum change in gi or g j when p is applied,
which gives the following influence function:

(
agg(gi (D)) − agg(g j (D))

) − (
agg(gi (¬p(D))) − agg(g j (¬p(D)))

)

max(|gi (p(D))|, |g j (p(D))|) (4.2)

• Second and more importantly, in DPXPlain, we need to
preserve DP when we use influence function to sort and
rank multiple explanation predicates, or to release the
influence and rank of an explanation predicate. There-
fore, we need to account for the sensitivity of the
influence function, which is determined by the worst-
case change of influence when a tuple is added or
removed from the database. If the predicate only selects
a small number of tuples, the denominator in (4.2)
is small and thus changing the denominator in (4.2) by
one (when a tuple is added or removed) can result in a
big change in the influence as illustrated in the following
example, making
(4.2) unsuitable for DPXPlain.

Example 4.1 [The Issue of the Influence Sensitivity] Sup-
pose there are two groups αi and α j in D with 1000
tuples in each, aggregate function agg = SUM on attribute
Aagg with domain [0, 100], and the explanation predicate p
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matches only 1 tuple from the group αi with Aagg = 100
and no tuple from α j . Suppose agg(gi (D)) = 20, 000,
agg(g j (D)) = 10, 000, then agg(gi (¬p(D))) = 19, 900
and agg(g j (¬p(D))) = 10, 000. Therefore, from Equation
(4.2), the influence of p is ((20, 000−10, 000)− (19, 900−
10, 000))/max{1, 0} = 100 on the original database D.
However, suppose a new tuple that satisfies p and belongs
to group αi is added with Aagg = 2. Now the influence in
Equation (4.2) becomes ((20, 002 − 10, 000) − (19, 900 −
10, 000))/max{2, 0} = 102/2 = 51. While we added a
tuple that contributes only 2 to the sum, it led to a change
of 100-51 = 49 to the influence function due to the small
denominator.

Therefore, we propose a new influence function that is
inspired by Equation (4.2) but has lower sensitivity. Note that
the denominator in Scorpion’s influence function in Equa-
tion (4.2) acts as a normalizing factor, whose purpose is
to penalize the explanation predicate that selects too many
tuples, e.g., to prohibit the removal of the entire database by a
dummy predicate. To have a similar normalizing factor with
low sensitivity, we multiply the numerator in Equation (4.2)

by
min(|gi (¬p(D))|,|g j (¬p(D)|)

max(|gi (D)|,|g j (D)|)+1 . From this new normalizing fac-
tor, the numerator captures the minimum of the number of
tuples that are not removed from each group, and the denom-
inator keeps the normalizing factor in the interval [0, 1] and
does not change for different explanation predicates. Similar
to Scorpion, if p(D) constitutes a large fraction of D (e.g., if
p(D) = D), then the normalizing factor is small, reducing
the value of the influence.Also note that, unlike standardSQL
query answering where only non-empty groups are shown in
the results, in DP, all groups from the actual domain have
to be considered, hence unlike Equation (4.1), gi (D), g j (D)

could be zero, hence 1 is added in the denominator to avoid
division by zero. When agg = AVG, we remove the con-
stant denominator to boost the signal of the influence and
keep the sensitivity low, which will be discussed in the sen-
sitivity analysis after Proposition 4.1 and in Example 4.2.

Definition 4.1 [Influence of Explanation Predicates] Given a
database D, a query q as shown in Fig. 3, and a user question
(αi , α j ,>), the influence of an explanation predicate p is
defined as Inf(p; (αi , α j ,>), D), or simply Inf(p) when
clear from context:

Inf(p) =
(
(
agg(gi (D)) − agg(g j (D))

)−
(
agg(gi (¬p(D))) − agg(g j (¬p(D)))

)
)

×
{

min(|gi (¬p(D))|,|g j (¬p(D)|)
max(|gi (D)|,|g j (D)|)+1 for agg ∈ {COUNT , SUM}

min(|gi (¬p(D))|, |g j (¬p(D)|) for agg = AVG

The next proposition summarizes the sensitivity of eq.
(4.3).

Proposition 4.1 [Influence Function Sensitivity] Given an
explanation predicate p and a user question with respect to
a group-by query with aggregation agg, the following holds:

1. If agg = COUNT , the sensitivity of Inf(p) is 4.
2. If agg = SUM, the sensitivity of Inf(p) is 4 Amax

agg .
3. If agg = AVG, the sensitivity of Inf(p) is 16 Amax

agg .

Proof We next prove each item in the proposition.
(1) COUNT. Recall the influence function definition:

Inf(p; Q, D) =
( (

q(gi (D)) − q(g j (D))
)

− (
q(gi (¬p(D))) − q(g j (¬p(D)))

) )

×
min
t∈{i, j}|gt (¬p(D))|
max
t∈{i, j}|gt (D)| + 1

We interpret and consider the following equations or nota-
tions:

q(D) = |D|
φi = (φ ∧ Agb = αi )

gi (D) = φi (D)

gi (p(D)) = (φi ∧ p)(D)

gi (¬p(D)) = (φi ∧ ¬p)(D)

num(D) = mint∈{i, j}|gt (¬p(D))|
denom(D) = maxt∈{i, j}|gt (D)| + 1

hi (D) = q((φi ∧ p)(D))num(D)/denom(D)

Since q is a counting query, we have q(gi (D)) −
q(gi (¬p(D))) = q(gi (p(D))), and by replacing gi (p(D))

with (φi ∧ p)(D) we have q(gi (D)) − q(gi (¬p(D))) =
q((φi ∧ p)(D)).

By further replacing the last numerator and denominator
in the influence function with num(D) and denom(D), we
have Inf(p; Q, D) = hi (D) − h j (D).

We prove the sensitivity bound by the following inequality
chains.

ΔInf =maxD≈D′ |Inf(p; QCNT , D) − Inf(p; QCNT , D′|
(4.3)

Wefirst replace Inf according to Inf(p; Q, D) = hi (D)−
h j (D), and then apply Lemma 2.2

to bound the sensitivity by the sum of sensitivities of hi
and h j .

≤ ∑
t∈{i, j} max|D′|=|D|+1|ht (D′) − ht (D)| (4.4)

The second inequality is by Lemma 2.5,
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since f is a non-negative query with sensitivity 1 and g is
a monotonic positive and positive query with sensitivity 1.

≤ ∑
t∈{i, j}

2|(φt∧p)(D)|+num(D)+1
denom(D)

Δq (4.5)

The next equality is by replacing the variables. Since q is a
counting query, it has sensitivity Δq = 1.

= ∑
t∈{i, j}

2|(φt∧p)(D)|+ min
s∈{i, j}|(φs∧¬p)(D)|+1

maxs∈{i, j}|gs (D)|+1 (4.6)

The third inequality is by the property of min and max ,
since min

s∈{i, j}|(φs ∧ ¬p)(D)| ≤ |(φt ∧ ¬p)(D)| and

maxs∈{i, j}|gs(D)| ≥ |gt (D)|.

≤ ∑
t∈{i, j}

|(φt∧p)(D)|+|(φt∧p)(D)|+|(φt∧¬p)(D)|+1
|gt (D)|+1 (4.7)

The next equality is due to that φt = (φt ∧ p) ∨ (φt ∧ ¬p).

= ∑
t∈{i, j}

|(φt∧p)(D)|+(|φt (D)|+1)
|gt (D)|+1 (4.8)

The fourth inequality is due to that |(φt ∧ p)(D)| ≤
|φt (D)| = |gt (D)| ≤ |gt (D)| + 1.

≤
∑

t∈{i, j}

(|gt (D)| + 1) + (|gt (D)| + 1)

|gt (D)| + 1
(4.9)

≤ 4 (4.10)

(2) SUM. Similar to the proof of the sensitivity of CNT
influence, but with Δq = Amax

agg , which should be replaced at
Equation (4.5).

(3) AVG.

Inf(p; QAVG , D)

=
(

(
SUM(φi (D), Aagg)

|φi (D)| − SUM(φ j (D), Aagg)

|φ j (D)| )−

(
SUM((φi ∧ ¬p)(D), Aagg)

|(φi ∧ ¬p)(D)| − SUM((φ j ∧ ¬p)(D), Aagg)

|(φ j ∧ ¬p)(D)| )

)

min
t∈{i, j}|(φt ∧ ¬p)(D)|

Now we consider decompose this query into four parts (for
example, SUM(φi (D),Aagg)

|φi (D)| min
t∈{i, j}|(φt ∧¬p)(D)| as one part),

and analyze the sensitivity for each part and finally sum up.
Consider query q as summing up Aagg with sensitivityΔq =
Amax
agg . ByLemma2.5,we can show that the sensitivity of each

part is 4 Δq . Together, the total sensitivity is bounded by 16
Δq . �

Intuitively, the sensitivity of Inf(p) is low compared to
its value. When agg = COUNT , Inf(p) is O(n) and
ΔInf is O(1), where n is the size of database. When agg ∈
{SUM, AVG}, Inf(p) is O(nAmax

agg ) and ΔInf is O(Amax
agg ).

Therefore, the sensitivity of influence ΔInf is low compared

to the influence itself. However, as the example below shows,
if we define the influence function for AVG the same way
as COUNT or SUM , both Inf(p) and ΔInf will become
O(Amax

agg ), which makes the sensitivity (relatively) large.

Example 4.2 [The Issue with AVG Influence.] Consider an
AVG group-by query where the domain of the aggregate
attribute is [0, 100], and an explanation predicate p such
that for group αi we have 2 tuples with AVG(gi (D)) =
100/2 = 50, AVG(gi (¬p(D))) = 0/1 = 0, and for group
α j we have two tuples with AVG(g j (D)) = 100/2 = 50
and AVG(g j (¬p(D))) = 100/2 = 50. Suppose we define
the influence function for AVG the same way as COUNT
or SUM , therefore the influence of p in Equation (4.3) is
Inf(p) = ((50 − 50) − (0 − 50))(min(1, 2)/(max(2, 2) +
1) = 50/3. However, suppose we remove the single tuple
from gi , so |gi (¬p(D))| becomes 0, now the influence in
Equation (4.3) (for COUNT/SUM) becomes 0. Note that a
single removal of a tuple completely changes the influence
to 0, and this change is equal to the influence itself, which is
relatively large and therefore is not a good choice for AVG.

Note that the user question “why (αi , α j ,>)” is asked
based on the noisy results ôi > ô j , while the influence func-
tion uses the true results, i.e., even if oi ≤ o j , we still consider
agg(gi (D)) − agg(g j (D)) in Inf(p). Hence Inf(p) can be
positive or negative and removing tuples satisfying p can
make the gap smaller or larger.

We demonstrate this property in the example below with-
out the normalizing factor in the function.

Example 4.3 Start with a database with three binary
attributes: A, B,C and two tuples: (0, 0, 0), (1, 0, 1). Con-
sider an agg = COUNT query with group by on A, so we
have agg(g0(D)) = 1 and agg(g1(D)) = 1 for two groups
A = 0 and A = 1.

Consider three explanationpredicates for the user question
(α0, α1,>) (note that the noisy values can be different from
the true values):

p1 : B = 0, p2 : B = 0∧C = 0 and p3 : B = 0∧C = 1,
which satisfy

p2 ⇒ p1 and p3 ⇒ p1. However, while Inf(p1) = 0,
we have Inf(p2) = 1 and Inf(p3) = −1, i.e., Inf(p3) <

Inf(p1) < Inf(p2).
Note that denom(D) (num(D)) denotes the denominator

(numerator) in the normalizing factor of Inf designed for
COUNT queries. The value of denom(D) is 2 since the
size of both groups is 1 and the value of num(D) for p1
for example, is 0 since both tuples have B = 0 and thus
|gt (¬p1(D))| = |gt (∅)| for t = 1, 2.
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4.3 Private top-k explanations

In this section,we discuss the computation of the top-k expla-
nation predicates and the confidence intervals of influences
and ranks.

4.3.1 Problem 3: private top-k explanation predicates

The goal is to find with DP the top-k explanation predi-
cates from a set of explanation predicates P in terms of their
(true) influences Inf(p), which is the first step in Phase-3
of DPXPlain (Fig. 1). Note that simply choosing the true
top-k explanation predicates in terms of their Inf(p) is not
differentially private.

InDPXPlain, we adopt theOne-shot Top-kmechanism
[37, 38] to privately select the top-k.

We now present the One-shot Top-k mechanism
(described in Algorithm 2) which is based on the exponen-
tial mechanism [42]. Given a score function s : P → R
that maps an explanation predicate p to a number, the expo-
nential mechanism (EM) [42] randomly samples p from
P with probability proportional to exp(ε s(p)/(2Δs)) with
some privacy parameter ε and satisfies (ε2/8)-zCDP [17,
32, 38, 83]. The higher the score is, the more possible that an
explanation predicate is selected. In DPXPlain, we use the
influence function as the score function.

We denote the exponential mechanism as ME . To find
‘top-k’ explanation predicate satisfyingDP,we canfirst apply
ME to find one explanation predicate, remove it from the
entire explanation predicate space, and then applyME again
until k explanation predicates are found. It was shown by
previous work [37, 38] that this process is identical to adding
i.i.d. Gumbel noise10 to each score and releasing the top-k
predicates by the noisy scores (i.e., there is no need to remove
predicates after sampling). We, therefore, use this result to
devise a similar solution that is presented in Algorithm 2.
In line 1, we set the noise scale. In lines 2–4, we randomly
sample Gumbel noise with scale σ and add it to the influence
of each explanation predicate from the spaceP . In line 5, we
sort the noisy scores in the descending order, and in line 6, we
find the top-k explanation predicates by their noisy scores.
This algorithm satisfies ρTopk-zCDP (as formally stated in
Proposition 4.2), and can be applied to questions on SUM,
COUNT, or AVG queries, with different score functions and
sensitivity values for different aggregates.

Since this algorithm iterates over each explanation pred-
icate, the time complexity is proportional to the size of the
explanation predicate set P . By Definition 3.2, this number
is O(

(m
l

)
Nl), where N is the maximum domain size of an

attribute, l is the number of conjuncts in the explanation pred-

10 For a Gumbel noise Z ∼ Gumbel(σ ), its CDF is Pr [Z ≤ z] =
exp(− exp(−z/σ)).

Algorithm 2 Noisy Top-k Predicates
Require: An influence function Infwith sensitivityΔInf, a set of expla-

nation predicatesP , a privacy parameter ρTopk and a size parameter
k.

Ensure: Top-k explanation predicates.
1: σ ← 2ΔInf

√
k/(8ρTopk)

2: for u ← 1 . . . |P| do
3: su ← Inf(pu) + Gumbel(σ )

4: Sort s1 . . . s|P| in the descending order.
5: Let p1, p2, . . . , pk be the top-k elements in the list.
6: return p1, p2, . . . , pk

icate and m is the number of attributes. In our experiments
(Sect. 6), we fix l = 1 and use all the singleton predicates as
the set P , so its size is linear in the number of attributes.

Proposition 4.2 Given an influence function Inf with sen-
sitivity ΔInf, a set of explanation predicates P , a privacy
parameter ρTopk and a size parameter k, the following holds:

1. One-shot Top-k mechanism finds k explanation predicates
while satisfying ρTopk-zCDP.

2. Denote by OPT (i) the i-th highest (true) influence, and by
M(i) the i-th explanation predicate selected by the One-
shot Top-k mechanism. For ∀t and ∀i ∈ {1, 2, . . . , k}, we
have

Pr [Inf(M(i)) ≤ OPT (i) − 2ΔInf√
8ρTopk/k

(ln(|P|) + t)] ≤ e−t

(4.11)

Proof (1) Differential Privacy. it is equivalent to iteratively
applying k exponential mechanisms [42] that satisfies ε2/8-
zCDP [17, 32, 38, 83] for each, where ε = √

8ρTopk/k [37,
38], therefore in total it satisfies (kε2/8)-zCDP which is also
ρTopk-zCDP.

(2) Utility Bound. It is extended from the utility theorem
of EM in Thm 3.11 of [42], which states that

Pr

[
Inf(M(1)) ≤ OPT (1) − 2ΔInf

ε
(ln(|P|) + t)

]
≤ e−t

where ε = √
8ρTopk/k. To extend from i = 1 to ∀i ∈

{1, 2, . . . , k}, we follow the original proof:

Pr [Inf(M(i)) ≤ c] ≤ |P| exp(εc/(2ΔInf))

exp(εOPT (i)/(2ΔInf))

by giving a upper bound and lower bound of the numerator
and denominator. Replacing cwith the appropriate value will
give this theorem. �
Example 4.4 Reconsider the user question in Fig. 1c. For this
question, we have in total 103 explanation predicates as the
set of explanation predicates. The privacy budget ρTopk =
0.05, the size parameter k = 5, and the sensitivityΔInf = 16.
For each of the explanation predicate, we add aGumbel noise
with scale σ = 113 to their influences. For example, for
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the predicates shown in Fig. 1d, their noisy influences are
990, 670, 645, 475, 440, which are the highest 5 among all
the noisy influences. The true influences for these five ones
are 547, 501, 555, 434, 118. To see how close it is to the
true top-5, we compare their true influences with the true
highest five influences: 555, 547, 501, 434, 252, which shows
the corresponding differences in terms of influence are 8,
46, 54, 0, 134. By Equation (4.11), the probability that such
difference is beyond 864 is at most 5% for each explanation
predicate. Finally, we sort explanation predicates by their
noisy influences and report the top-k. These k predicates will
be reordered as discussed in Sect. 4.4.

4.3.2 Theorem 3.4: Private Confidence Interval of Influence

The goal is to generate a confidence interval of influ-
ence Inf(p) (Definition 4.1) of each explanation predicate
Inf(p1), Inf(p2), . . ., Inf(pk) from the selected top-k
(Sect. 4.3.1). For each Inf(pi ),we apply theGaussianmecha-
nism (Theorem 2.1) with privacy budget ρI n f lu/k to release a
noisy influence Înfi with noise scale σ = ΔInf/

√
2ρI n f lu/k.

The sensitivity term ΔInf is determined by Proposition 4.1.
Following the standard properties of Gaussian distribution,
for each Inf(pi ), we set the confidence interval by a center
c as Înfi and a margin m as

√
2σ erf−1(γ ), or (c-m, c+m),

as a γ level confidence interval of Inf(pi ) [102]. Together, it
satisfies ρI n f lu-zCDP according to the composition property
by Proposition 2.1.

The pseudo code of the procedure is presented in Algo-
rithm 3. It takes a privacy budget ρI n f lu as input. In Line 2
we divide the privacy budget ρI n f lu into k equal portions for
each explanation predicate pu for u ∈ {1, . . . , k}. In Line 3,
we calibrate the noise scale according to the sensitivity of the
influence function. In Line 9, we add a Gaussian noise to the
influence Inf(pu) of explanation predicate pu , and finally in
Lines 10 and 11, we derive the confidence interval based on
the Gaussian property [102].

4.3.3 Theorem 3.5: Private Confidence Interval of Rank

The goal is to find the confidence interval of the rank of each
explanation predicate from the selected top-k (Sect. 4.3.1).
We denote rank(p) as the rank of p ∈ P by the natural
ordering of the predicates imposed by their (true) influences
according to the influence function Inf, and denote rank−1(t)
(for an integer 1 ≤ t ≤ |P|) as the predicate ranked in the t-th
place according to Inf. One trivial example of a confidence
interval of rank is [1, |P|], which has no privacy loss and
always includes the true rank.

Unlike the sensitivity of the influence function, the sen-
sitivity of rank(p) is high, since adding one tuple could
possibly change the highest influence to be the lowest and

Algorithm 3 Compute Confidence Interval of Influence
Require: An influence function Infwith respect to the question (αi ,>

, α j ), k explanation predicates p1, p2, . . . , pk , a private database D,
a privacy budget ρI n f lu , and a confidence level γ .

Ensure: A list of γ -level confidence intervals of the influence
Inf(pu)/(ôi − ô j ) for u ∈ {1, 2, . . . , k}.

1: for u ∈ {1, 2, . . . , k} do
2: ρ ← ρI n f lu/k
3: if agg = COUNT then
4: σ ← 4/

√
2ρ

5: else if agg = SUM then
6: σ ← 4Amax

agg /
√
2ρ

7: else if agg = AVG then
8: σ ← 16Amax

agg /
√
2ρ

9: ˆInf ← Inf(pu) + N (0, σ 2)

10: IL
u ← ˆInf − √

2σ erf−1(γ )

11: IU
u ← ˆInf + √

2σ erf−1(γ )

12: Iu ← (IL
u , IU

u )

13: return I1, I2, . . . , Ik

vice versa. Fortunately, we can employ a critical observation
about rank and influence.

Proposition 4.3 Given a set of explanation predicates P , an
influence function Inf with global sensitivity ΔInf, and an
integer 1 ≤ t ≤ |P|, Inf(rank−1(t)) has sensitivity ΔInf.

The intuition behind this proof is that, fixing an explana-
tion predicate p = rank−1(t), for a neighboring database, if
its influence is increased, its rank will be moved to the top
which pushes down other explanation predicates with lower
influences, so the influence at the rank t in the neighboring
database is still low. For a target explanation predicate p,
since both Inf(p) and Inf(rank−1(t)) have low sensitivity
as ΔInf, intuitively we can check whether t is close to the
rank of p by checking whether their influences Inf(p) and
Inf(rank−1(t)) are close by adding a little noise to satisfy
DP. Given this observation, we devise a binary-search-based
strategy to find the confidence interval of rank.

Lemma 4.2 Givena set of predicatesP , an influence function
Inf with global sensitivity ΔInf and a number t, then the
function s(D) = Inf(p; D)− Inf(rank−1(t; D,P, Inf); D)

has global sensitivity 2ΔInf.

Proof The sensitivity of Inf is ΔInf by definition and the
sensitivity of Inf(rank−1(t; D,P, Inf) is ΔInf by Proposi-
tion 4.3. By Lemma 2.2, together it has sensitivity 2ΔInf.

�
Proof of Proposition 4.3 Drop P and Inf from
rank−1(t; D,P, Inf) for simplicity. Next we show that
for any two neighboring datasets D′ ∼ D, we have
|Inf(rank−1(t; D′); D′) − Inf(rank−1(t; D); D)| ≤
ΔInf, which is equivalent to showing −ΔInf ≤
Inf(rank−1(t; D′); D′) − Inf(rank−1(t; D); D) ≤ ΔInf.
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Case 1 lower bound. This is to show that for any D′ ≈ D,
we have Inf(rank−1(t; D′); D′) − Inf(rank−1(t; D); D) ≥
−ΔInf.

By the definition of global sensitivity, for any expla-
nation predicate p, we have |Inf(p; D′) − Inf(p; D)| ≤
ΔInf, and therefore Inf(p; D′) ≥ Inf(p; D) − ΔInf.
By replacing p with rank−1( j; D) for some j , we have
Inf(rank−1( j; D); D′) ≥ Inf(rank−1( j; D); D) − ΔInf.
For any j ≤ t , by the property of ranking, we have
Inf(rank−1( j; D); D) ≥ Inf(rank−1(t; D); D). Together,
for any j ≤ t , we have Inf(rank−1( j; D); D′) ≥
Inf(rank−1( j; D); D) − ΔInf ≥ Inf(rank−1(t; D); D) −
ΔInf. This means there are at least t elements in D′ such
that their scores are above Inf(rank−1(t; D); D) − ΔInf,
which implies for the t-th largest score in D′ we have
Inf(rank−1(t; D′); D′) ≥ Inf(rank−1(t; D); D) − ΔInf.

Case 2 upper bound. This is to show that for any D′ ≈ D,
we have Inf(rank−1(t; D′); D′) − Inf(rank−1(t; D); D) ≤
ΔInf.

By the definition of global sensitivity, for any expla-
nation predicate p, we have |Inf(p; D′) − Inf(p; D)| ≤
ΔInf, and therefore Inf(p; D′) ≤ Inf(p; D) + ΔInf.
By replacing p with rank−1( j; D) for some j , we have
Inf(rank−1( j; D); D′) ≤ Inf(rank−1( j; D); D) + ΔInf.
For any j ≥ t , by the property of ranking, we have
Inf(rank−1( j; D); D) ≤ Inf(rank−1(t; D); D). Together,
for any j ≥ t , we have Inf(rank−1( j; D); D′) ≤
Inf(rank−1( j; D); D) + ΔInf ≤ Inf(rank−1(t; D); D) +
ΔInf. This means there are at most t −1 elements in D′ such
that their scores can be above Inf(rank−1(t; D); D) + ΔInf,
which implies for the t-th largest score in D′ we have
Inf(rank−1(t; D′); D′) ≤ Inf(rank−1(t; D); D) + ΔInf.

Recall that we have bounded the sensitivity of the influ-
ence function (ΔInf) in Proposition 4.1. Therefore, the
sensitivity of Inf(rank−1(t)) has the same exact bounds
which depend on the query aggregate function.

Noisy binary search mechanism We decompose the
problem into finding two bounds of the confidence interval
separately by a subroutine RankBound(p, ρ, β, dir) that
guarantees that it will find a lower (dir = −1) or upper
(dir = +1) bound of rankwith probabilityβ for the explana-
tion predicate p usingprivacybudgetρ.Wedivide the privacy
budget ρ into two parts by a parameter η ∈ (0, 1) and return
(RankBound(pu, ηρ, β,−1),RankBound(pu, (1 − η)ρ, β,+1))
as the confidence interval of rank for each predicate pu
for u ∈ {1, . . . , k}, where ρ = ρRank/k to divide the total
privacy budget equally, and β = (γ + 1)/2 to ensure a
confidence of γ .

The subroutine RankBound(p, ρ, β, dir) works as fol-
lows. It is a noisy binary search with at most N = �log2|P|�
loops. We initialize the search pointers tlow = 1 and thigh =
|P| as the two ends of possible ranks. Within each loop, we

check the difference of influences at t = �(thigh + tlow)/2�
by adding a Gaussian noise:

ŝ = Inf(p) − Inf(rank−1(t)) + N (0, σ 2) (4.12)

The noise scale is set as σ = (2ΔInf)/
√
2(ρ/N ) to satisfy

ρ/N -zCDP. Instead of comparing the noisy difference ŝ with
0 to check whether t is a close bound of rank(p), we compare
it with the following slack constant ξ so that w.h.p. t is a true
bound of rank(p).

ξ = σ
√
2 ln(N/(1 − β)) × dir (4.13)

We update the binary search pointers by the comparison:
if ŝ ≥ ξ , we set thigh = max{t − 1, 1}, otherwise tlow =
min{t + 1, |P|}. The binary search stops when thigh ≤ tlow
and returns thigh as the rank bound.

We next describe the noisy binary search mechanism in
more detail, as shownbyAlgorithm4. In line 1,RankBound
takes four parameters: an explanation predicate p, a privacy
budget ρ, a sub confidence level β and a direction dir ∈
{−1,+1}. It guarantees that it will find a lower (dir = −1)
or upper (dir = +1) bound of rank with confidence β for
the explanation predicate p using privacy budget ρ. In line
2, we set the maximum depth N of the binary search. In
line 3, we set the noise scale σ−1 or σ+1, which depends on
the sensitivity of Inf(p) − Inf(rank−1(t)) (in line 8), which
is 2ΔInf; and the number of Gaussian mechanisms used in
the binary search, which is N . In line 4, we set the margin
ξ+1 or ξ−1, which will be discussed in line 9. In line 5, we
initialize the binary search by setting two pointers, tlow and
thigh , as the first and last rank. In lines 6–10 there is a while
loop for the binary search. In line 7, we pick a rank that is
at the middle of two pointers. In line 8, we add a Gaussian
noise with scale σ to the difference between the influence
of the target explanation predicate p and the influence of
the explanation predicate that has rank t . From line 9 to 10
we update one of the pointer according to the relationship
between the noisy difference and the margin ξdir . If we are
trying to find a rank upper bound (dir = +1), we want the
binary search to find the rank such that the difference (without
noise) is above zero. Due to the noise injected, even if the
noisy difference is above zero, the true difference could be
negative.To secure the goalwith highprobability,we requires
the noisy difference to be above a margin ξdir , as shown in
line 9. In this case, we narrow down the search space by
moving thigh to max{t − 1, 1}. The strategy is similar when
we are looking for a rank lower bound (dir = −1).

Now, we describe the usage of the sub-routine
RankBound. We repeat the following for each explanation
predicate. In line 13, we allocate an even portion from the
total privacy budget ρRank , and set the sub confidence level
to β = (γ + 1)/2 so the final confidence interval has con-

123



Differentially private explanations for aggregate query answers Page 15 of 25    20 

fidence level 2β − 1 = γ by the rule of union bound. In
lines 14, we divide the privacy budget ρ, and make two calls
to the sub-routine RankBound to find a rank upper bound
and a rank lower bound for the explanation predicate pu ,
and finally merge them into a single confidence interval. We
spend more budget for the rank upper bank since this is more
important in the explanation.

Algorithm 4 Compute Confidence Interval of Rank
Require: A dataset D, a predicate space P , an influence function Inf

with sensitivity ΔInf, explanation predicates p1, p2, . . . , pk , a con-
fidence level γ , and a privacy parameter ρRank .

Ensure: A list of γ -level confidence intervals of the influence
rank(pu; D,P, Inf) for u ∈ {1, 2, . . . , k}.

1: function RankBound(p, ρ, β, dir )
2: N ← �log2|P|�
3: σdir ← (2ΔInf)/

√
2(ρ/N )

4: ξdir ← σdir
√
2 ln(N/(1 − β)) × dir

5: tlow, thigh ← 1, |P|
6: while thigh ≥ tlow do
7: t ← � thigh+tlow

2 �
8: ŝ ← Inf(p) − Inf(rank−1(t)) + N (0, σ 2)

9: if ŝ ≥ ξdir then thigh ← max{t − 1, 1}
10: else tlow ← min{t + 1, |P|}
11: return thigh
12: for u ← 1, 2, . . . , k do
13: ρ, β ← ρRank/k, (γ + 1)/2
14: Iu ← (RankBound(pu , 0.1ρ, β,−1),

RankBound(pu, 0.9ρ, β,+1))
15: return I1, I2, . . . , Ik

Example 4.5 Fig. 4 shows an example of RankBound for
finding the upper boundof the confidence interval for rank(p)
for some explanation predicate p (with true rank 3 shown in
red). The upper part of the figure shows the influences of all
the explanation predicates in descending order, and the lower
part shows the status of the binary search pointers in each
loop. The search contains three loops starting from tlow = 1
and thigh = 15. Within each loop, to illustrate the idea, it
is equivalent to adding a Gaussian noise to Inf(rank−1(t)),
which is shown as a blue circle, compare it with Inf(p) − ξ ,
which is shown as a dashed line, and update the pointers
accordingly. For example, in loop 1, the blue circle 1 is in
the green region, so the pointer thigh is moved from 15 to 7
(shown in the lower part). Finally, it breaks at tlow = thigh =
5.

We now show that noisy binary search mechanism sat-
isfies the privacy requirement, and outputs valid confidence
intervals. In Sect. 6, we show that the interval width is empir-
ically small.

Theorem 4.1 Given a database D, a predicate space P ,
an influence function Inf with sensitivity ΔInf, explana-
tion predicates p1, p2, . . . , pk, a confidence level γ , and a

Fig. 4 Execution of RankBound for finding the upper bound of the
confidence interval of rank for the predicate p (with true rank 3, in red)
in a toy example

privacy parameter ρRank , noisy binary search mechanism
returns confidence intervals I1, I2, . . . , Ik such that

1. Noisy binary search mechanism satisfies ρRank-zCDP.
2. For ∀u ∈ [1, k], Iu is a γ level confidence interval of

rank(pu).

Proof (1) Differential Privacy We first show that Algorithm
4 satisfies ρRank-zCDP.

The main structure of Algorithm 4 is a for-loop
of k explanation predicates from line 12 to 14, and
within each for-loop, we first prepare the parameters
at line 13 and 13, make two calls to the sub-routine
RankBound and construct the confidence interval by
the sub-routine outputs. We first show below that each
call to the sub-routine RankBound with parameters
(p, ρ, β, dir) satisfies ρ-zCDP. Given this is true, we then
show that our two calls RankBound(pu, 0.1ρ, β,−1) and
RankBound(pu, 0.9ρ, β,+1) at Line 14 satisfies 0.1ρ-
zCDP and 0.9ρ-zCDP, which together satisfies ρ-zCDP by
the composition rule (Proposition 2.1). By line 13, we set
ρ = ρRank/k, therefore each loop satisfies (ρRank/k)-zCDP,
and after in total k loops, it satisfies ρRank-zCDP by the com-
position rule (Proposition 2.1).

Next we show that RankBound(p, ρ, β, dir ) satisfies ρ-
zCDP, from line 1 to 11. We first prepare some parameters at
the start of the sub-routine,which does not touch the data, and
then enters a while loop with at most N = �log2|P|� loops.
Denote s = Inf(p) − Inf(rank−1(t)). Within each loop, we
add a Gaussian noise to a secret s at line 8. The value of s
touches the sensitive data, but by adding a Gaussian noise
to s, the release of ŝ satisfies zCDP. By Theorem 2.1, with
noise scale σ , it satisfies (Δ2

q)/2σ
2-zCDP where Δq is the

sensitivity of the function that we want to release. Since we
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set σ = (2ΔInf)/
√
2(ρ/N ) at line 3 and the sensitivity of

s is 2ΔInf by Lemma 4.2, it satisfies (ρ/N )-zCDP. Since
we have at most N noisy releases of S using the Gaussian
mechanism, by composition rule (Proposition 2.1), the entire
while loop satisfies ρ-zCDP, and so is the sub-routine.

(2) Confidence Interval Now we show that the confidence
interval outputted by RankBound(p, ρ, β, dir ), from line
1 to 11, is a γ -level confidence interval.

The sub-routine RankBound with direction ‘upper’ is a
mirror to RankBoundwith direction ‘lower’. We first show
that RankBound returns a bound in either upper or lower
case such that it is a true bound with probability β = γ+1

2 ,
therefore the target rank iswithin twoboundswith probability
γ . We give the proof for the case when direction is upper for
the sub-algorithm RankBound, and skip the proof for the
case when direction is lower due to the similarity.

The sub-routine RankBound is a random binary search
algorithm with in total N loops.

To ensure that the final thigh is a rank bound, one sufficient
condition is that thigh is always an upper bound of rank during
all the loops. Recall that in the noisy binary search, in each
loop we first find t as the middle of thigh and tlow, check
s = Inf(p) − Inf(rank−1(t)) ≤ 0, add noise a Gaussian
noise to s to get ŝ and compare ŝ with margin, which is ξ in
this case. If ŝ ≥ ξ , notice that at line 9, we change thigh to t .
If in this case, s ≤ 0, which means t is not an upper bound of
rank, we never have chance to make thigh to be a valid upper
bound of rank since it will only decrease in the further loops.
Therefore,We say a loop is a failure if during that loop, s ≤ 0
but ŝ > ξ . To have a valid rank upper bound, it is necessary
to have no loop failure during the entire noisy binary search.
We next show that the probability of no such a failure occur
is at least β. See the chain of inequalities below.

Pr [IU
u is an upper bound of rank(pu; D,P, I )]

The first inequality is due to the bound of the number ofwhile
loops. To be a rank bound, it cannot fail at each loop, therefore
it has to success for all the N loops. These are independent
events, so we can use a product for all the events happen
together.

≥ (1 − Pr [loop failure])N

The second inequality is due to the boundof Pr [loop failure].
Since any case such that S ≤ 0 but ŝ > ξ is considered as a
loop failure, ŝ is achieved by adding aGaussian noise to s and
ξ is a constant, the probability of a loop failure only depends
on the value of s. Since here we have a condition about s ≤ 0,
sups≤0 Pr [ŝ > ξ ] is an upper bound of Pr [loop failure].

≥ (1 − sups≤0 Pr [Ŝ > ξ ])N

The next equality is because sups≤0 Pr [ŝ > ξ ] =
Pr [N (0, σ 2) > ξ ]. Recall that ŝ = s + N (0, σ 2) in line 8,
therefore sups≤0 Pr [ŝ > ξ ] = sups≤0 Pr [s + N (0, σ 2) >

ξ ] = sups≤0 Pr [N (0, σ 2) > ξ − s]. Since Pr [N (0, σ 2) >

ξ −s] increases as s increases, it achieves maximum at s = 0
for s ≤ 0. Therefore, sups≤0 Pr [ŝ > ξ ] = Pr [N (0, σ 2) >

ξ ].

= Pr [N (0, σ 2) ≤ ξ ]N

The third bound is due to Chernoff bound of the Q-
function (Lemma 2.1). Since Pr [N (0, σ 2) ≤ ξ ] =
1 − Pr [N (0, 1) > ξ/σ ], by Chernoff bound we have
Pr [N (0, 1) > ξ/σ ] ≤ exp(−(ξ/σ )2/2) and therefore
Pr [N (0, σ 2) ≤ ξ ] ≥ 1 − exp(−(ξ/σ )2/2).

≥ (
1 − exp(−(ξ/σ )2/2)

)N

The fourth bound is due to (1 + x)r ≥ 1 + r x for x ≥ −1
and r ≥ 1.

≥ 1 − N exp(−(ξ/σ )2/2)

The final equality is by plugging ξ = σ
√
2 ln(N/(1 − β)).

= β

Similarly, we have Pr [IL
u is a lower bound of

rank(pu; D,P, I )] ≥ β. Together, the probability of Iu is
a γ level confidence interval of rank(pu; D,P, I ) equals to
both events IU

u is an upper bound of rank(pu; D,P, I ) and
IL
u is a lower bound of rank(pu; D,P, I ) happen together,

which is greater than or equal to the probability sum of each
single event minus one (Lemma 2.4, which is β + β − 1 =
2β − 1. By plugging β = (γ + 1)/2 from line 13, we have
2β − 1 = γ , which is the confidence interval level for the
final confidence interval. �

4.4 Putting it all together

We now show how all steps fit into DPXPlain
Relative Influence Recall that the influence defined by

Definition 4.1 is the difference of (oi − o j ) before and after
removing the tuples related to an explanation predicate (first
term), and multiplies with a normalizer to penalize trivial
predicates (second term). Since the absolute value of influ-
ence is hard to interpret, to help user better understand the
confidence interval of influence, we show the relative influ-
ence compared to the original difference |oi − o j | as a per-
centage. However, we cannot divide the influence by |oi −o j |
since using the actual data valueswill incur additional privacy
loss, hence, for SUM and COUNT we divide the true influ-
ence by |ôi − ô j | as an approximation since the normalizer in
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the second term is bounded in [0, 1]. However, when agg =
AVG, the normalizer min(|gi (¬p(D))|, |g j (¬p(D)|) (sec-
ond term) is not bounded in [0, 1], so we further divide the
influence by another constant, the minimum of the noisy
counts/sizes of the groups, i.e., |min(ôCi , ôCj )| (approximat-
ing the upper boundmin(|gi (D)|, |g j (D)|) of the normalizer
to avoid additional privacy loss). In summary, we define the
relative influence Ĩnf(p; (αi , α j ,>), D), or simply Ĩnf(p),
as follows, which is only used for display purposes.

Ĩnf(p) =

Inf(p)/

{
|ôi − ô j | , for agg ∈ {COUNT , SUM}
|ôi − ô j | × |min(ôCi , ôCj )| , for agg = AVG

Explanation Table We define the explanation table as
follows.

Definition 4.2 [Explanation Table containing top-k expla-
nations] Given a database D, a group-by aggregate query
q as shown in Fig. 3, a user question (αi , α j ,>), a pred-
icate space P , a confidence level γ , and an integer k,
a table of top-k explanations is a list of k 5-element
tuples (pu, IL

relin f luu
, IU

relin f luu
, IL

ranku, IU
ranku) for u =

1, 2, . . . , k such that pu is an explanation predicate,
(IL

relin f luu
, IU

relin f luu
) is a confidence interval of relative

influence Ĩnf(pu) with confidence level γ , and (IL
ranku,

IU
ranku) is a confidence interval of rank(pu) with confidence

level γ

Sorting the explanations in the explanation table Since
this table contains the bounds of the influences and ranks
it is natural to present the table as a sorted list. Since the
numbers in the table are generated by random processes,
each column may imply a different sorting. In this paper,
we sort the selected top-k explanations by the upper bound
of the relative influence CI (the third column in Fig. 1d) in
descending order; if there is a tie, we break it using the upper
bound of the rank confidence interval (the fifth column in
Fig. 1d). Finding a principled way for sorting the explanation
predicates is an intriguing subject of future work.

Overall DP guarantee We summarize the privacy guar-
antee of DPXPlain as follows: (i) the private noisy query
answers returned by Gaussian mechanism in Phase-1 sat-
isfy ρq -zCDP together (see Sect. 2); (ii) Phase-2 only returns
the confidence intervals of the noisy answers in Phase-1
with zero additional privacy loss (discussed in Sect. 4.1);
(iii) Phase-3 returns k explanation predicates and their upper
and lower bounds on relative influence and ranks given
a required confidence interval with three privacy parame-
ters ρTopk, ρI n f lu, ρRank (discussed in Sect. 4.3.1, 4.3.2 and
4.3.3). The following theorem summarizes the total privacy
guarantee.

Theorem 4.2 Given a group-by query q and a user question
comparing two aggregate values in the answers of q, the
DPXPlain framework guarantees (ρq + ρTopk + ρI n f lu +
ρRank)-zCDP.

5 Extension to general user questions

In this section,we introduce a generalization of the user ques-
tion (Definition 3.1) through weighted sum, such that more
groups can be involved in the question and the comparison
between groups can be more flexible. We also discuss how
the explanation framework should be adapted to this general
form. In Sect. 6, we give a use case for privately explaining
a general user question.

Definition 5.1 [General User Question] Given a database
D an aggregate query q, a DP mechanism M, and noisy
group aggregation releases ôi1 , ôi2 , . . . , ôim of the groups
αi1 , αi2 , . . . , αim from the query q, a general user ques-
tion Q is represented by m weights and a constant c:
(wi1, wi2 , . . . , wim , c). Intuitively, the question is interpreted
as “Why

∑im
j=i1

w j ô j ≥ c”.

Definition 5.1 allows more interesting questions, such as
“Why the total salary of group A and B is larger than the
total salary of group C and D?” or “Why the average salary
of group A is 10 times larger than the one of group B?”. Next
we illustrate how the algorithms for each problem related to
our framework should be adapted in the case of general user
question.

Private Confidence Interval of Question Given a gen-
eral user question (wi1, wi2 , . . . , wim , c), we discuss how to
derive the confidence interval of

∑im
j=i1

w j o j − c. Compar-
ing to the case of a simple user question (αi ,>, α j ), where
the target of confidence interval is oi − o j , here we have
a weighted sum of multiple group results. Therefore, when
agg is CNT or SUM , the noisy weighted sum follows the

Gaussian distribution with scale
√∑im

j=i1
w2

jσ , where σ is
the noise scale used in query answering. When agg is AVG,
the noisy weighted sum can also be viewed as a combina-
tion of multiple Gaussian variables. Thus, we consider these
adaptions:

1. For agg = CNT or agg = SUM , update the margin√
2(

√
2σ) erf−1(γ ) as

√
2(

√∑im
j=i1

w2
jσ) erf−1(γ ).

2. For agg = AVG, update the sub confidence level β to
be (γ − 1)/(2m) + 1, and the image of sub confidence
intervals to be

∑im
j=i1

IS
j / IC

j −c.

Adaptation to Finding Private Top-k Explanation Predi-
cates Since the user question has a new form, the influence
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function and its corresponding score function should also be
adapted. We consider their natural extensions as follows:

Definition 5.2 [General Influence Function] Given a
database D and a general user question Q =
(wi1 , wi2 , . . . , wim , c) with respect to the query SELECT
Agb,agg(Aagg) FROM R WHERE φ GROUP BY Agb,
the influence of an explanation predicate p is defined fol-
lows:

Inf(p; Q, D) =
( im∑

j=i1

w j q(g j (D)) −
im∑

j=i1

w j q(g j (¬p(D)))

)

×

⎧
⎪⎪⎨

⎪⎪⎩

min
t∈{i1,i2 ,...,im }|gt (¬p(D))|

max
t∈{i1,i2 ,...,im }|gt (D)|+1 , agg ∈ {COUNT , SUM}

min
t∈{i1,i2,...,im }|gt (¬p(D))| , agg = AVG

We can plug-in the new influence function into algorithm
2 to find the noisy top-k explanation predicates. The corre-
sponding sensitivity of the new influence function is given
as follows:

Theorem 5.1 Given an explanation predicate p and a gen-
eral user question Q = (wi1, wi2 , . . . , wim , c)with respect to
a group-by query with aggregation agg, the following holds:

1. If agg = CNT , the sensitivity of Inf(p; Q, D) is
2

∑im
j=i1

|w j |.
2. If agg = SUM, the sensitivity of Inf(p; Q, D) is

2
∑im

j=i1
|w j |Amax

agg .
3. If agg = AVG, the sensitivity of Inf(p; Q, D) is

8
∑im

j=i1
|w j |Amax

agg .

Proof This is a weighted version of Proposition 4.1. �
In particular, when only two groups are involved in the

user question, each with weight 1, we get the results from
Proposition 4.1. For example, in Item 1 when agg = CNT ,
we get from Theorem 5.1 that the sensitivity of Inf is 2 · (1+
1) = 4 which is consistent with Proposition 4.1.

We also allow explanation predicates to include disjunc-
tion and allow the framework to specify a specific set of
explanation predicates by enumeration.

Adaptation to Finding a Private Confidence Interval of
InfluenceWecan plug-in the new influence function and their
sensitivities into the original algorithm to find the confidence
interval of influence.

Adaptation to Finding a Private Confidence Interval of
Rank We can plug-in the new influence function and their
sensitivities into algorithm 4 to find the confidence interval
of rank.

6 Experiments

In this section, we evaluate the quality and efficiency of the
explanations generated by DPXPlain. To our knowledge,

there are no existing benchmarks for explanations for query
answers (even without privacy consideration) in the database
research literature. We have implementedDPXPlain [1] in
Python 3.7.4 using the Pandas [97], NumPy [52], and SciPy
[100] libraries. All experiments were run on Intel i7-7700
CPU @ 3.60GHz with 32 GB of RAM.

6.1 Experiment setup

We detail the data, queries, questions, and parameters.
Datasets We consider three datasets.

• IPUMS-CPS (real data): A dataset of Current Popu-
lation Survey from the U.S. Census Bureau [48] with
1,146,552 tuples
from the year 2011 to 2019. The dataset contains 8 cate-
gorical attributes where domain sizes vary from 3 to 36
and one numerical attribute. The attribute AGE is dis-
cretized as 10 years per range, e.g., [0,10] is considered
a single value. To set the domain of numerical attributes,
we only include tuples with attribute INCTOT (the total
income) smaller than 200k as a domain bound.

• Greman-Credit (synthetic data): A corrected collec-
tion of credit data [51]. It includes 20 attributes where the
domain sizes vary from 2 to 11 and a numerical attribute.
Attributesduration,credit-amount, and age are
discretized. The domain of attribute good-credit is
zero or one.We synthesize the dataset to 1million rowsby
combining a Bayesian network learner [8] and XGBoost
[14] following the strategy of QUAIL [84].

• New York City taxi trips (real data): Con-
tains information from January and February 2019 [3]
and is used to demonstrate a use case for our general
form of user question (Definition 5.2). We preprocessed
the dataset such that it includes 4 columns: PU_Zone,
PU_Borough, DO_Zone, DO_Borough.

Queries and Questions The queries and questions used on
the experiments are shown in Table 1.

Default setting of DPXPlainUnless mentioned other-
wise, the following default parameters are used (also for the
motivating example) : ρq = 0.1, ρTopk = 0.5, ρI n f lu = 0.5,
ρRank = 1.0, γ = 0.95, k = 5, η = 0.1, and the number of
conjuncts in explanation predicates l = 1 (Definition 3.2).
We choose η = 0.1 to allocate more privacy budget for the
rank upper bound by our observation that the scores of expla-
nation predicates have a long and flat tail, which intuitively
means that a tight rank upper bound indicates a precise score
and, thus, costs more privacy. For the total privacy budget,
which is 2.1 by default, we provide experiments to show that
reducing the budget of each component can still lead to a high
utility for all questions except I2 and I5 in Table 1 (Figs. 7,
8a, 9a, 9b).
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Fig. 5 Phase-3 of DPXPlain in Case-1

6.2 Case studies

Case-1 IPUMS-CPS In Phase-1, the user submits a query
q1 from Table 1, and gets a noisy result: ("Female",
31135.25) and ("Male", 45778.46). The hidden true val-
ues are ("Female", 31135.78) and ("Male", 45778.39).
Next, in Phase-2, since there is a gap of 14643.21 between
two groups, the user asks a question I1 from Table 1. The
framework then quantifies the noise in the question by report-
ing a confidence interval of the gap as (14636.63, 14649.79).
Since the interval does not include zero, DPXPlain sug-
gests that this is a valid question, which is correct. Finally,
in Phase-3, the framework presents top-5 explanations to the
user as Fig. 5 shows. The last two columns are the true relative
influences and ranks. We correctly find the top-5 explanation
predicates, and the first and fourth explanations together sug-
gests that a married man tends to earn more than a married
woman, which is supported by the wage disparities in the
labor market [99]. The second and third explanations also
match the wage disparities within the educated group and
white people. The total runtime for preparing the explana-
tions in Phase-2 and Phase-3 is 67 s.

Case-2 German-Credit In Phase-1, the user sub-
mits a query q4 from Table 1, and gets a noisy
result: ("no checking account", 0.526571) and
("no balance", 0.574447). The true hidden result
is ("no checking account", 0.526574) and ("no
balance", 0.574466). Next, in Phase-2, since there is a
gap of 0.047876 between two groups, the user asks a ques-
tion G1 from Table 1. The framework then quantifies the
noise in the question by reporting a confidence interval of
the gap as (0.047786, 0.047967). Since the interval does not
include zero, the framework suggests that this is a valid ques-
tion, which is correct. Finally, in Phase-3, the framework
presents top-5 explanations to the user as Fig. 6 shows. The
last two columns are the true relative influences and ranks.
We correctly find the top-5 explanations, and the first expla-
nation suggests that for a person who already has a credit
in the bank, the bank tends to mark the credit as good with
a higher probability than the case of no account if she has
a checking account even with zero balance, which follows
the intuition that a person having a credit account but no

Fig. 6 Phase-3 of DPXPlain in Case-2

Fig. 7 The probability of correctly validating user questions. All ques-
tions except I2 and I5 (Fig. 7) are at 100%

checking account is risky to the bank. The total runtime for
preparing the explanations in Phase-2 and Phase-3 is 40 s.

6.3 Accuracy and performance analysis

We detail our experimental analysis for the different ques-
tions and configurations of DPXPlain. All results are
averaged over 10 runs.

Correctness of noise interval InPhase-2 ofDPXPlain, the
validity of the question is suggested as follows: if the con-
fidence interval contains non-positive numbers, the question
is invalid, otherwise valid. From Fig.7, we find that 8 out of
10 questions (plotted together for clarity) from Table 1 are
classified correctly with an accuracy of 100% given a wide
range of privacy budget of query ρq . However, there are two
questions, I2 and I5, only show high accuracy given a large
privacy budget of ρq = 10. One reason is that the minimum
group size involved in I2 and I5 is at least 600 and 60 times
smaller compared to other questions, and, therefore, the par-
tial confidence intervals in the denominators of the AVG
query are low, which makes the final confidence intervals
wider including negative numbers when it should not.

Accuracy of top-k explanation predicates In Phase-3 of
DPXPlain, we first select top-k explanation predicates. We
measure the accuracy of the selection by Precision@k [54],
the fraction of the selected top-k explanation predicates that
are actually ranked within top-k. Another experiment on the
full ranking is included in the full version [2]. From Fig. 8a,
we find that the privacy budget of top-k selection ρTopk has
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Fig. 8 Precision@k of top-k selection by DPXPlain

a positive effect to Precision@k at k = 5 for various ques-
tions. When ρTopk = 1.0, all the questions except I2 and I5
have Precision@k ≥ 0.8. The selection accuracy of question
I2 and I5 are generally lower because of small group sizes,
and, therefore, the influences of explanation predicates are
small and the rankings are perturbed by the noise more sig-
nificantly.

From Fig. 8b, we find that the trend of Precision@k by k
is different across questions and there is no clear trend that
Precision@k increases as k increases. For example, for G3,
it first decreases from k=3 to k=5, but increases from k=5
to k=6. When k = 3, most questions have high Precision@k;
this is because the highest three influences are much higher
than the others, which makes the probability high to include
the true top three. With larger k, explanation predicates that
have similar scores have an equal probability to be included
in top-k and therefore the top-k selected by the algorithm
are different from the true top-k selections. The relationship
between Precision@k and k depends on the distribution of
all the explanation predicate influences.

Precision of relative influence and rank confidence Inter-
val (CI) In Phase-3, the last step is to describe the selected
top-k explanation predicates by a CI of relative influence and
rank for each. To measure the precision of the description,
we adopt the measure of interval width [47]. Figure9 illus-
trates the average width of k CIs of relative influence and
rank. From Fig. 9a and 9b, we find that the increase of pri-
vacy budget ρI n f lu and ρRank shrinks the interval width of
relative influence CI and rank CI separately. In particular,
when ρI n f lu ≥ 0.5, 6 out of 10 questions have the interval
width of relative influence CI ≤ 0.025; when ρRank ≥ 1.0, 2
questions have the interval width of rank CI ≤ 2 and 6 ques-
tions have this number ≤ 10. We also measure the effect of
confidence level γ to the CI by changing γ from 0.1 to 0.9 by
step size 0.1 and from 0.95 and 0.99. Figures can be found
in the full version [2]. The results show that it has a non-
significant effect to the interval width, as it changes < 0.03
for the influence CI of 6 questions, and changes < 5 for the
rank CI of 8 questions.

Runtime analysis We analyze the runtime of DPXPlain
for generating Phase-2 and Phase-3. Figure10a shows a run-
time breakdown on average for all the questions from Table

Fig. 9 The width of confidence intervals by DPXPlain. The numbers
are beyond 2 for the relative influence of I2 and I5

Fig. 10 Runtime analysis of DPXPlain

1 with total runtime of 32s on average. 88% of the time is
used for the top-k explanation predicate selection procedure,
especially on computing the influences for all the explana-
tion predicates. The next highest runtime is for computing
the confidence interval of influence, which needs to evalu-
ate each sub queries. For the step noise quantification and
confidence interval of rank, the time usage is not significant
since the first only needs to find the image of two intervals
and the second is a binary search. Figure10b, shows that the
runtime is linearly proportional to the size of explanations k,
and the difference between questions is due to the difference
of group sizes. We also find the runtime grows exponentially
with the number of conjuncts l as the number of explanation
predicates grows exponentially: for l = 1, 2, 3, the runtime
about question I1 is 67, 3078 and 79634, and for question G1
it is 40, 1587 and 39922s.

General User Question Use Case: Taxi-Imbalance We
use the New York City taxi trips dataset to analyze the traf-
fic volume between boroughs. With privacy budget ρq =
0.1, the framework answers the user query as “SELECT
PU_Borough, DO_Borough, CNT(*) FROM R GROUP BY
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Fig. 11 Top-5 explanations for Taxi-Imbalance

PU_Borough, DO_Borough”. There are in total 49 groups,
and among the query answers we have (Brooklyn, Queens):
11,431 and (Queens, Brooklyn): 121,934. User then asks
“Why Queens to Brooklyn has more than 10 times the num-
ber of trips from Brooklyn to Queens?” This corresponds
to the question "why q1 − 10q2 ≥ 0", or in the form of
weights (1,−10, 0). The confidence interval of the question
is (7580, 7668), which validates the question. To explain
the question, we consider a predicate space of the form
"PU_Zone = <zone> ∨ DO_Zone = <zone>" with in total
127 different zones. With ρTopk = 0.025, ρI n f lu = 0.025,
and ρRank = 0.95, we have the explanation table as shown
in Fig. 11. The relative influence is relative to the noisy dif-
ference ô1 − 10ô2 = 7624. From this table, we can find that
two airports, JFK and LaGuardia airports that are located in
Queens, are the major reasons for why there are more traf-
fic volume from Queens to Brooklyn since there are more
incoming taxi traffic to the airports instead of outgoing taxi
traffic.

7 Related work

We next survey related work in the fields of DP and expla-
nations for query results. To the best of our knowledge,
DPXPlain is the first work that explains aggregate query
results while satisfying DP.

Explanations for query results The database community
has proposed several approaches to explaining aggregate
and non-aggregate queries in multiple previous works. Pro-
posed approaches include provenance [18, 27, 28, 55, 56,
64, 65, 98], intervention [85, 86, 104], entropy [44], respon-
sibility [75, 76], Shapley values [69, 82], counterbalance
[77] and augmented provenance [67], and several of these
approaches have used predicates on tuple values as explana-
tions like DPXPlain, e.g., [44, 67, 86, 104]. We note that
any approaches that consider individual tuples or explicit
tuple sets in any form as explanations (e.g., [27, 65, 69,
75]) cannot be applied in the DP setting since they would
violate privacy.Among the other summarization or predicate-

based approaches, Scorpion [104] explains outliers in query
results with the intervention of most influential predicates.
Our influence function (Sect. 4.2) is inspired by the influence
function of Scorpion, but has been modified to deliver accu-
rate results while satisfying DP. Another intervention-based
work [86] that also uses explanation predicates, models inter-
dependence among tuples frommultiple relationswith causal
paths.DPXPlain does not support joins in the queries, which
is a challenging future work (see Sect. 8).

Differential privacy Private SQL query answering sys-
tems [33–35, 58, 61, 62, 71, 95, 103] consider a workload
of aggregation queries with or without joins on a single
or multi-relational database, but none supports explanation
under differential privacy. The selection of private top-k can-
didates is well-studied by the community [9, 11, 12, 16, 19,
31, 38, 63, 68, 72, 73, 81, 96]. We adopt One-shot Top-k
mechanism [81] since it is easy to understand. Private con-
fidence interval is a new trend of estimating the uncertainty
under differential privacy [13, 22, 46], however, the current
bootstrap based methods measure the uncertainty from both
the sampling process and the noise injection, while we only
focus on the second part which is likely to give tighter inter-
vals. The most relevant work to the private rank estimation
is private quantile [5, 21, 40, 49, 59, 66, 90], which is to find
the value given a position such as median, but the problem
of rank estimation in our setting is reversed. A recent work
focused on explaining the effect of the privacy budget on the
results obtained from DP process on their data [79] while
another work provided a model that determines the impact
of model explanations on the privacy of the model and devel-
oped a defense framework [80].

Privacy and provenanceAsmentioned earlier, data prove-
nance is often used for explaining query results, mainly for
non-aggregate queries.Within the context of provenance pri-
vacy [7, 10, 20, 23, 24, 87, 89, 92], one line of work [23–25]
studied the preservation of workflow privacy (privacy of data
transferred in a workflow with multiple modules or func-
tions), with a privacy criterion inspired by l-diversity [70].
A recent work [29] explored what can be inferred about the
query from provenance-based explanations and found that
the query can be reversed-engineered from the provenance
in various semirings [50]. To account for this, a follow-up
paper [26] proposed an approach for provenance obfuscation
that is based on abstraction. This work uses k-anonymity [91]
to measure how many ‘good’ queries can generate concrete
provenance that can bemapped to the abstracted provenance,
thus quantifying the privacy of the underlying query. Another
work proposed the use of data provenance for improved user
understanding in DP settings [53] Devising techniques for
releasing provenance of non-aggregate and aggregate queries
under DP is an interesting research direction.
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8 Future work

There are several interesting future directions. Extending
DPXPlain to more general queries (like joins) and questions
is an important future work. Unlike standard explanation
frameworks like [104] where the join results can be materi-
alized before running the explanation mechanism, a careful
sensitivity analysis of adding/removing tuples from multiple
tables is needed in the DP settings [95]. Second, the com-
plexity of the top-k selection algorithm links to the number
of explanation predicates that could be exponentially large,
leaving room for future improvements. Additionally, other
interesting notions of explanations for query answers (e.g.,
[67, 69, 77]) can be explored in the DP setting. Finally,
evaluating our approach with a comprehensive user study
and examining different metrics of understandability of the
explanations generated by DPXPlain is also an important
direction for future investigation.
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